Cellularuptakeanalysis Thecellularuptake of free drugs and drug-loaded PCMwas investigatedinA-549cancercellsusingfluorescence-assistedcell sortingFACS.Briefly,cellswereseededata densityof3
Trang 1Contents lists available atScienceDirect
j o u r n a l h o m e p a g e :w w w e l s e v i e r c o m / l o c a t e / c o l s u r f b
Thiruganesh Ramasamya, Bijay Kumar Poudela, Himabindu Ruttalaa, Ju Yeon Choia,
Truong Duy Hieua, Kandasamy Umadevib, Yu Seok Younc, Han-Gon Choid,
Chul Soon Yonga,∗, Jong Oh Kima,∗
a College of Pharmacy, Yeungnam University, 214-1 Dae-dong, Gyeongsan 712-749, South Korea
b St Paul’s College of Pharmacy, Osmania University, Hyderabad, Telangana, India
c School of Pharmacy, SungKyunKwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 440-746, South Korea
d College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791,
South Korea
a r t i c l e i n f o
Article history:
Received 22 March 2016
Received in revised form 31 May 2016
Accepted 2 June 2016
Available online 5 June 2016
Keywords:
Nanofabrication
Polyelectrolyte complex micelles
Cationic drugs
Pharmacokinetic
Anticancer activity
a b s t r a c t
Nanofabricationofpolymericmicellesthroughself-assemblyofanionicblockcopolymerandoppositely chargedsmallmoleculeshasrecentlyemergedasapromisingmethodofformulatingdeliverysystems Thepresentstudythereforeaimedtoinvestigatetheinteractionofcationicdrugsdoxorubicin(DOX) andmitoxantrone(MTX)withtheanionicblockpolymerpoly(ethyleneoxide)-block-poly(acrylicacid) (PEO-b-PAA)andtostudytheinfluenceoftheseinteractionsonthepharmacokineticstabilityand anti-tumorpotentialoftheformulatedmicellesinclinicallyrelevantanimalmodels.Tothisend,individual DOXandMTX-loadedpolyelectrolytecomplexmicelles(PCM)wereprepared,andtheirphysicochemical propertiesandpH-responsivereleaseprofileswerestudied.MTX-PCMandDOX-PCMexhibiteda differ-entreleaseprofileunderallpHconditionstested.MTX-PCMexhibitedamonophasicreleaseprofilewith
noinitialburst,whileDOX-PCMexhibitedabiphasicrelease.DOX-PCMshowedahighercellularuptake thanthatshownbyMTX-PCMinA-549cancercells.Furthermore,DOX-PCMinducedhigherapoptosis
ofcancercellsthanthatinducedbyMTX-PCM.Importantly,bothMTX-PCMandDOX-PCMshowed pro-longedbloodcirculation.MTX-PCMimprovedtheAUCallofMTX4-foldcomparedtoa3-foldincrease
byDOX-PCMforDOX.WhileadefinitedifferenceinbloodcirculationwasobservedbetweenMTX-PCM andDOX-PCMinthepharmacokineticstudy,bothMTX-PCMandDOX-PCMsuppressedtumorgrowth
tothesamelevelastherespectivefreedrugs,indicatingthepotentialofPEGylatedpolymericmicelles
aseffectivedeliverysystems.Takentogether,ourresultsshowthatthenatureofinteractionsofcationic drugswiththepolyioniccopolymercanhaveatremendousinfluenceonthebiologicalperformanceofa deliverysystem
©2016ElsevierB.V.Allrightsreserved
Conventional chemotherapeuticapproach is themain
treat-ment option for cancer [1] Despite great strides made in
understanding cancer biology, conventional chemotherapeutic
drugsarecharacterizedbynon-specificdistributionandhigh
accu-mulation in healthy cells, leading to dose-limiting side effects
thatseriouslyimpedetheirclinicalapplication [2].Tominimize
sideeffectsandimprovetherapeuticefficacyof
chemotherapeu-∗ Corresponding authors.
E-mail addresses: csyong@ynu.ac.kr (C.S Yong), jongohkim@yu.ac.kr (J.O Kim).
tic drugs, various drug deliverysystems have been developed Among them, block copolymer-based self-assembledpolymeric micelleshave demonstratedpromising potentialin thedelivery
of anticancerdrugs The nanosized micelles offermany advan-tages,includinguniformsizedistribution,core-shellarchitecture, highdrugloading,andphysicalstability[3,4].Polyethyleneglycol (PEG)iswidelyusedtograftthehydrophobicpartofamphiphilic polymersandformtheoutershellofthemicelles.Suchpolymeric micelleshavebeenshowntoincreasethesystemiccirculationtime
ofdrugs and preferentiallyaccumulate in tumorsvia enhanced permeabilityandretention(EPR)effect[5]
Polyelectrolyte complex micelles (PCM), a special class of micellesformedbyelectrostaticinteractionofoppositecharged http://dx.doi.org/10.1016/j.colsurfb.2016.06.004
0927-7765/© 2016 Elsevier B.V All rights reserved.
Trang 2totumorinterstitialspaces[10]
Well-knownanticancerdrugsdoxorubicin(DOX) and
mitox-antrone(MTX)areanthracyclineswithabroadspectrumofactivity
againstavarietyofcancersincludingbreast,lung,prostate,bone,
andbladdercancers.Theseanticanceragentsactbyintercalating
DNAandinhibitingtopoisomeraseII[11].WhilebothDOXandMTX
areanthracyclinemoieties,theydifferinnumberandsubstitution
statesofaminofunctionalitiespresent.DOXconsistsoffourfused
ringswithasugarmoietycontainingaprimaryaminegroup(-NH2),
whileMTXhasthreefusedringscontainingtwosecondaryamine
groups(-NH-)[6,11].BothDOXandMTXarepositivelychargedat
physiologicalpHwithanaveragepKaof∼8,whichisresponsible
forelectrostaticinteractionswiththecarboxylategroup(pKa∼5)
oftheblockcopolymer[12].Inthepresentstudy,poly(ethylene
oxide)-block-poly(acrylicacid)(PEO-b-PAA)wasusedastheblock
copolymer.ThePCMwereformedbytheelectrostaticinteractionof
theprotonatedaminogroupsofMTXorDOXwiththecarboxylate
moietyofthePAAsegmentofthePEO-b-PAApolymer
Thepresentstudyaimedtoinvestigatetheinteractionsof
differ-entcationicdrugswiththeanionicblockpolymerPEO-b-PAAand
tostudytheinfluenceoftheseinteractionsonthepharmacokinetic
stabilityandantitumorpotentialoftheformedPCMinclinically
relevantanimalmodels.Towardsthispurpose,pH-responsiveness
andreleaseprofilesofindividualdrugsfromdrug-loadedPCMwere
monitored.Inaddition,aninvivopharmacokineticstudyofPCM
(DOX-PCMandMTX-PCM)inratsandanantitumorefficacystudy
inA-549cancercell-xenograftedmousemodelswereperformed
Theeffectofamine-functionalizedanticancerdrugsonthe
physic-ochemicalandbiologicalresponsesofmicellarnanocarrierswas
demonstrated
2.1 Materials
Doxorubicin hydrochloride was supplied by Dong-A
Phar-maceuticalCompany(Yongin,SouthKorea).Mitoxantrone
dihy-drochloride was purchased from Shaanxi Top Pharm Chemical
Co.Ltd(Xi’an,China).Poly(ethyleneoxide)-block-poly(acrylicacid)
(PEO-b-PAA,MWsofPEOandPAAblockswere5000and6800Da,
respectively) wasprocured from PolymerSource, Inc (Quebec,
Canada).Allotherchemicalswereofreagentgradepurityandwere
usedwithoutanyfurthermodifications
2.2 Preparationofdrug-loadedPCM
TheMTXandDOX-loadedPCMwereformedbyasimplemixing
methodaswereportedpreviously[6].Briefly,aqueoussolutions
2.3 Particlesizeand-potentialanalysis Particle size (nm), polydispersity index (PDI), and zeta ( )-potential (mV) of MTX-PCM and DOX-PCM were analyzed by dynamiclightscattering(DLS).ZetasizerNanoZS(Malvern Instru-ments, Malvern, UK) equipped with He–Ne laser was used to measuretheparticlesize.Afixedangleof90◦wasselectedandthe laserwasoperatedat635nm.NanoDTSsoftware(version6.34) wasemployedtoanalyzethesize,PDI,andsurfacechargeofthe micelles.Eachmeasurementwasperformedintriplicate
2.4 Morphologicalanalysis Transmissionelectronmicroscopy(TEM)(CM200UT;Philips, Andover,MA,USA)wasusedtocharacterizethemorphologyof drug-loadedPCM.Theparticleswereobservedatanaccelerating voltageof100kV.Briefly,adropofmicellardispersion(R=0.5)was placedinthecarbon-coatedcoppergridandallowedtosettlefor
10min.Excessliquidwassoakedoutwithtissuepaper.Thethin layerofparticleswascounter-stainedby2%phosphotungsticacid (PTA)asanegativestaining.Theparticlesweresubjectedtoinfrared radiationfor5min
2.5 Physicalstatecharacterization TheX-raydiffraction(XRD)patternsoffreeDOX,MTX, DOX-PCM,andMTX-PCMwererecordedusingaverticalgoniometerand X-raydiffractometer(X’PertPROMPDdiffractometer,Almelo,The Netherlands)tomeasureNi-filteredCuK␣radiation(voltage,40kV; current,30mA)scatteredinthecrystallineregionsofthesample Thepatternswererecordedatascanningrateof5◦/minoverthe 10–60◦diffractionangle(2)rangeatanambienttemperature 2.6 Invitroreleasestudies
The release profiles of drugs from MTX-PCM or DOX-PCM wereevaluatedbydialysis.Phosphate-bufferedsaline(PBS,pH7.4, 0.14MNaCl)andacetate-bufferedsaline(pH5.0,0.14MNaCl)were usedtosimulatethephysiologicalandtumorpH.Inbrief,1mlof micellardispersion(1mgequivalentofMTXandDOXatR=0.5) wassealedinmembranetubing(Spectra/Por®;3500Dacutoff)and placedat37◦Cat100rpm.Thesampleswerewithdrawnat prede-terminedtimesandreplacedwithequalamountsoffreshmedium Thesampleswerecollected,filtered,andanalyzedusingUV–vis spectrophotometryat609and485nmforMTXandDOX, respec-tively.Theamountofdrugreleasedwasplottedagainsttime.The release kineticswasanalyzed byfittingthedatatoappropriate mathematicalmodels
Trang 3Fig 1.Schemes illustrating preparation of drug-loaded PCM.
2.7 Cellculture
A-549smalllungcancercellsweregrowninRPMI1640medium
supplementedwith10%(v/v)fetalbovineserum(FBS)inthe
pres-ence of penicillin and streptomycin (100U/mL and 0.1mg/mL,
respectively).Thecellsweremaintainedunderambientconditions
(37◦C containing5% CO2) ina T-75 flask andperiodically
sub-cultured
2.8 Cellularuptakeanalysis
Thecellularuptake of free drugs and drug-loaded PCMwas
investigatedinA-549cancercellsusingfluorescence-assistedcell
sorting(FACS).Briefly,cellswereseededata densityof3×105
cells/wellina6-wellplateandincubatedovernight.Thecellswere
treated withfree DOX,free MTX, DOX-PCM,and MTX-PCM (in
equivalentconcentrationsof10g/mL)andincubatedforthe
indi-catedperiods.ThecellswerewashedtwicewithPBSandharvested
Thecellswereresuspendedin1mLofPBSandanalyzedinaflow
cytometer(FACSCalibur,BDBiosciences,SanJose,CA,USA)
2.9 Apoptosisanalysis
Thecellswereseededatadensityof3×105 cells/wellina
6-wellplateandincubatedovernight.Thecellsweretreatedwith
freeDOX,freeMTX,DOX-PCM,andMTX-PCM(inequivalent
con-centrationsof5g/mL)andincubatedfor24h.Nextday,cellswere
washed,trypsinized,harvested,andwashedagainwithcoldPBS
Thepelletwastreatedwith2.5LofAnnexinV-FITCand2.5Lof
7-AADfor15minatroomtemperature.Thepercentageof
apop-toticcellswasanalyzedusingaflowcytometer(FACSCalibur,BD
Biosciences,SanJose,CA,USA)
2.10 Pharmacokineticanalysis
The in vivo pharmacokinetic study was performed in male
Sprague-Dawleyrats(220±10g).Theexperimentalprotocolsand
animalcarewereinaccordancewiththeprotocolslaidby
Insti-tutionalAnimalEthicalCommittee,YeungnamUniversity,South
Korea.Theratsweredividedintofourgroupswith4ratsineach group
2.11 Administrationandbloodcollection Theratswereheldinasupineposition.Therightfemoralartery wascannulatedtocollectthebloodsamples,whiletheleftfemoral arterywascannulatedtoadministertheindividualDOXandMTX formulationsasasingledose(5mg/kg).300LofpreparedPCM formulationswereadministeredtoeachratviaatailvein injec-tion.The micelles formulated ata feeding ratioof R=0.5 were employed.Bloodsamples(200L)werecollectedatdesignated intervals(0.25,0.5,1,2,4,6,8,10,12,and24h).Thesurgical open-ingswereimmediatelysealedwithsurgicalsuturestoeasepainand increasethelengthofthestudyperiod.Afterbloodwaswithdrawn,
itwasimmediatelycentrifuged(Eppendorf,Hauppauge,NY,USA)
at13000rpmfor10minsothatplasmacouldbeseparatedand extractedforfurtheranalysis
2.12 PreparationandevaluationofplasmasamplesbyHPLC
150L of plasma was mixed with 150L of methanol and vortex-mixed for 30min The mixture was centrifugedat high speed;supernatantwasseparatedandsubjectedtovacuum evap-oration The evaporated residue wasreconstitutedwithmobile phase and injected into the HPLC column (20L) Two differ-entmobilephaseswereused:sodiumformate(80nM)/methanol (80/20;pH2.9)forMTXandmethanol/water/aceticacid(50/49/1;
pH3)forDOX.Flowrateofthemobilephasewas1ml/minand effluentsweremeasuredat254and480nmfor MTXandDOX, respectively
2.13 Pharmacokineticparameters
A non-compartmental model was used to plot the plasma concentration–timevaluesusingWinNonlinsoftware(professional edition,version2.1;Pharsight Corporation,MountainView, CA, USA).Pharmacokineticparametersincludedtheeliminationrate (K ),half-life(t ),maximumplasmaconcentration(Cmax),time
Trang 4Aftertheappropriatetumorvolume wasattained,formulations
wereinjectedviatailvein(3timeswithagapof3daysbetween
eachinjection).Thetumorvolumewasmeasured(V=0.5×longest
diameter×shortestdiameter)usinga Verniercaliper.The body
weightofmicewasmonitoredinordertoobservethesafety
pro-fileoftheformulations.Attheendoftheexperiment,micewere
sacrificedaccordingtotheinstitutionalethicalguidelines.Tumors
weresurgicallyremovedandweighedindividually
2.15 Statisticalanalysis
Student’s t-test was used to evaluate the statistical
signifi-canceofdifferencesbetweenformulations.Valueswerereported
asmean±standarddeviation(SD)andthedatawereconsidered
statisticallysignificantatp<0.05
3.1 Preparationofdrug-loadedPCM
Thepresentstudyaimedatinvestigatingtheinteractionsof
dif-ferentcationicdrugswiththeanionicblockpolymerPEO-b-PAA
TheprimaryaminogroupofDOX(-NH2)andtwosecondaryamino
groups(-NH-)ofMTXareresponsibleforelectrostaticinteractions
withtheionizedcarboxylgroup(pKa∼5)ofPEO-b-PAA[11]
There-fore,pH-responsivenessofindividualdrugsandtheirabilitytoform
drug-loadedPCMwerestudiedindetail.ThePCMwereformedat
twodifferentchargeratios(R=0.25and0.5)ofMTXandDOXto
carboxylategroups(R=[drug]/[COO−]).Theschematicillustration
offormationofPCMispresentedinFig.1
AsshowninFig.2,thePCMwerepreparedwithbothdrugsat
variouspHconditions.ThePCMwereformedbytheimmobilization
ofweaklybasicdrugs(MTXandDOX)intothecoresofPEO-b-PAA,
aweakpolyacid,viaastrongelectrostaticinteraction.Asexpected,
weobservedpH-sensitivebehaviorofPCM.ComparedtoPCM
par-ticlesizeatpH6,particlesizereducedremarkablywiththeincrease
inpH(DOX-PCM).Consistently,-potentialofPCMdecreasedas
pHincreased,indicatingthathigherpHfavorstheionizationofthe
polymerblockresultingincomplexationofdrugs.The-potential
decreasedintheentirepHrangestudied.Apossibleinterpretation
isthatatlowerpHvalues,owingtopartialorinsufficient
ioniza-tionofthePAAblock,thedrug-polymerphysicalinteractionforms
alooseaggregateresultinginlargerparticlesize.Uponincreasein
thepHofthemedium,PAAattainsmaximumionizationresulting
inefficientcomplexationofdrugs.Itisworthnotingthatparticle
sizemarkedlydecreasedwhenthechargeratiowasincreasedfrom
R=0.25toR=0.5,indicatingtheneutralizationofthePAAsegments
duetotheelectrostaticinteractionofMTXandDOXinthePCM.As
expectedathigherchargeratios,greaterneutralizationofnegative
Fig 2.Effect of pH on(A)hydrodynamic particle size and(B)-potential at different feeding ratios (R = 0.25 and 0.5).
chargeofthePAAblockresultsinstablePCMwithhighly hydropho-biccoreandhighpayloadcapacity[13].Appreciablehydrophobic coreandPEGshellonthesurfacestabilizethePCMinsystemic conditions.Specifically,MTX-PCMexhibitedasmallerparticlesize comparedtothatofDOX-PCM.Thisdifferenceinparticlesizesof cationicdrug-basedPCMcanbeattributedtothebindingstrength
ofindividualdrugstothepolymerblock.Overall,thesizeof MTX-PCMandDOX-PCMwaslessthan100nm,makingthesePCMideal fortumordrugdelivery.Ithasbeenreportedthatparticlesmaller than200nmcanpreferentiallyaccumulate intumortissuesvia diffusion-mediatedpassivetransport(EPReffect),whereas parti-clessmallerthan100nmcanpenetratedeepintheleakytumor vasculature(typicalporesize50–100nm)andarenotlimitedto vascularsurfaceonly[14,15]
Trang 5Fig 3.TEM images of(A)MTX-PCM and(B)DOX-PCM.
3.2 Morphologicalandphysicalstateanalysis
Regardlessofthenatureof bindingof individualdrugs, both
MTX-PCMandDOX-PCMexhibiteddistinctsphericalshaped
par-ticlesuniformlydispersedontheTEMgrid(Fig.3A, B).Core-shell
architecturewasnotobservedduetothelongitudinalassembly
ofpolymerchains,butanelectron-densedarkcorerepresenting
thedrug-polymercomplexwasseen.Theparticlesizeobserved
intheTEMexperimentwassmallerthansizeobservedusingDLS
Thisdiscrepancyinobservedsizescanbeattributedtothefactthat
DLSmeasuresthehydrodynamicmicellesizewhileTEMcaptures
thedriedstate.Thephysicalstateoffreedrugsanddrug-loaded
micelleswasstudiedusingX-raydiffractionpatterns.Asshownin
Fig S1,freeDOXshowednumeroussharpandintensepeaksat
sev-eral2scatteredangles(12.5◦,16.2◦,17.3◦,21.2◦,22.5◦,25.1◦,and
26.2◦)andfreeMTXshowedpeaksbetween22.5−25.5◦reflecting
itshighcrystallinity.Allcharacteristicpeakswereabsentin
DOX-PCMaswellasMTX-PCM,indicatingthecompleteincorporationof
drugs.Theseresultssuggestthepresenceofdrugsintheamorphous
ormolecularlydispersedstate[16]
3.3 Drugloadingandinvitroreleasestudy
BoththeDOX-PCMandMTX-PCMexhibitedahighentrapment
efficiencyofmorethan90%withanactivedrugloadingof∼45%
w/wforMTX(MTX-PCM)and∼70%forDOX(DOX-PCM)atR=0.5
ThereleasestudyofMTXandDOXfromMTX-PCMandDOX-PCM
wasperformedinphosphate-bufferedsaline(pH7.4)and
acetate-bufferedsaline(pH5.0)tosimulatethephysiologicalandtumor
pHconditions AsevidentfromFig.4,MTX-PCMand DOX-PCM
exhibiteddifferentreleaseprofilesat bothpHconditions
MTX-PCMexhibiteda sustainedrelease profilethroughoutthestudy
periodwithnoinitialburst.DOX-PCM,ontheotherhand,exhibited
abiphasicreleasepattern.DOX-PCMexhibitedafasterrelease
pro-fileduringtheinitialtimeinterval(10–12h),butshowedaslower
releaselateron(48h).Forinstance,inthecaseofR=0.5,∼9%of
thedrugwasreleasedfromMTX-PCMafter12handapproximately
25%ofthedrugwasreleasedbytheendof48hatpH7.4.In
con-trast,∼30%ofthedrugwasreleasedfromDOX-PCMduringthe
first12h,whilethetotalreleasewas∼38%attheendofthestudy
period.AsimilartrendwasobservedinreleasemediaatpH5.0
whereinMTXwasreleased in a continuousfashion
(monopha-sic),whileDOXwasreleasedinabiphasicmanner.Thedifference
inreleasepatternscouldbeattributedtothechargedensityand
bindingaffinityofindividualdrugstowardstheanionicPAAblock
Fig 4.Release profiles of(A)MTX and(B)DOX from MTX-PCM and DOX-PCM at
pH 5.0 and pH 7.4 MTX-PCM and DOX-PCM were prepared at pH 7.0 The study was carried out in phosphate-buffered saline (pH 7.4) and acetate-buffered saline (pH 5.0) at 37 ◦ C.
Trang 6Fig 5 (A)In vitro cellular uptake of (a) MTX and MTX-PCM and (b) DOX and DOX-PCM in SCC-7 cancer cells The cellular uptake experiment was performed by incubating the formulations at different time points.(B)Annexin V-FITC/PI based apoptosis assay in SCC-7 cancer cells The drug treated cells were stained with Annexin V-FITC and PI and evaluated using flow cytometry.
MTX,withtwosecondaryaminogroupscouldbeexpectedtohave
strongerbindingaffinityforthepolymerthanDOXwithasingle
primaryaminogroup
AnothersignificantobservationwasthatMTXandDOXwere
releasedfasterinacidicpH(pH5.0)thaninphysiologicalpH(pH
7.4).Forexample,approximately55%ofMTXwasreleasedfrom
MTX-PCMatacidicpH,whileonly∼25%ofthedrugwasreleased
atphysiologicalpHafter48hatafeedingratioofR=0.5.Asimilar
trendwasobservedinthecaseofDOX-PCM,wherein∼62%ofthe
drugwasreleasedinacidicmediacomparingto∼38%DOXrelease
after48hinbasicmedia.Theacceleratedreleaseofdrugsatacidic
pHcanbeattributedtotheprotonationofcarboxylicgroupsofthe
PAAblockinthemicelles[11]
Ingeneral,it isinteresting tonotethattherelease ratewas
higherfromPCMpreparedatafeedingratioofR=0.5thanfrom
those prepared with R=0.25 For example,∼14% of MTX was
releasedfromMTX-PCMwithR=0.25and∼21%wasreleasedfrom
MTX-PCMwithR=0.5duringthefirst8hatpH5.0.Asimilartrend
wasobservedatpH7.4:∼17%ofDOXwasreleasedfromDOX-PCM
withR=0.25and∼23%wasreleasedfromPCMwithR=0.5
dur-ingthefirst8h.Thisdifferenceinreleasecanbeattributedtothe
bindingandlocalizationofthedrugsinthecoreofPCM.Ahigh
loadingcapacityofPCMatR=0.5accountsforthelargerpresence
ofdrugsatthecore-shellinterfacefromwherethedrugscanrapidly
diffuseintothereleasemedium[17].Thegreaternumberofdrug
moleculestrappedinthecoreofPCMpreparedwithR=0.5hasa greaterchancetoreleasequicklyinthemediathanthefewerdrug moleculesfromthePCMpreparedwithR=0.25.Furthermore,at thelowfeedingratio(R=0.25),considerablenegativechargesare stillavailableonthePAAchainthatwillfurtherinducestrong elec-trostaticinteractions betweendrugsandthepolymerleadingto slowerreleaserates
3.4 CellularuptakepatternsofDOX-PCMandMTX-PCM Thecellularuptakebehavioroffreedrugsanddrug-loadedPCM wasinvestigatedinSCC-7cancercellsusingFACS[18,19].Asshown
inFig.5A,freeDOXandMTXshowedahighercellularuptake com-paredtodrug-loadedPCM.Thehighercellularuptakeoffreedrugs wasattributedtothesimplediffusionofdrugstotheintracellular environment,whereasmicellarnanocarrierscouldonlybe inter-nalizedby thecells throughendocytosis.The meanfluorescent intensity(MFI)offreeDOXwasgreatercomparedtoDOX-PCMand similarly,MFIofMTXwasgreatercomparedtothatofMTX-PCM after60-minincubationinSCC-7cancercells.Consistently, DOX-PCMandMTX-PCMshowedatypicaltime-dependentbehaviordue
tothepresenceofanendocytosisprocesswithinthesystem(Fig.
S2).We haveobservedthatthenanocarriersprimarily accumu-lateinthecytoplasmicregionwherethedrugisliberatedafterthe
Trang 7internalizationofPCMinthiscellline
3.5 Apoptosisassay
Theexternalizationofphosphatidylserineduringapoptosisof
cancercellswasevaluatedbyannexin-V/PIstaining(Fig.5B).The
resultsshowedthatDOXinducedasignificantincreaseinAnnexin
V-positive and Annexin V+PI-positive cells, corresponding to
earlyand late apoptotic cells, respectively The MTX, however,
inducedapoptosisaswellasnecrosisofcancercells.Importantly,
drug-loadedPCMinducedhigherapoptosisrates ofcancercells
compared tofree drugs For example, MTX-PCMinduced∼25%
ofcellapoptosiscompared to∼15%inducedbyfree MTX
Simi-larly,DOX-PCMinduced∼34%ofcellapoptosiscomparedto∼25%
inducedbyfreeDOX.Highercellularapoptosisratesinducedby
PCMcouldbeattributedtothesustainedrelease oftherapeutic
cargointheintracellularenvironment.Itshouldbenotedthat
DOX-basedtherapywasmoreeffectiveininducinganticanceractivity
thanMTX-basedtherapy
3.6 Pharmacokineticanalysis
Theplasmaconcentration-timeprofilesoffreedrugs,MTX-PCM,
andDOX-PCMfollowingsingledoseadministrationarepresented
inFig.6 Asshown,free MTXand freeDOX wereclearedfrom
thesystemic compartment within 4–6hof intravenous
admin-istration.LinearpharmacokineticprofilesofMTXandDOXwere
consistentwithpreviousreports.Asexpected,PCMformulations
significantlyenhancedthebloodcirculationofbothMTXandDOX
Bothanticancerdrugsmaintainedsignificantlyhigherplasma
con-centrationsfor 24h Importantly,MTX-PCM showedprolonged
bloodcirculation,comparedtoDOX-PCM.After12h,theplasma
concentrationof MTXfromPCM was1.824±0.801g/ml
com-pared toplasma concentration of only 0.576±0.389g/mL for
DOX.ThefinalconcentrationsofMTXandDOXreleasedfromPCM
were1.258±0.392g/mLand0.176±0.151g/mL,respectively
Therespectivepharmacokineticparametersofdifferent
formu-lationsarepresentedinTable1.Consistentwithpreviousreports,
freedrugsexhibitedshortt1/2,highKel,andlowAUCall.Although
both PCM formulations improved thesystemic performance of
drugs,theymarkedlydifferamongthemselves.Forinstance,
MTX-PCM improvedthe AUCall of MTX 4-foldcompared to a 3-fold
increasebyDOX-PCMforDOX.Similarly,MTX-PCMhadan
approxi-mately5-fold(14.79±4.89h)highert1/2thanMTX,comparedwith
2.5-foldhighert1/2ofDOX-PCM(4.82±0.83h)inrelationtoDOX
Notably,Kelofthefreedrugswasreduced5-foldbyMTX-PCMand
2-foldbyDOX-PCM.Withregardtoallpharmacokinetic
parame-ters,MTX-PCMshowed2-foldhigherperformancethanDOX-PCM
Thesefindingsindicatetheremarkablebloodcirculationpotential
ofMTX-PCMcomparedtothatofDOX-PCM.Thedifferenceinthe
circulatoryperformanceofthetwoPCMformulationsisattributed
totheirphysiologicalstability[20].Previously,wehaveshownthat
DOX-PCMhavelowersaltstabilitythanMTX-PCM.Twosecondary
aminogroupsconferonMTXastrongerbindingaffinityforthe
polymer,comparedtoDOXwithitssingleprimaryaminogroup
[11,21]
Manyinferencescanbedrawnfromthisexperiment.First,the
bindingaffinityofthecationicdrugtothepolymerdeterminesits
bloodcirculationpotential;second,basedonthebindingstrength,
thereleaseofthedrugwillbesustainedorfaster;third,thegreater
thebindingstrength,thegreatertheinvivoperformanceof
drug-loadednanocarriersinthephysiologicalenvironment[22–25]
Fig 6.Plasma concentration-time profiles of MTX and DOX after intravenous administration of free drugs or drug-loaded PCM to rats at a dose of 5 mg/kg Each value represents the mean ± SD (n = 4) Drug-loaded PCM were prepared at R = 0.5 and pH 7.0.
3.7 Invivoantitumorefficacy The prolongedblood circulation and controlledrelease pro-filesof drug-loaded PCM were expected to contribute to their superiorantitumorefficacy.Theantitumorefficacyofindividual formulationswasinvestigatedinA-549cancercellsxenografted
onBALB/cnudemice.FreeMTX,freeDOX,MTX-PCM,and DOX-PCMwereintravenouslyinjectedintothetumorbearingmiceat
afixeddoseof5mg/kg.AsshowninFig.7A,tumorsrapidlygrew
intheuntreatedcontrolgroup,buttheirgrowthwassignificantly suppressedin groups treated with free drugs as wellas drug-loadedPCM.Notably,bothMTX-PCMandDOX-PCMsignificantly suppressedtumorgrowth.Invitrocytotoxicityassaysrevealedthe
IC50valuesforindividualformulations.TheIC50valuesofMTXand MTX-PCMwerefoundtobe0.85g/mland 0.94g/ml,
Trang 8respec-Fig 7.Effect of drug-loaded PCM on(A)tumor growth and(B)body weight in A-549
xenograft-bearing female BALB/c nude mice (n = 6 per group) Each formulation was
administered three times at three day intervals Drug-loaded PCM were prepared at
R = 0.5 and pH 7.0.
tively,whiletheIC50valuesofDOXandDOX-PCMwere1.68g/ml
and2.13g/ml,respectively.Whileadefinitedifferenceinblood
circulationwasobservedbetweenMTX-PCMandDOX-PCMinthe
pharmacokineticstudy,nosignificantdifferenceinantitumor
effi-cacycouldbedetected.BothMTX-PCMandDOX-PCMinhibited
tumorgrowthtothesamelevelthroughoutthestudyperiod.These
whichresultedinoverallbodyweaknessthataffectedthetumor tissueaswell.TheenhancedtumorregressioncausedbyPCM for-mulationscanbeattributedtotheprolongedhalf-lifeofanticancer drugs,reducedeliminationofindividualdrugs,andmost impor-tantlytothepreferentialaccumulationofnanocarriersinthetumor tissueduetotheEPReffect[26–28]
The toxicityof formulations wasevaluatedusing micebody weight(Fig.7B).Asshown,freeMTXcausedanapproximately30% decreaseinbodyweightindicatingitsseveredrug-relatedtoxicity MTX-PCM,however,greatlyreducedMTXtoxicityinsystemic cir-culation.ThiscouldbeduetothefactthatencapsulationofMTXin thePCMreducedtherandomexposureofnormaltissuestoitand increasedMTX’spassiveaccumulationintumortissues,thereby reducing theundesirablesideeffects [29,30].DOX-PCMdidnot exhibitanybodyweightreduction
In summary, cationic drugs-loadedPCM were prepared and evaluatedintermsofphysicochemicalandinvivoparameters.Both MTX-PCMandDOX-PCMdisplayedsphericalnanosizedparticles withuniformdispersityindices.MTX-PCMandDOX-PCMexhibited differentreleaseprofilesunderallpHconditionsstudied.MTX-PCM exhibitedamonophasicreleasepatternwithnoinitialburst,while DOX-PCMexhibitedabiphasicreleasepattern.Interestingly,drug releaserateswerehigherfromPCMpreparedatafeedingratioof
R=0.5thanfromthosepreparedwithR=0.25.DOX-PCMshowed
ahighercellularuptakecomparedtoMTX-PCMinSCC-7cancer cells;consistentlyDOX-PCMinducedhigherapoptosisratesof can-cercellsthanMTX-PCM.Incontrast,MTX-PCMshowedprolonged bloodcirculationcomparedtoDOX-PCM.MTX-PCMimprovedthe AUCallofMTX4-foldcomparedtoa3-foldincreasebyDOX-PCMfor DOX.Similarly,MTX-PCMhada5-foldhighert1/2thanMTX,while DOX-PCMincreasedtheDOXt1/22.5-fold.However,both MTX-PCMandDOX-PCMsuppressedtumorgrowthtothesamelevelsas theirrespectivefreedrugs.Takentogether,ourresultsshowthat natureofinteractionsofcationicdrugswiththepolyionic copoly-mercanhaveatremendousinfluenceonthebiologicalperformance
ofdeliverysystems
Theauthorsdeclarenoconflictofinterestinthiswork
Acknowledgements
Thisworkwassupportedbythe2015Yeungnam University ResearchGrant
Trang 9Appendix A Supplementary data
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,athttp://dx.doi.org/10.1016/j.colsurfb.2016.06
004
References
[1] M.M Gottesman, T Fojo, S.E Bates, Multidrug resistance in cancer: role of
ATP dependent transporters, Nat Rev Cancer 2 (2002) 48.
[2] A.T Fojo, K Ueda, D.J Slamon, D.G Poplack, M.M Gottesman, I Pastan,
Expression of a multidrug-resistance gene in human-tumors and tissues, Proc.
Natl Acad Sci U S A 84 (1987) 265.
[3] G Riess, Micellization of block copolymers, Prog Polym Sci 28 (2003)
1107–1170.
[4] J.F Cohy, Block copolymer micelles, Adv Polym Sci 190 (2005) 65–136.
[5] H Maeda, The enhanced permeability and retention (EPR) effect in tumor
vasculature: the key role of tumor-selective macromolecular drug targeting,
Adv Enzyme Regul 41 (2001) 189–207.
[6] J.O Kim, A.V Kabanov, T.K Bronich, Polymer micelles with cross-linked
polyanion core for delivery of a cationic drug doxorubicin, J Control Rel 138
(2009) 197–204.
[7] J.O Kim, T Ramasamy, C.S Yong, N.V Nukolova, T.K Bronich, A.V Kabanov,
Cross-linked polymeric micelles based on block ionomer complexes,
Mendeleev Commun 23 (2013) 179–186.
[8] A.V Kabanov, T.K Bronich, V.A Kabanov, K Yu, A Eisenberg, Soluble
stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and
poly(ethylene oxide)-block-polymethacrylate anions, Macromolecules 29
(1996) 6797–6802.
[9] T.K Bronich, A.M Popov, A Eisenberg, V.A Kabanov, A.V Kabanov, Effects of
block length and structure of surfactant on self-assembly and solution
behavior of block ionomer complexes, Langmuir 16 (2000) 481–489.
[10] T Ramasamy, T.H Tran, H.J Cho, J.H Kim, Y.I Kim, J.Y Jeon, H.G Choi, C.S.
Yong, J.O Kim, Chitosan-based polyelectrolyte complexes as potential
nanoparticulate carriers: physicochemical and biological characterization,
Pharm Res 31 (2014) 1302–1314.
[11] T Ramasamy, J.H Kim, H.G Choi, C.S Yong, J.O Kim, Novel dual drug-loaded
block ionomer complex micelles for enhancing the efficacy of chemotherapy
treatments, J Biomed Nanotech 10 (2014) 1304–1312.
[12] B Manocha, A Margaritis, Controlled release of doxorubicin from
doxorubicin/-polyglutamic acid ionic complex, J Nanomat 2010 (2010)
(Article ID 780171).
[13] T Ramasamy, Z.S Haidar, T.H Tran, J.Y Choi, J.H Jeong, B.S Shin, H.G Choi,
C.S Yong, J.O Kim, Layer-by-layer assembly of liposomal nanoparticles with
PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer
drugs, Acta Biomat 10 (2014) 5116–5127.
[14] D.W Kim, T Ramasamy, J.Y Choi, J.H Kim, C.S Yong, J.O Kim, H.G Choi, The
influence of bile salt on the chemotherapeutic response of docetaxel loaded
thermosensitive nanomicelles, Int J Nanomed 9 (2014) 3815–3824.
[15] B Gupta, B.K Poudel, T.H Tran, R Pradhan, H.J Cho, J.H Jeong, B.S Shin, H.G.
Choi, C.S Yong, J.O Kim, Modulation of pharmacokinetic and cytotoxicity
profile of imatinib base by employing optimized nanostructured lipid carriers,
Pharm Res 32 (2015) 2912–2927.
[16] B Gupta, B.K Poudel, S Pathak, J.W Tak, H.H Lee, J.H Jeong, H.G Choi, C.S Yong, J.O Kim, Effects of formulation variables on the particle size and drug encapsulation of imatinib-loaded solid lipid nanoparticles, AAPS
PharmSciTech (2015).
[17] T Ramasamy, J.H Kim, J.Y Choi, T.H Tran, H.G Choi, C.S Yong, J.O Kim, pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy, J Mater Chem B 2 (2014) 6324.
[18] X Qi, Y Chen, Z Sun, X Ma, W Guo, Y Lu, Duan, Cytotoxicity and cellular uptake evaluation of mitoxantrone-loaded poly(lactic acid-co-lysine) arginine–glycine–aspartic acid nanoparticles, J Appl Polym Sci 119 (2011) 1011–1015.
[19] R Zeng, A.M Morgenstern, Nyström, Nanoparticle-directed sub-cellular localization of doxorubicin and the sensitization breast cancer cells by circumventing GST-mediated drug resistance, Biomaterials 35 (2014) 1227–1239.
[20] H.B Ruttala, Y.T Ko, Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy, Pharm Res 32 (2015) 1002–1016 [21] J.O Kim, H.S Oberoi, S Desale, A.V Kabanov, T.K Bronich, Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: synthesis, characterization and implications for anticancer drug delivery, J Drug Target 21 (2013) 981–993.
[22] T.H Tran, T Ramasamy, D.H Truong, B.S Shin, H.G Choi, C.S Yong, J.O Kim, Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells, Pharm Res 31 (2014) 1978–1988.
[23] T.H Tran, J.Y Choi, T Ramasamy, D.H Truong, C.N Nguyen, H.G Choi, C.S Yong, J.O Kim, Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells, Carbohydr Polym.
114 (2014) 407–415.
[24] T Ramasamy, Z.S Haidar, Formulation, characterization and cytocompatibility evaluation of novel core–shell solid lipid nanoparticles for the controlled and tunable delivery of a model protein, J Bionanosci 5 (2011) 143–154 [25] T Ramasamy, T.H Tran, J.Y Choi, H.J Cho, J.H Kim, J.H Choi, C.S Yong, J.O Kim, Layer-by-layer coated lipid?polymer hybrid nanoparticles designed for use in anticancer drug delivery, Carb Polym 102 (2014) 653–661.
[26] J.U Assumpc¸ ao, M.L Campos, M.A Ferraz Nogueira Filho, K.C Pestana, H.M Baldan, T.P Formariz Pilon, et al., Biocompatible microemulsion modifies the pharmacokinetic profile and cardiotoxicity of doxorubicin, J Pharm Sci 102 (2013) 289.
[27] D.S Alberts, Y.M Peng, G.T Bowden, W.S Dalton, C Mackel, Pharmacology of mitoxantrone: mode of action and pharmacokinetics, Invest New Drugs 3 (1985) 101–107.
[28] J.H Kim, Y.S Kim, K Park, S Lee, H.Y Nam, K.H Min, et al., Antitumor efficacy
of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice, J Control Rel 127 (2008) 41–49.
[29] T Ramasamy, H.B Ruttala, J.Y Choi, T.H Tran, J.H Kim, S.K Ku, H.G Choi, C.S Yong, J.O Kim, Engineering of a lipid-polymer nanoarchitectural platform for highly effective combination therapy of doxorubicin and irinotecan, Chem Commun 51 (2015) 5758.
[30] T Ramasamy, J.Y Choi, H.J Cho, S.K Umadevi, B.S Shin, H.G Choi, C.S Yong, J.O Kim, Polypeptide-based micelles for delivery of irinotecan:
physicochemical and in vivo characterization, Pharm Res 32 (2015) 1947–1956.