Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho HB = 2HA.. Cạnh SC tạo với mặt phẳng đáy ABCD một góc bằng 60 0.. Khoảng cách từ trung điểm K của HC đến mặt
Trang 1Đề số 057
ĐỀ THI MINH HỌA KỲ THI THPT QUỐC GIA NĂM 2017
Môn: TOÁN
Thời gian làm bài: 90 phút
Câu 1: Đồ thị hàm số nào sau đây có hình dạng như hình vẽ bên
A y x= − + 3 3x 1
B y x= + 3 3x+ 1
C y= − − +x3 3x 1
D y= − +x3 3x+ 1
Câu 2: Với giá trị nào của m thì hàm số : y=x3−2mx2+m x2 −2 đạt cực tiểu tại x = 1.
A m= 2 B m= − 2 C m= 1 D m= − 1
Câu 3: Hàm số 2
1
x y x
+
=
− nghịch biến trên các khoảng:
A (−∞ ;1 va 1;) ( +∞) B (1; +∞) C (− +∞ 1; ) D (0; +∞)
Câu 4: Giá trị cực đại của hàm số 3 2
3
+
−
−
A
3
11
B
3
5
Câu 5: Đường tiệm cận ngang của hàm số
1 2
3
+
−
=
x
x
y là:
A
2
1
=
2
1
−
=
2
1
−
=
2
1
=
y
Câu 6: Tìm giá trị lớn nhất của hàm số
3
1 3
−
−
=
x
x
y trên đoạn [ ]0 ; 2
A
3
1
− B − 5 C 5 D
3 1
Câu 7: Phương trình tiếp tuyến của hàm số
2
1
+
−
=
x
x
y tại điểm có hoành độ bằng − 3 là:
A y = − 3x− 5 B y= − 3x+ 13 C.y = 3x+ 13 D.y= 3x+ 5
Câu 8: Cho hàm số y x= −3 3mx2 +4m3 với giá trị nào của m để hàm số có 2 điểm cực trị A và B sao cho AB= 20.
O
y
x
1
Trang 2A m= ± 1 B m= ± 2 C m= 1;m= 2 D m= 1
Câu 9: Hàm số 1 m 3 2
y x 2(2 m)x 2(2 m)x 5 3
−
= − − + − + luôn nghịch biến khi:
A 2 < m < 5 B m > - 2 C m =1 D 2 m 3 ≤ ≤
Câu 10: Phương trình x3−12x m 2 0+ − = có 3 nghiệm phân biệt khi:
A − < 16 m 16 < B − < < 18 m 14 C − < < 14 m 18 D − < < 4 m 4
Câu 11: Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 300km Vận tốc của
dòng nước là 6km / h Nếu vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức: E v( ) = cv t 3 Trong đó c là một
hằng số, E được tính bằng jun Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất
A 6km/h B 9km/h A 12km/h A 15km/h
Câu 12: Đạo hàm của hàm số y 2 = 2x 3+ là:
A 2.22 3x+ .ln 2 B 22 3x+ .ln 2 C 2.2 x2 3+ D (2 x 3)2 x+ 2 2+
Câu 13: Phương trình log 32 x( − =2) 3 có nghiệm là:
A 11
3
3
Câu 14: Tập nghiệm của bất phương trình log (2 2 1) 0
2 3
x − + <x là:
A 1;3
2
−
B
3 0;
2
C ( ;0) 1;
2
−∞ ∪ +∞÷
D ( ; 1) 3;
2
−∞ − ∪ +∞÷
Câu 15: Tập xác định của hàm số y log3 2103 x 2
−
=
− + là:
A (1; +∞) B (−∞ ∪ ;1) (2;10) C. (−∞ ;10) D (2;10)
Câu 16: Một người gửi gói tiết kiệm linh hoạt của ngân hàng cho con với số tiền là
500000000 VNĐ, lãi suất 7%/năm Biết rằng người ấy không lấy lãi hàng năm theo định
kỳ sổ tiết kiệm.Hỏi sau 18 năm, số tiền người ấy nhận về là bao nhiêu? (Biết rằng, theo
Trang 3định kì rút tiền hằng năm, nếu không lấy lãi thì số tiền sẽ được nhập vào thành tiền gốc và
sổ tiết kiệm sẽ chuyển thành kì hạn 1 năm tiếp theo)
A 4.689.966.000 VNĐ B 3.689.966.000 VNĐ
C 2.689.966.000 VNĐ D 1.689.966.000 VNĐ
Câu 17: Hàm số y =(x 2 − 2x 2 e + ) x có đạo hàm là:
A.y' = x e2 x B y' = −2 x xe C y' (2x 2)e = − x D Kết quả khác
Câu 18: Nghiệm của bất phương trình 9x−1−36.3x−3+ ≤3 0 là:
A 1 ≤ ≤x 3 B 1 ≤ ≤x 2 C 1 x≤ D x≤3
Câu 19: Nếu a=log126, b=log127 thì log 72 bằng:
A
1
a
b
a
a
a−
Câu 20: Cho a >0, b > 0 thỏa mãn a +b =7ab2 2 Chọn mệnh đề đúng trong các mệnh đề sau:
A log(a b) 3(loga logb)
2 + = + B 2(loga logb) log(7 ab)+ =
C 3log(a b) 1(loga logb)
2
Câu 21: Số nghiệm của phương trình 6.9x− 13.6x+ 6.4x = 0 là:
Câu 22: Không tồn tại nguyên hàm:
A
1
x x
dx x
− +
−
∫
B
2 2 2
− + −
∫
C ∫sin 3xdx D 3x
e xdx
∫
Câu 23: Nguyên hàm: 2 1 ?
1
x x
dx x
− + =
−
∫
A 1
1
x
− B ( )2
1 1
x
− C
2
ln 1 2
x
+ − +
D
2 ln 1
x + x− +C
Trang 4Câu 24: Tính
2
2
sin 2 osxdxxc
π
π
−∫
A 0 B 1 C 1/3 D 1/6
Câu 25: Tính
e 2 1
x lnxdx
∫
A 2 3 1
9
e + B 2 3 1
9
e − C 3 2
9
e − D 3 2
9
e +
Câu 26: Cho hình thang
3 : 0 1
y x S
x x
=
=
=
=
Tính thể tích vật thể tròn xoay khi nó xoay quanh Ox
A 8
3
π
B 8 2
3
π C 2
8 π D 8 π
Câu27: Để tính
3
6
tan cot 2
π
π
=∫ + − Một bạn giải như sau:
Bước 1: 3 ( )2
6
tan cot
π
π
=∫ − Bước 2:
3 6
tan cot
π
π
=∫ −
Bước 3: 3( )
6
tan cot
π
π
=∫ − Bước 4:
3 6
os2x 2 sin2x
c
π
π
=∫
Bước 5: 3
6
3
ln sin 2 2ln
2
π π
= = − Bạn này làm sai từ bước nào?
A 2 B 3 C 4 D 5
Câu 28: Tích phân ( ) 0
a
a
f x dx
−
=
∫ thì ta có:
A ) f x( )là hàm số chẵn B) f x( ) là hàm số lẻ
C) f x( ) không liên tục trên đoạn [−a a; ] D) Các đáp án đều sai
Trang 5Câu 29: Cho số phức z = 2 + 4i Tìm phần thực, phần ảo của số phức w = z - i là:
A Phần thực bằng -2 và phần ảo bằng -3i B Phần thực bằng -2 và phần ảo bằng -3
C Phần thực bằng 2 và phần ảo bằng 3i D Phần thực bằng 2 và phần ảo bằng 3
Câu 30: Cho số phức z = -3 + 2i Tính môđun của số phức z + 1 – i
A z 1 – i + = 4. B z 1 – i 1 + =
C z 1 – i + = 5. D z 1 – i + = 2 2.
Câu 31: Cho số phức z thỏa mãn: (4 −i z) = − 3 4i Điểm biểu diễn của z là:
A (16; 11)
15 15
M − B (16; 13)
17 17
M − C ( ;9 4)
5 5
M − D ( 9 ; 23)
25 25
Câu 32: Cho hai số phức: z 1 = + 2 5 ; zi 2 = − 3 4i Tìm số phức z = z z1. 2
A z= + 6 20i B z= 26 7 + i C z= − 6 20i D z= 26 7 − i
Câu 33: Gọi z1 và z2 là hai nghiệm phức của phương trình: z2 + 4z+ = 7 0 Khi đó
z + z bằng:
Câu 34: Trong các số phức z thỏa mãn điều kiện z− − 2 4i = −z 2i Tìm số phức z có môđun nhỏ nhất
A z= − + 1 i B z= − + 2 2i C z= + 2 2i D z= + 3 2i
Câu 35: Tính thể tích của khối lập phương ABCD.A’B’C’D’ biết AD’ = 2a.
A V =a3 B V = 8a3 C V = 2 2a3 D 2 2 3
3
Câu 36: Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA
vuông góc đáy và SA= 2 3a Tính thể tích V của khối chóp S.ABC
A
3
3 2 2
a
3
2
a
3
3 2
a
V = D V =a3
Câu 37: Cho tứ diện ABCD có các cạnh BA, BC, BD đôi một vuông góc với nhau:
BA = 3a, BC =BD = 2a Gọi M và N lần lượt là trung điểm của AB và AD Tính thể tích khối chóp C.BDNM
A V = 8a3 B
3
2 3
a
3
3 2
a
V = D V =a3
Trang 6Câu 38: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a Hình chiếu vuông
góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho HB = 2HA Cạnh SC tạo với mặt phẳng đáy (ABCD) một góc bằng 60 0 Khoảng cách từ trung điểm K của HC đến mặt phẳng (SCD) là:
13
2
a
A . 13
4
a
B C a 13 D 13
8
a
Câu 39: Trong không gian cho tam giác ABC vuông cân tại A, AB = AC = 2a Tính độ
dài đường sinh l của hình nón, nhận được khi quay tam giác ABC xung quanh trục AC
A l a= 2 B l = 2a 2 C l = 2a D l a= 5
Câu 40: Một công ty sản xuất một loại cốc giấy hình nón có thể tích 27cm3 Với chiều cao
h và bán kính đáy là r Tìm r để lượng giấy tiêu thụ ít nhất
2
3 2
r
π
2
3 2
r
π
2
3 2
r
π
2
3 2
r
π
=
Câu 41: Trong không gian cho hình chữ nhật ABCD có AB = 4 và BC = 2 Quay hình chữ
nhật ABCD xung quanh trục BC ta được một hình trụ Tính diện tích xung quanh của hình trụ đó
A 10 π B.12 π C 4 π D 16 π
Câu 42: Cho tứ diện đều ABCD có cạnh bằng a Thể tích của khối cầu tiếp xúc với tất cả
các cạnh của tứ diện ABCD bằng:
A 3 3
8
a
π B 2 3
24
a
π C 2 2 3
9
a D 3 3
24
a
Câu 43: Trong không gian Oxyz, cho tứ diện ABCD với A(1;6;2 ;) (B 5;1;3) ; C(4;0;6); (5;0;4)
D Viết phương trình mặt cầu ( )S có tâm D và tiếp xúc với mặt phẳng (ABC là:)
A ( ) ( )2 2 ( )2 8
223
B ( ) ( )2 2 ( )2 4
223
C ( ) ( )2 2 ( )2 16
223
D ( ) ( )2 2 ( )2 8
223
Câu 44: Mặt phẳng ( )P song song với mặt phẳng ( )Q x: +2y z+ =0 và cách D(1;0;3)
một khoảng bằng 6 thì (P) c ó phương trình là:
Trang 7A 2 2 0
+ + − =
+ + − =
− − − − =
+ + − =
Câu 45: Cho hai điểm A(1; 1;5 ;− ) (B 0;0;1) Mặt phẳng (P) chứa A, B và song song với Oy
có phương trình là:
A 4x y z+ − + =1 0 B 2x z+ − =5 0 C 4x z− + =1 0 D.y+4z− =1 0
Câu 46: Cho hai điểm A(1; 2;0 ;− ) (B 4;1;1) Độ dài đường cao OH của tam giác OAB là:
A 1
19 B
86
19 C
122
19 D 192
Câu 47: Mặt cầu ( )S có tâm I(1;2; 3− ) và đi qua A(1;0;4) có phương trình:
A ( ) (2 ) (2 )2
x+ + y+ + −z = B ( ) (2 ) (2 )2
C ( ) (2 ) (2 )2
x+ + y+ + −z = D ( ) (2 ) (2 )2
Câu 48: Trong không gian Oxyz, cho hai mặt phẳng ( )P nx: +7y−6z+ =4 0;
( )Q : 3x my+ −2z− =7 0 song song với nhau Khi đó, giá trị m,n thỏa mãn là:
A 7; 1
3
3
C 3; 9
7
D 7; 9
3
Câu 49: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 4; 1), B(–1; 1; 3) và mặt
phẳng ( )P :x– 3y+2 – 5 0z = Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P)
A 2y+ − =3z 11 0 B y−2z− =1 0
C 2− − − =y 3z 11 0 D 2x+ − =3y 11 0
Câu 50: Trong không gian Oxyz cho các điểm A(3; 4;0 ;− ) (B 0;2;4 ;) (C 4;2;1) Tọa độ điểm D trên trục Ox sao cho AD = BC là:
Trang 8A D(0;0;0) hoặc D(6;0;0) B D(0;0;2) hoặc D(8;0;0)
C D(2;0;0) hoặc D(6;0;0) D D(0;0;0) hoặc D(-6;0;0)
ĐÁP ÁN
Trang 920 D 45 C
HƯỚNG DẪN GIẢI, ĐÁP ÁN
án
1 Loại C, D và hệ số a âm
Tính y’ của hai hàm số A và B; giải phương trình y’=0
Thấy y' 3 = x2 + = 3 0 vô nghiệm hàm số B là luôn đồng biến
B
2 y' 3 = x2 − 4mx m+ 2 ; y'' =6x-4m
Để hàm số có cực tiểu x=1 thì
1 '(1) 0
1 3
''(1) 0
6 4 0
m y
m m
y
m
=
=
⇔ = ⇒ =
>
− >
C
3
2
3
( 1)
y
x
−
= < ∀ ≠
−
A
4
Tính y'=x2−2x− = ⇔ =3 0 x x= −31
Dựa sự biến thiên ta có giá trị cực đại là y CD = − = −y( 1) 113
A
5
Ta có lim 12
x
y
→±∞ = Tiệm cận ngang 1
2
6
2
8
( 3)
y
x
−
= <
− hàm số nghịch biến trên [ ]0; 2 GTLN là y(0)=13
D
2
3
( 2)
x
+ Tung độ tiếp điểm là y0 = − =y( 3) 4
Phương trình tiếp tuyến là : y= 3x +13
C
2
x
=
Trang 10y(0) 4 = m3 y(2m)=0
AB= m + m =
Thay m= ±1 thỏa mãn nên
9 y' (1 = −m x) 2 − 4(2 −m x) + 2(2 −m)
Ta đi tìm m thảo mãn hệ phương trình:
' 0 2(2 )(3 ) 0
m
∆
≤ ⇔ − − ≤ ⇔ ≤ ≤
− < − <
D
10 Chuyển phương trình về dạng
− + + =
Tìm y CD; y CT của hàm số: y= − +x3 12x+2 có =18; 14
Vậy -14 < m < 18
C
11 Vận tốc của cá bơi khi ngược dòng là: v- 6 ( km/ h).
Thời gian để cá bơi vượt khoảng cách 300km là t 300
v 6
=
− Năng lượng tiêu hao của cá để vượt khoảng cách đó là:
( ) 3 300 v3 ( )
E v cv 300c jun , v 6
( )
2 '
v 9
E v 600cv
v 6
v 0 loai
E v 0
v 9
−
=
−
=
⇔ = ⇔ =
B
13
log (3 2) 3 3 2 8
3
x− = ⇔ x− = ⇔ =x B
14
2
3
1
0
x
x
>
− + < ⇔ − + > ⇔
<
C
V 6 9 +∞
( )
'
E v - + E(v)
E(9)
Trang 11Điều kiện là: 2
1 10
0
3 2
x x
x
<
−
> ⇔ < <
B
16
Sau 18 năm người đó nhận được số tiền là
18
18 500000000(1 0, 07)
bấm
máy tính ra P18 =1.689.966.000
D
17 y' (2 = x− 2)e x+e x x( 2 − 2x+ = 2) x e2 x A
18 Chuyển bất phương trình về:
t2− + ≤ 4t 3 0 t= 3x−1 Dk t>0
Ta có 1≤ ≤ ⇔ ≤ ≤t 3 1 x 2
B
19 C1:Bấm máy tính
log 7 log 7
log 7 log 12 log 6 = log 2 =
−
B
21
2
3
2
3 2
3
x
t
t
t
= ÷
=
⇔ − + = > ⇔
=
Vậy PT có 2 nghiệm
A
22 Ta có: − +x2 2x− < 2 0 ∀ ∈ ⇒x ¡ Vậy không tồn tại − +x2 2x− 2
nên không nguyên hàm ∫ − +x2 2x− 2dx
Mặt khác:biểu thức : 2 1
1
x x x
− +
− có nghĩa ∀ x ≠ 1, biểu thức: sin 3x; e x 3x có nghĩa ∀ x
B
− + = + = + − +
0 0
x
V =π x −x dx=π = π
27
Sai ở bước 3, sửa sai là:
B
Trang 12( )
3
6
cot tan
π
π
=∫ −
29 ta có w = z - i =2+3i
Phần thực bằng 2 và phần ảo bằng 3
D
30 z + 1 – i= -3 + 2i+1- i= -2 + i
z 1 – i + = 5.
C
31 (4−i z) = −3 4i 3 4 (3 4 ) (4 ) 16 13
i
i
− +
−
− Điểm biểu diễn của z là : (16; 13)
17 17
B
32 z1= +2 5 ; zi 2 = −3 4i ; z = z z1 2 = +(2 5i) (3 4 − i) = 26 7 + i B 33
1 2
2
2 3
4 7 0
2 3
= − + + + = ⇔
= − −
34 HS có thể thay các số phức z đã cho ở đáp án vào PT đã cho, số phức
z= 2+2i thỏa mãn PT và điều kiện
C
35
.2 3
3 3
3 2 2 2
.
3 2
AMNC
ABDC
BDNM ABDC AMNC
a
C
38 (SC ABCD,( ) ) =(SC CH, ) = ·SCH = 60 0
3 2
3
; tan 60
CKSD
CHSD
V
D
Trang 13Tính độ dài các cạnh SD,SC Khi đó:
( )
2
,
3
KSDC
SDC
V
S
27
Khảo sát sự biến thiên của
6 4 2
3 2
xq
π
⇒ =
A
42 Gọi M, N lần lượt là trung điểm của AB và CD Ta có
2
a
MN = AN −AM =
=> Bán kính khối cầu là: 2
MN a
r= = => Thể tích khối cầu là: 2 3
24
a
V = π .
B
( )
4; 5;1 ; 3; 6; 4 14;13;9
:14 13 9 110 0 64
223
ABC
D ABC
R d
+ + − =
( ) ( )2 2 ( )2 8
223
D
44 Mặt phẳng ( )P song song với mặt phẳng ( )Q x: +2y z+ =0
(P): x+ 2y+ z+ d=0
(P) cách D(1;0;3) một khoảng bằng 6
( )
2 6
1 2.0 3
4 6
10 6
D P
d
d
=
= + + + = ⇒ + = ⇒ = −
(P) :
+ + − =
D
45 ( 1;1; 4), (0;1;0) ( ) (4;0; 1)
P
C
46 uuurAB=(3;3;1)
Phương trình đường thẳng AB là:
C
Trang 141 3
2 3
z t
= +
= − +
=
Mà H thuộc AB nên H( 1+3t; -2+3t; t)
OH ABuuur uuur= ⇔ =t − ⇒ OHuuur =
Phương trình mặt cầu (S) là: ( ) (2 ) (2 )2
D
48
( ) ( )/ / 7 3 97
3
3
n n
=
D
49
( 3; 3;2); P 1; 3;2 Q 0;2;3
Phương trình mặt phẳng (Q) là:2y+3z-11=0
A
( )
2 2
(a;0;0) (a 3;4;0); 4;0; 3
uuur uuur
Vậy D(0;0;0) hoặc D(6;0;0)
A