1. Trang chủ
  2. » Giáo Dục - Đào Tạo

PHUONG PHÁP TRUNG BÌNH

13 91 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 587,41 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

CHỌN LỌC-ĐẦY ĐỦ-CHẤT LƯỢNG http://hoahoc.edu.vn ─ http://luuhuynhvanlong.com “Học Hĩa bằng sự đam mê” Thầy LƯU HUỲNH VẠN LONG Giảng viên Trường ĐH Thủ Dầu Một – Bình Dương Phương phá

Trang 1

CHỌN LỌC-ĐẦY ĐỦ-CHẤT LƯỢNG

http://hoahoc.edu.vn ─ http://luuhuynhvanlong.com

“Học Hĩa bằng sự đam mê”

Thầy LƯU HUỲNH VẠN LONG (Giảng viên Trường ĐH Thủ Dầu Một – Bình Dương)

Phương pháp

Trung bình

Khơng tức giận vì muốn biết thì khơng gợi mở cho

Khơng bực vì khơng hiểu rõ được thì khơng bày vẽ cho

Khổng Tử

Trang 2

I- Điều kiện của bài tốn khi giải bằng phương pháp trung bình

Một hỗn hợp gồm nhiều chất cùng tác dụng vớ một chất khác thì cĩ thể thay thế hỗn hợp đĩ bằng một cơng thức trung bình với các điều kiện:

- Các phản ứng xảy ra phải xảy ra cùng loại và cùng hiệu suất

- Số mol, thể tích hay khối lượng của chất trung bình phải bằng số mol, thể tích hay khối lượng của hỗn hợp

- Các kết quả phản ứng của chất trung bình phải y hệt như kết quả phản ứng của tồn bộ hỗn hợp

Cơng thức của chung cho tồn bộ hỗn hợp là cơng thức trung bình

Khối lượng mol phân tử, số nguyên tử của các nguyên tố, số nhĩm chức,…thuộc cơng thức trung bình

là các giá trị trung bình: M, , , x y n

II- Cơng thức khối lượng mol phân tử trung bình hỗn hợp (Mhh)

+ Mhh là khối lượng trung bình của một mol hỗn hợp

+ Mhh khơng phải hằng số mà cĩ giá trị phụ thuộc vào thành phần về lượng các chất trong hỗn hợp:

1 1 2 2 3 3 hh

1 2 3

n M + n M + n M Khối lượng hỗn hợp

M

Tổng số mol n + n + n

Nếu hỗn hợp là chất khí thì cĩ thể tính M theo cơng thức: hh

1 1 2 2 3 3 hh

1 2 3

V M + V M + V M M

V + V + V

+ M luơn nằm trong khoảng khối lượng mol phân tử của các chất thành phần nhỏ nhất và lớn nhất: hh

Mmin < M < Mhh max

+ Biểu thức tính nguyên tử Cacbon trung bình:

2

a(mol) b(mol) CO

A

an + bm

n n m n

a + b n

n n

    

  

Trong đĩ nA là số mol hỗn hợp chất hữu cơ

Chú ý:

* Nếu hỗn hợp gồm 2 chất cĩ số mol 2 chất bằng nhau thì khối lượng mol trung bình của hỗn hợp cũng chính bằng trung bình cộng khối lượng phân tử của 2 chất và ngược lại

III Đánh giá phương pháp trung bình

 Phương pháp trung bình là một trong những phương pháp thuận tiện nhất, cho phép giải nhanh chĩng và đơn giản nhiều bài tốn hĩa học phức tạp

PHƯƠNG PHÁP TRUNG BÌNH

Trang 3

 Phương pháp này được áp dụng trong việc giải nhiều bài toán khác nhau cả vô cơ và hữu cơ, đặc biệt là đối với việc chuyển bài toán hỗn hợp thành bài toán một chất rất đơn giản

 Phương pháp trung bình còn giúp giải nhanh hơn nhiều bài toán mà thoạt nhìn thì có vẻ thiếu dữ kiện hoặc những bài toán cần biện luận để xác định chất trong hỗn hợp

BÀI TẬP ÁP DỤNG BÀI 1: Hòa tan 2,97 gam một hỗn hợp 2 muối CaCO3 và BaCO3 bằng dung dịch HCl dư, thu được 448

ml khí CO2(đktc) Tính thành phần % số mol của mỗi muối trong hỗn hợp?

A 50;50 B. 40;60 C 45,5; 55,5 D. 45; 55

HƯỚNG DẪN GIẢI

Các phản ứng xảy ra:

CaCO3 + 2HCl → CaCl2 + CO2 + H2O BaCO3 + 2HCl → BaCl2 + CO2 + H2O

→ nhh = n(CO2) = 0,448

0,02( )

22, 4  mol

Gọi x là thành phần % về số mol của CaCO3 trong hỗn hợp

(1 – x) là thành phần % về số mol của BaCO3 trong hỗn hợp

Ta có: 2muoái 2,97

M 100 197(1 ) x = 0,5

0,02

    

% n(BaCO3) = % n(CaCO3) = 50% → Đáp án A

BÀI 2: Hòa tan 16,8 gam hỗn hợp gồm 2 muối cacbonat và sunfit của cùng một kim loại kiềm vào

dung dịch HCl dư thu được 3,36 lit hỗn hợp khí (đktc) Xác định tên kim loại kiềm:

A. Li B. Na C. K D Rb

HƯỚNG DẪN GIẢI

Gọi kim loại kiềm cần tìm là M

MCO3 + 2HCl → MCl2 + CO2 + H2O MSO3 + 2HCl → MCl2 + SO2 + H2O

→ nhh = n(khí) = 3,36

22,4 mol → muoái

16,8

0,15

Ta có: 2M + 60 < M < 2M + 80 → 16 < M < 26

Vì M là kim loại kiềm nên M = 23 (Na) → Đáp án B

BÀI 3: Cho 6,4 gam hỗn hợp 2 kim loại kế tiếp thuộc nhóm IIA của bảng tuần hoàn tác dụng với dung

dịch H2SO4 loãng dư thu được 4,48 lit H2( đktc) Xác định tên 2 kim loại:

A. Be; Mg B Mg; Ca C. Ca; Ba D. Be; Ca

HƯỚNG DẪN GIẢI

Gọi công thức chung của 2 kim loại nhóm IIA là M:

M + H2SO4 → MSO4 + H2

Ta có: nM = n(H2) = 4,48 6,4

→ Hai kim loại là Mg(24) và Ca(40) → Đáp án B

Trang 4

BÀI 4: Hỗn hợp X gồm 2 kim loại A,B nằm kế tiếp nhau trong cùng một phân nhóm chính nhóm IA

Lấy 6,2 gam X hòa tan hoàn toàn vào nước thu được 2,24 lit H2 (đktc) A,B là:

A. Li, Na B. Na,K C. K,Rb D. Rb,Cs

HƯỚNG DẪN GIẢI

Gọi công thức chung của 2 kim loại nhóm IA là M:

2M + 2H2O → 2MOH + H2 0,2 0,1

6,2

M = 31

0,2  → Na và K → Đáp án B

BÀI 5: Hòa tan hoàn toàn 2,84 gam hỗn hợp hai muối cacbonat của hai kim loại phân nhóm IIA và thuộc hai chu kỳ liên tiếp trong bảng tuần hoàn bằng dung dịch HCl ta thu được dung dịch X và 672

ml CO2 (ở đktc)

1 Hãy xác định tên các kim loại

A. Be, Mg B. Mg, Ca C. Ca, Ba D. Ca, Sr

2 Cô cạn dung dịch X thì thu được bao nhiêu gam muối khan?

A. 2 gam B. 2,54 gam C 3,17 gam D. 2,95 gam

HƯỚNG DẪN GIẢI

1 Gọi A, B là các kim loại cần tìm Các phương trình phản ứng là

ACO3 + 2HCl  ACl2 + H2O + CO2 (1) BCO3 + 2HCl  BCl2 + H2O + CO2 (2)

(Có thể gọi M là kim loại đại diện cho 2 kim loại A, B lúc đó chỉ cần viết

một phương trình phản ứng)

Theo các phản ứng (1), (2) tổng số mol các muối cacbonat bằng:

2

CO

0,672

22,4

  mol

Vậy KLPTTB của các muối cacbonat là

2,84

M 94,67 0,03

  và MA,B 94,67 60 34,67

Vì thuộc 2 chu kỳ liên tiếp nên hai kim loại đó là Mg (M = 24) và Ca (M = 40)

 Đáp án B

2 KLPTTB của các muối clorua:

Mmuèi clorua 34,67 71 105,67  Khối lượng muối clorua khan là 105,670,03 = 3,17 gam

 Đáp án C

BÀI 6: X và Y là hai nguyên tố halogen ở 2 chù kì liên tiếp nhau trong bảng tuần hoàn Để kết tủa hết

ion X-,Y- trong dung dịch chứa 4,4 gam muối natri của chùng cần 150 ml dung dịch AgNO3 0,4M X,Y là:

A. Flo, clo B. Clo, brom C. Brom, iot D. không xác định

Trang 5

HƯỚNG DẪN GIẢI

Số mol AgNO3 = số mol X- và Y- = 0,4.0,15 = 0,06 (mol)

Khối lượng mol trung bình hai muối là 4,4

M = 73,3

0,06 

→ M = 73,3 - 23 = 50,3 → Clo( 35,5) và Brom (80)

→ Đáp án B

BÀI 7: Trong tự nhiên, đồng (Cu) tồn tại dưới hai dạng đồng vị 6329Cu và 6529Cu KLNT (xấp xỉ khối

lượng trung bình) của Cu là 63,55 Tính % về khối lượng của mỗi loại đồng vị

A.65Cu: 27,5% ; 63Cu: 72,5% B.65Cu: 70% ; 63Cu: 30%

C.65Cu: 72,5% ; 63Cu: 27,5% D.65Cu: 30% ; 63Cu: 70%

HƯỚNG DẪN GIẢI

Gọi x là % của đồng vị 65

29Cu ta có phương trình:

M = 63,55 = 65.x + 63(1  x)

 x = 0,275

Vậy: đồng vị 65Cu chiếm 27,5% và đồng vị 63Cu chiếm 72,5%. Đáp án C

BÀI 8: Hỗn hợp khí SO2 và O2 có tỉ khối so với CH4 bằng 3 Cần thêm bao nhiêu lít O2 vào 20 lít hỗn hợp khí đó để cho tỉ khối so với CH4 giảm đi 1/6, tức bằng 2,5 Các hỗn hợp khí ở cùng điều kiện nhiệt

độ và áp suất

A. 10 lít B. 20 lít C. 30 lít D. 40 lít

HƯỚNG DẪN GIẢI

Cách 1: Gọi x là % thể tích của SO2 trong hỗn hợp ban đầu, ta có:

M = 163 = 48 = 64.x + 32(1  x)

 x = 0,5

Vậy: mỗi khí chiếm 50% Như vậy trong 20 lít, mỗi khí chiếm 10 lít

Gọi V là số lít O2 cần thêm vào, ta có:

Giải ra có V = 20 lít (Đáp án B)

Cách 2:

Ghi chú: Có thể coi hỗn hợp khí như một khí có KLPT chính bằng KLPT trung bình của hỗn hợp,

ví dụ, có thể xem không khí như một khí với KLPT là 29

Hỗn hợp khí ban đầu coi như khí thứ nhất (20 lít có M = 163 = 48), còn O2 thêm vào coi như khí thứ hai, ta có phương trình:

48 20 32V

Rút ra V = 20 lít  Đáp án B

Trang 6

BÀI 9: Đốt cháy hoàn toàn một hỗn hợp gồm hai hiđrocacbon đồng đẳng liên tiếp thu được 25,76 lit

CO2(đktc) và 27 g H2O Xác định CTPT của 2 hiđrocacbon và thành phần % theo số mol của mỗi chất

HƯỚNG DẪN GIẢI

n(CO2) = 1,15 (mol) ; n(H2O) = 1,5 (mol)

Ta có: n(CO2) < n(H2O) → 2 ankan

2 2

n 2n+2

C H  nCO + (n+1)H O

Ta lập tỷ lệ:

n = 3,28 1,15

n   → C3H8 và C4H10

Sơ đồ đường chéo:

3

4

3,28





C3H8

C4H10

0,72*100%

%n = 72%; %n = 28%

0,72+0,28

BÀI 10: Đốt cháy hoàn toàn a gam hỗn hợp hai rượu no, đơn chức liên tiếp trong dãy đồng đẳng thu

được 3,584 lít CO2 ở đktc và 3,96 gam H2O Tính a và xác định CTPT của các rượu

A. 3,32 gam ; CH3OH và C2H5OH B. 4,32 gam ; C2H5OH và C3H7OH

C. 2,32 gam ; C3H7OH và C4H9OH D. 3,32 gam ; C2H5OH và C3H7OH

HƯỚNG DẪN GIẢI

Gọi n là số nguyên tử C trung bình và x là tổng số mol của hai rượu

CnH2n+1OH + 3nO2

2  n CO2

+ (n 1) H O 2

x mol  n x mol  (n 1) x mol

2

CO

3,584

n n.x 0,16

22,4

   mol (1)

2

H O

3,96

18

Từ (1) và (2) giải ra x = 0,06 và n = 2,67

Ta có: a = (14 n + 18).x = (142,67) + 180,06 = 3,32 gam

n = 2,67 2 5

3 7

C H OH

C H OH

 Đáp án D

BÀI 11: Cho 2,84 gam hỗn hợp 2 rượu đơn chức là đồng đẳng liên tiếp nhau tác dụng với một lượng

Na vừa đủ tạo ra 4,6 gam chất rắn và V lít khí H2 ở đktc Tính V

A. 0,896 lít B. 0,672 lít C. 0,448 lít D. 0,336 lít

Trang 7

HƯỚNG DẪN GIẢI

Đặt R là gốc hiđrocacbon trung bình và x là tổng số mol của 2 rượu

ROH + Na  RONa + 1H2

x mol  x  x

2

Ta có:  

R 17 x 2,84

R 39 x 4,6

  

 

 Giải ra được x = 0,08

Vậy :

2

H

0,08

2

   lít  Đáp án A

BÀI 13: Hỗn hợp 3 rượu đơn chức A, B, C có tổng số mol là 0,08 và khối lượng là 3,38 gam Xác định

CTPT của rượu B, biết rằng B và C có cùng số nguyên tử cacbon và số mol rượu A bằng 5 3 tổng số mol của rượu B và C, MB > MC

A. CH3OH B. C2H5OH C. C3H7OH D. C4H9OH

HƯỚNG DẪN GIẢI

Gọi M là nguyên tử khối trung bình của ba rượu A, B, C Ta có:

3,38

M 42,2 0,08

 

Như vậy phải có ít nhất một rượu có M < 42,25 Chỉ có CH3OH có (M = 32)

Ta có: nA 0,08 5 0,05

5 3

mA = 320,05 = 1,6 gam

mB + C = 3,38 – 1,6 = 1,78 gam;

B C

0,08 3

5 3

 mol ;

B C

1,78

0.03

Gọi y là số nguyên tử H trung bình trong phân tử hai rượu B và C Ta có:

C H OHx y 59,33 hay 12x + y + 17 = 59,33

 12x + y = 42,33

Biện luận:

x 1 2 3 4

y 30,33 18,33 6,33 < 0

Chỉ có nghiệm khi x = 3 B, C phải có một rượu có số nguyên tử H < 6,33 và một rượu có số nguyên tử H > 6,33

Vậy rượu B là C3H7OH

Trang 8

Có 2 cặp nghiệm: C3H5OH (CH2=CH–CH2OH) và C3H7OH

C3H3OH (CHC–CH2OH) và C3H7OH

 Đáp án C

BÀI 14: Tách nước hoàn toàn từ hỗn hợp X gồm 2 ancol A và B ta được hỗn hợp Y gồm các olefin Nếu

đốt cháy hoàn toàn X thì thu được 1,76 gam CO2 Khi đốt cháy hoàn toàn Y thì tổng khối lượng H2O và

CO2 tạo ra là:

A. 2,94 gam B. 2,48 gam C. 1,76 gam D. 2,76 gam

HƯỚNG DẪN GIẢI

Hỗn hợp X gồm hai ancol A và B tách nước được olefin (Y)  hai ancol là rượu no, đơn chức Đặt CTTB của hai ancol A, B là C Hn 2n 1OH ta có các phương trình phản ứng sau:

n 2n 1

C H OH + 3nO2

2  nCO + 2 (n 1)H O 2

n 2n 1

C H OH 2

o

H SO

170 C

4 ®

 C Hn 2n + H2O (Y)

n 2n

C H + 3nO2

2  nCO + 2 n H O 2

Nhận xét:

- Khi đốt cháy X và đốt cháy Y cùng cho số mol CO2 như nhau

- Đốt cháy Y cho

CO H O

Vậy đốt cháy Y cho tổng

mCO 2 mH O 2 0,04 (44 18)  2,48gam  Đáp án B

BÀI 15: Hóa hơi 6,7 gam hỗn hợp X gồm CH3COOH, CH3COOC2H5, CH3COOCH3 và HCOOC2H5 thu được 2,24 lit hơi (đktc) Đốt cháy hoàn toàn 6,7 gam X thu được khối lượng nước là:

A. 4,5g B. 3,5g C. 5g D. 4g

HƯỚNG DẪN GIẢI

Gọi công thức chung của X là C H On 2n 2 → 6,7

0,1

Phản ứng cháy: C H On 2n 2 → n CO2 + n H2O

→ n(H2O) = 2,5.0,1 = 0,25 (mol) → m(H2O) = 0,25.18 = 4,5 (g)

→ Đáp án A

BÀI 16: Đốt cháy hoàn toàn 1 lit hỗn hợp khí gồm C2H2 và hiđrocacbon X sinh ra 2 lit khí CO2 và 2 lit hơi H2O (các thể tích và hơi đo ở cùng điều kiện nhiệt độ, áp suất) Công thức phân tử của X là:

A. C2H6 B C2H4 C CH4 D. C3H8

HƯỚNG DẪN GIẢI

Đốt cháy hỗn hợp khí cho V(CO2) = V(H2O) → X là ankan

2

CO hh

V 2

C 2

V 1

  

Trang 9

→ X là C2H6 → Đáp án A

BÀI 17: Đốt cháy hoàn toàn hỗn hợp X gồm 2 hiđrocacbon mạch hở thu được 16,8 lit khí CO2(đktc)

và 8,1 gam H2O Hai hiđrocacbon trong hỗn hợp X thuộc cùng dãy đồng đẳng:

A. Ankađien B. Ankin

C Ankađien hoặc ankin D Aren

HƯỚNG DẪN GIẢI

Ta có: n(H2O) = 0,45 ; n(CO2) = 0,75

Hỗn hợp X gồm các hiđrocacbon mạch hở → Loại D

Xét X có dạng n 2n 2 X CO2 H O2 0,75

C H n = n - n 0,3 2,5 3

0,3

n

      

X gồm các hiđrocacbon thuộc dãy ankin

→ Đáp án B

BÀI 18: Cho 4,48 lit hỗn hợp X (đktc) gồm 2 hiđrocacbon mạch hở lội từ từ qua bình chứa 1,4 lit dung

dịch Br2 0,5M sau khi phản ứng hoàn toàn số mol Br2 giảm đi một nửa và khồi lượng bình tăng thêm 6,7 gam Công thức phân tử của 2 hiđrocacbon là:

A C2H2 và C4H6 B. C2H2 và C4H8 C C3H4 và C4H8 D. C2H2 và C3H8

HƯỚNG DẪN GIẢI

Gọi công thức chung của hỗn hợp là: C Hn 2n 2 2  k

nX = 0,2 (mol); n(Br2 pư) = 0,35 → 0,35

0,2

  → Loại A

 Giả sử chỉ có 1 hiđrocacbon(Y) hấp thụ → Hiđrocacbon (Y)phải có dạng: CnH2n-2

→ nY = nBr pu 2

= 0,175(mol)

2 → MY =

6,7

38,3 0,175 → Loại

 Vậy toàn bộ X bị hấp thụ hết → Loại D

2 2

6, 7

0,2

X    → Đáp án B

BÀI 19: Có 100 gam dung dịch 23% của một axit đơn chức (dung dịch A) Thêm 30 gam một axit

đồng đẳng liên tiếp vào dung dịch ta được dung dịch B Trung hòa 1/10 dung dịch B bằng

500 ml dung dịch NaOH 0,2M (vừa đủ) ta được dung dịch C

1 Hãy xác định CTPT của các axit

A. HCOOH và CH3COOH B. CH3COOH và C2H5COOH

C. C2H5COOH và C3H7COOH D. C3H7COOH và C4H9COOH

2 Cô cạn dung dịch C thì thu được bao nhiêu gam muối khan?

A. 5,7 gam B. 7,5 gam C. 5,75 gam D. 7,55 gam

HƯỚNG DẪN GIẢI

1 Theo phương pháp KLPTTB:

RCOOH

10 10  gam,

Trang 10

RCH COOH

10 10  gam

2,3 3

0,1

 

Axit duy nhất có KLPT < 53 là HCOOH (M = 46) và axit đồng đẳng liên tiếp phải là CH3COOH

(M = 60)  Đáp án A

2 Theo phương pháp KLPTTB:

Vì Maxit = 53 nên Mmuèi = 53+ 23 1 75 Vì số mol muối bằng số mol axit bằng 0,1 nên tổng

khối lượng muối bằng 750,1 = 7,5 gam  Đáp án B

BÀI 20: Có V lít khí A gồm H2 và hai olefin là đồng đẳng liên tiếp, trong đó H2 chiếm 60% về thể tích Dẫn hỗn hợp A qua bột Ni nung nóng được hỗn hợp khí B Đốt cháy hoàn toàn khí B được 19,8 gam CO2 và 13,5 gam H2O Công thức của hai olefin là

A. C2H4 và C3H6 B. C3H6 và C4H8 C. C4H8 và C5H10 D. C5H10 và C6H12

HƯỚNG DẪN GIẢI

Đặt CTTB của hai olefin là C Hn 2n

Ở cùng điều kiện nhiệt độ và áp suất thì thể tích tỷ lệ với số mol khí

Hỗn hợp khí A có:

n 2 n

2

C H H

n 0,6 3

Áp dụng định luật bảo toàn khối lượng và định luật bảo toàn nguyên tử  Đốt cháy hỗn hợp khí

B cũng chính là đốt cháy hỗn hợp khí A Ta có:

n 2n

C H + 3nO2

2  n CO2 + n H2O (1)

2H2 + O2  2H2O (2) Theo phương trình (1) ta có:

CO H O

n n = 0,45 mol

n 2 n

C H

0,45 n

n

 mol

Tổng:

2

H O

13,5 n

18

 = 0,75 mol

2

H O ( pt 2)

n = 0,75  0,45 = 0,3 mol

2

H

n = 0,3 mol

Ta có: n 2 n

2

C H H

n 0,3 n 3

 n = 2,25

 Hai olefin đồng đẳng liên tiếp là C2H4 và C3H6  Đáp án B

Trang 11

BÀI 21 (CĐ 2013):: Hỗn hợp X gồm hai ancol đơn chức, đồng đẳng kế tiếp Đun nóng 16,6 gam X với H2SO4 đặc ở 140ºC, thu được 13,9 gam hỗn hợp ete (không có sản phẩm hữu cơ nào khác) Biết các phản ứng xảy ra hoàn toàn Công thức của hai ancol trong X là:

A. C3H5OH và C4H7OH B. CH3OH và C2H5OH

C. C3H7OH và C4H9OH D.C2H5OH và C3H7OH

HƯỚNG DẪN GIẢI

o

2 4

H SO , 140 C

2

2ROH  ROR + H O

Theo ĐL BTKL: mancol = mete +

2

H O

2

H O

16,6 13,9

18

 nancol = 2.0,15 = 0,3 (mol)

 ancol 16,6

0,3   2 ancol là: C2H5OH và C3H7OH.

 ĐÁP ÁN D

BÀI 22 (ĐH B 2013) : Hỗn hợp X gồm hiđro, propen, axit acrylic, ancol anlylic (C3H5OH) Đốt cháy hoàn toàn 0,75 mol X, thu được 30,24 lít khí CO2 (đktc) Đun nóng X với bột Ni một thời gian, thu được hỗn hợp Y Tỉ khối hơi của Y so với X bằng 1,25 Cho 0,1 mol Y phản ứng vừa đủ với V lít dung dịch Br2 0,1M Giá trị của V là:

A. 0,6 B 0,5 C. 0,3 D. 0,4

HƯỚNG DẪN GIẢI Nhận thấy: propen (C3H6), axit acrylic (C3H4O2), ancol anlylic (C3H6O) đều có dạng chung C3HyOz

và có 1 liên kết đôi (C=C)  X gồm H2 và C3HyOz

3 y z

CO

C H O

n 1,35

n = 0,45 (mol)

3  3  ( tương ứng 0,45 mol lk  ) nH 2= 0,3 (mol)

Ta có: Y X Y

M n

n 0,6 (mol)

M  n  

2

H (pö ) X Y

n n n 0,75 0,6 0,15 (mol)

Vậy: trong 0,6 mol Y có số mol C3HyOz dư : 0,45 - 0,15 = 0,3 (mol)

trong 0,1 (mol) Y có số mol C3HyOz dư : 0,05 (mol)

Br (pö ) C H O

2

Br

V = 0,5 (lit)

 ĐÁP ÁN B

BÀI 23 (ĐH A 2013): Trong một bình kín chứa 0,35 mol C2H2; 0,65 mol H2 và một ít bột Ni Nung nóng bình một thời gian, thu được hỗn hợp khí X có tỉ khối so với H2 bằng 8 Sục X vào lượng dư dung dịch AgNO3 trong NH3 đến phản ứng hoàn toàn, thu được hỗn hợp khí Y và 24 gam kết tủa Hỗn hợp khí Y phản ứng vừa đủ với bao nhiêu mol Br2 trong dung dịch ?

A. 0,10 mol B. 0,20 mol C. 0,25 mol D. 0,15 mol

HƯỚNG DẪN GIẢI

o

3 3

2 2

2 4

2 X

C H

hh khí X C H 0,65 (mol) H hh khí Y + a (mol) Br

H (M = 16)

Ngày đăng: 26/09/2017, 11:58

HÌNH ẢNH LIÊN QUAN

BÀI 3: Cho 6,4 gam hỗn hợp 2 kim loại kế tiếp thuộc nhĩm IIA của bảng tuần hồn tác dụng với dung - PHUONG PHÁP TRUNG BÌNH
3 Cho 6,4 gam hỗn hợp 2 kim loại kế tiếp thuộc nhĩm IIA của bảng tuần hồn tác dụng với dung (Trang 3)
w