Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?. Tính giá trị của hàm số tại x=2A. Thành phố A xảy ra một trận động đ
Trang 1VIDEO BÀI GIẢNG và LỜI GIẢI CHI TIẾT CÁC BÀI TẬP chỉ có tại website MOON.VN
Group thảo luận bài tập www.facebook.com/groups/Thayhungdz
Câu 1: Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số 3 1
2
x y x
+
= + ?
Câu 2: Đồ thị hàm số y=x4−3x2+4 và đồ thị hàm số y=x2+1 có tất cả bao nhiêu điểm chung ?
Câu 3: Cho hàm số y= f x( ) xác định, liên tục trên đoạn [−2; 2]
và có đồ thị là đường cong trong hình vẽ bên Hàm số f x( ) đạt cực
tiểu tại điểm nào dưới đây ?
A x= −2
B x= −1
C x=1
D x=2
Câu 4: Cho hàm số 3 2
y= −x x + x− Xét các mệnh đề sau:
(i) Hàm số đồng biến trên khoảng 5;
3
+∞
(ii) Hàm số nghịch biến trên khoảng ( )1; 2
(iii) Hàm số đồng biến trên khoảng ;1
2
−∞
Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng ?
Câu 5: Cho hàm số y= f x( ) xác định trên ℝ\{ }−1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f x( )=m có ba nghiệm thực phân biệt
Câu 6: Tìm giá trị cực tiểu y CT của hàm số
2
5 2
x y x
+
= +
LUYỆN ĐỀ TRƯỚC KÌ THI THPT QUỐC GIA 2017
Đề tham khảo – Thời gian làm bài : 90 phút
Thầy Đặng Việt Hùng – Moon.vn
Trang 2A y CT = −10 B y CT =2 C 5.
2
CT
Câu 7: Một vật chuyển động theo quy luật 1 3 12 ,2
2
s= − t + t với t (giây) là khoảng thời gian tính từ lúc vật
bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu ?
A 512 (m/s) B 90 (m/s) C 700 (m/s) D 96 (m/s)
Câu 8: Tìm tất cả các tiệm cận đứng của đồ thị hàm số
2
2
x x
A x=0, x=3 B x=3 C x=1, x=3 D. x=1
Câu 9: Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số ( 2 )
khoảng (−∞ +∞; )
A ; 1
2
−∞ −
1
2
−∞ −
1 1
2 2
−
1
2
+∞
Câu 10: Biết M( ) (0;5 , N 2; 11− ) là các điểm cực trị của đồ thị hàm số y=ax3+bx2+ +cx d Tính giá trị của hàm số tại x=2
A y( )2 =1 B y( )2 = −3 C y( )2 = −7 D y( )2 = −11
Câu 11: Cho hàm số ( ) 3 2
1
f x =ax +bx + +cx có đồ thị ( )C Hình bên là một phần của đồ thị hàm số g x( )= f '( )x trong đó , ,a b c là
các hằng số thực Có bao nhiêu biểu thức nhận giá trị dương trong
các biểu thức sau ab ac, , 3a+ +3b c và a b c− + ?
A 1
D 0
Câu 12: Với các số thực dương ,a b bất kỳ và khác 1 Mệnh đề nào dưới đây đúng ?
A loga b 1loga
b
log
b = b C log loga b=log( )ab D log ln
ln
a
b b a
=
Câu 13: Tìm tất hợp tất cả các nghiệm của phương trình 2 1 ( )
2
1
2 2 4
x
x
=
A 11
2
−
2 11
−
11 2
2 11
Câu 14: Năng lượng của một trận động đất được tính bằng E=1, 74.10 1019 1,44M với M là độ lớn theo thang
độ Richter Thành phố A xảy ra một trận động đất 8 độ Richter và năng lượng của nó gấp 14 lần trận động đất đang xảy ra tại thành phố B Hỏi khi đó độ lớn của trận động đất tại thành phố B là bao nhiêu ?
A 7, 9 độ Richter B 7,8 độ Richter C 9, 6 độ Richter D 7, 2 độ Richter
Câu 15: Cho hàm số 3 4
A
7 24
17
'
24
y
x
7 24
7 '
24
y
x
7 24
7
' 24
x
7 24
17
' 24
x
y =
Câu 16: Với các số thực dương ,a b tùy ý Mệnh đề nào dưới đây đ úng ?
A
4
3
log a 3 2.log a 2.log b
b
4
3 log a 1 4.log a 2.log b b
4
3a
Trang 3Câu 17: Có bao nhiêu giá trị nguyên dương của x thỏa mãn bất phương trình log(x−40)+log 60( − <x) 2
Câu 18: Tính đạo hàm của hàm số ( ) x.sin
f x =e x
4
x
4
x
C '( ) sin
4
x
f x = x−π e
4 2
x
Câu 19: Cho hai hàm số y= f x( )=loga x và hàm số ( ) x
y=g x =a Xét các mệnh đề sau:
(i) Đồ thị của hai hàm số f x( ) và g x( ) luôn cắt nhau tại một điểm
(ii) Hàm số f x( ) ( )+g x đồng biến khi a>1 và nghịch biến khi 0< <a 1
(iii) Đồ thị hàm số f x( )=loga x luôn có đường tiệm cận
Số mệnh đề đ úng là
Câu 20: Tìm tập hợp các giá trị của tham số thực m để phương trình 2x+ =3 m 4x+1 có hai nghiệm thực phân biệt ?
Câu 21: Cho các số thực dương 1> > >a b 0 Tìm giá trị nhỏ nhất của biểu thức 4 ( )
2
3loga a logb
b
A Pmin =3 B Pmin =4 C min 5
2
2
Câu 22: Tìm nguyên hàm của hàm số f x( )=cos 3( x+1)
3
∫
3
x
−
3
∫
Câu 23: Cho hàm số f x( ) có đạo hàm trên đoạn [ ]1;5 , biết rằng3 ( ) 5 ( )
5
'
I =∫ f x dx
Câu 24: Biết F x( ) là một nguyên hàm của hàm số ( ) 2
1
x
f x
+
= + + và F( )2 =3 Tính F( )1
A ( ) 7
3
3
F = + C F( )1 = −3 ln 2 D F( )1 = +3 ln 2
Câu 25: Cho
1
0
10 1
x
+ −
1
0
1 1
x
+ −
Câu 26 : Biết rằng
1
.ln 3 ln 2
e
dx
Trang 4Câu 27: Cho hình cong ( )H giới hạn bởi các đường
x
y=xe y= x= và x=1 Đường thẳng x=k với
0< <k 1 chia ( )H thành 2 phần có diện tích là S và 1 S 2
như hình vẽ bên Để S1=S2 thì k thoả mãn hệ thức nào trong
các hệ thức sau:
1
k
e
k
=
2 1
k
e
k
=
−
2
k
e
k
=
1
2 2
k
e
k
=
−
Câu 28: Một chiếc cổng Parabol cao 16m và 2 chân cổng cách nhau 8m như
hình vẽ Nhà thiết kế xây dựng xây 2 cây cột AD BC, cách nhau 4m ( 2 cây
cột này đối xứng với nhau qua trục đối xứng của Parabol), 2 phần cổng nhỏ ở 2
bên dành cho xe máy và xe đạp qua lại và phần cổng to ở giữa chỉ dành riêng
cho xe bus BRT Tính diện tích phần thiết diện cổng dành cho xe bus BRT đi
qua
A 176( )2
3
S = m B 128( )2
3
C 64( )2
3
S = m D 256( )2
3
Câu 29: Điểm M trong hình vẽ bên là điểm biểu diễn của số phức
z Tìm phần thực và phần ảo của số phức w=z2+iz
A Phần thực là 2− và phần ảo là 2
B Phần thực là 2− và phần ảo là 10−
C Phần thực là 2 và phần ảo là 10
D Phần thực là 2 và phần ảo là 2−
Câu 30: Tìm số phức liên hợp của số phức 2
1 2
i z
i
−
= +
Câu 31: Tính môđun của số phức z thỏa mãn z(5− = +i) 5 2+(5 2−1 )i
A z =3. B z = 3. C z =2. D z =4.
Câu 32: Kí hiệu z0 là nghiệm phức có phần ảo âm của phương trình 3z2 −2z−38 84− i=0 Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diển của số phức w=i z5 0
A (−3;5 ) B (5; 3 − ) C (− −3; 5 ) D ( )3;5
Câu 33: Cho số phức z= +a bi a b( , ∈ℝ) thỏa mãn (1 2+ i z) +2z=14+5 i Tính P=a2 +b
Câu 34: Cho số phức z thoã mãn ( ) 2 14
z
− +
đúng nhất trong các giá trị sau
Câu 35: Cho hình chóp S ABC có đáy là tam giác vuông cân có cạnh huyền là 4a và thể tích bằng a 3
Đường cao của khối chóp đã cho
A
2
a
2
a
D 3 a
Trang 5A B C D
Mệnh đề nào sau đây sai ?
A Khối đa diện A không phải là khối đa diện đều
B Khối đa diện B là khối đa diện lồi
C Khối đa diện C là khối đa diện lồi
D Cả 4 khối đa diện A, B, C, D đều là khối đa diện lồi
Câu 37: Cho hình chóp S ABCD có đáy ABCD là hình vuông và O là giao điểm của 2 đường chéo Tính
thể tích khối chóp S OAB biết thể tích S ABCD là 24
Câu 38: Cho hình lăng trụ tam giác ABC A B C có đáy ABC là tam giác đều cạnh ' ' ' a Biết AC tạo với ' mặt phẳng (ABC) một góc 60 và 0 AC'=4 a Tính thể tích của khối đa diện ABCB C' '
A a3. B
3
3
a
3
2 3
a
D 3 a 3
Câu 39: Cho hình nón ( )N có bán kính đáy bằng 6 và diện tích xung quanh bằng 60 π Tính thể tích V
của khối nón ( )N
A 69 π B 96 π C 35 π D 53 π
Câu 40: Cho hình lăng trụ tam giác đều ABC A B C có độ dài đáy bằng 3a và chiều cao bằng ' ' ' h Tính thể
tích V của khối trụ ngoại tiếp lăng trụ đã cho
A πa h2 B 3πa h2 C 27πa h2 D 9πa h2
Câu 41: Cho hình chóp ABCD có 2AB=2AC=AD=2 ,a BAC =BAD =CAD =90 0 Gọi V là thể tích khối 1
cầu ngoại tiếp khối chóp ABCD , V là thể tích khối chóp ABCD Tỉ số 2 1
2
V V
3
6
3
Câu 41: Cho hình chóp ABCD có 2AB=2AC=AD=2 ,a BAC =BAD =CAD =90 0 Gọi V là thể tích mặt 1
cầu ngoại tiếp khối chóp ABCD , V là thể tích khối chóp ABCD Tỉ số 2 1
2
V
V bằng:
Câu 42: Tam giác đều ABC và hình vuông MNPQ được xếp
như hình vẽ với MN là đường trung bình của tam giác ABC
Biết cạnh của tam giác bằng 4 Thể tích vật thể tròn xoay khi
quay mô hình trên quanh trục AI là:
A 4 3 2
3
V = + π
B V =( 3+2) π
C 3 5 3 2
3
V = + π
D 3
4 3 1 3
V = + π
Câu 43: Trong không gian với hệ tọa độ Oxyz cho ba điểm , A(1; 2;3 ,− ) (B −2;1;3 ,) (C 2; 1;3 − ) Gọi
D x y z với , ,x y z∈ℝ sao cho C là trọng tâm của tam giác ABD Mệnh đề nào sau đây là đúng?
A x+ <y z. B y+ >z x. C x− <z y. D z− <y x.
Trang 6Câu 44: Tập hợp các điểm M trên mặt phẳng tọa độ biểu diễn các số phức z thỏa mãn điều kiện
z+ + =z là:
A Đường thẳng 1
2
2
x= −
C Hai đường thẳng 1
2
2
2
2
x= −
Câu 45: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( ) α : 2x+ − =z 3 0 và
( ) β : 3x−2y+ =6 0 Gọi ∆ là giao tuyến của ( ) α và ( ) β Khi đó ∆ có vec tơ chỉ phương là
Câu 46: Trong không gian với hệ tọa độ Oxyz mặt cầu có tâm , I(−1; 2;1) và tiếp xúc với đường
:
A ( ) (2 ) (2 )2 107
8
7
C ( ) (2 ) (2 )2 107
8
Câu 47: Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng , : 2 1
− và
2
0
z
= − +
= −
=
Mệnh đề nào dưới đây là đ úng?
A d song song với '. d B d vuông góc và không cắt '. d
C d trùng với '. d D d và ' d chéo nhau
Câu 48: Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng ( ) : 2, α x+my+ − =3z 5 0 và ( ) :β nx−8y−6z+ =2 0( ,m n∈ℝ Với giá trị nào của ) m và n thì hai mặt phẳng ( )α và ( )β song song với nhau?
A n= = −m 4. B n= −4;m=4. C n= =m 4. D n=4;m= −4.
Câu 49: Trong không gian với hệ tọa độ Oxyz cho điểm , M( 2;1; 0)− và đường thẳng
− Phương trình mặt phẳng ( )P qua M và chứa ∆ là:
A ( ) :P x−7y−4z+ =9 0. B ( ) : 3P x−5y−4z+ =9 0
C ( ) : 2P x−5y− + =3z 8 0. D ( ) : 4P x−3y−2z+ =7 0
Câu 50: Trong không gian với hệ tọa độ Oxyz cho hai điểm , S(0; 0;1 ,) (A 1;1; 0 ) Hai điểm M m( ; 0; 0 ,) (0; ; 0)
N n thay đổi sao cho m+ =n 1 và m>0,n>0 Tính khoảng cách từ A đến mặt phẳng (SMN)
A d A SMN( , ( ))=4. B d A SMN( , ( ))=2.