Table 1Loading content, encapsulation efficiency, and solubility of model drugs in self-assembled GO nanoparticles.. Samples Loading content of drug wt.% a Encapsulation efficiency % Solub
Trang 1Enhanced solubility and modified release of poorly water-soluble
drugs via self-assembled gelatin–oleic acid nanoparticles
Phuong Ha-Lien Trana, Thao Truong-Dinh Trana, Beom-Jin Leeb,∗
a International University, Vietnam National University – Ho Chi Minh City, Viet Nam
b College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea
a r t i c l e i n f o
Article history:
Received 24 April 2013
Accepted 7 July 2013
Available online 19 July 2013
Keywords:
Gelatin–oleic acid conjugate
Self-assembled nanoparticles
pH-dependent solubility
Poorly water-soluble drugs
Enhanced solubility
Modified release
a b s t r a c t
Recently,wesynthesizednovelamphiphilicgelatin–oleicacid(GO)conjugatetoprepareself-assembled nanoparticlesfordrugdelivery.Theaimofthisstudywastoinvestigatepharmaceuticalpotentialities
ofself-assembledGOnanoparticlesforsolubilityenhancementandmodifiedreleaseofpoorly water-solubledrugs.Threepoorlywater-solublemodeldrugswithdifferentpH-dependentsolubility(valsartan andaceclofenac,insolubleatpH1.2;telmisartan,insolubleatpH6.8)werechosentoinvestigatethe potentialcontributionsofself-assembledGOnanoparticlestosolubilityenhancementandcontrolled release.Theparticlesizeofthedrug-loadednanoparticleswas200–250nm.Zetapotentialwascalculated, andinstrumentalanalysissuchaspowderX-raydiffraction(PXRD)andFouriertransforminfrared(FT-IR) spectroscopywereusedtoinvestigatethephysicochemicalpropertiesofthedrug-loadednanoparticles Comparedtothedrugalone,thedrug-loadednanoparticlesshowedenhancedsolubility.Furthermore, thereleaseprofilesofthemodeldrugsweremodifiedinacontrolledmanner.Thecurrentself-assembled
GOnanoparticlescanprovideaversatilepotentialindrugdeliveryandtumortargeting
© 2013 Elsevier B.V All rights reserved
1 Introduction
∗ Corresponding author at: Bioavailability Control Laboratory, College of
Phar-macy, Ajou University, Suwon 443-749, Republic of Korea.
Tel.: +82 31 219 3442; fax: +82 31 212 3653.
E-mail addresses: beomjinlee@gmail.com , bjl@ajou.ac.kr (B.-J Lee).
0378-5173/$ – see front matter © 2013 Elsevier B.V All rights reserved.
Trang 2charged groups and hydrophobic regions in gelatin molecules
(Fitch et al., 1969; Li et al., 1998; Bajpai and Choubey, 2006)
(Hosokawaetal.,2002;Ledo-Suárezetal.,2006)
2 Materials and methods
purification
Trang 3Table 1
Loading content, encapsulation efficiency, and solubility of model drugs in self-assembled GO nanoparticles.
Samples Loading content of
drug (wt.%) a
Encapsulation efficiency (%)
Solubility at 48 h (37◦C) b (pure drug)/drug encapsulated nanoparticles (g/mL) at a specific pH
a Initial loading amount of drug is 10% compared to polymer amount.
b Three model drugs have pH-dependent solubility Thus, solubility was measured at the pH having the lowest solubility.
3 Results and discussion
ChangandShojaei,2004),andsoliddispersion(Serajuddin,1999;
LeunerandDressman,2000);however,thesetechniquesare
2003)
Chengetal.,2008).Therefore,developmentofa surfactant-free
etal.,1998;ZhangandZhuo,2005).Moreover,asshowninTable1,
Accord-ingtoSahooetal.(2002),thelocalizationofotherhydrophobic
(Sahooetal.,2002)
Table 2
Particle size and zeta potential of various drug-loaded GO nanoparticles.
Samples Particle size
(nm)
Polydispersity index (PI)
Zeta potential (mV) VAL-GO (pH 1.2) 215.77 ± 4.67 0.05 ± 0.02 5.29 ± 2.30 AFC-GO (pH 1.2) 221.08 ± 5.51 0.07 ± 0.03 6.13 ± 0.54 TEL-GO (pH 6.8) 259.45 ± 3.69 0.09 ± 0.04 −32.21 ± 1.64
Trang 40
20
40
60
80
VAL
0
20
40
60
80
100
VAL-GO nanoparticle
TEL
time (hour)
0
20
40
60
80
Fig 1. Release profiles of drug-loaded GO nanoparticles in different pH having the
lowest solubility VAL at pH 1.2 (top); AFC at pH 1.2 (middle); TEL at pH 6.8 (bottom).
Fig 2. TEM images of drug-loaded GO nanoparticles VAL (top); AFC (middle); TEL (bottom).
Trang 52 theta
GO TEL-G O VAL-G O AFC-G O pure V AL
pure TEL pure AFC
Fig 3.PXRD patterns of pure drugs (VAL, AFC, and TEL), nanoparticles without drug
(GO), and nanoparticles encapsulating drugs (GO-VAL, GO-AFC, and GO-TEL).
1000 2000
3000 4000
pure TEL
Fig 4.FT-IR spectra of pure drugs (VAL, AFC, and TEL) and nanoparticles encapsu-lating drugs (GO-VAL, GO-AFC, and GO-TEL).
4 Conclusions
tar-geting
Trang 6References
Bajpai, A.K., Choubey, J., 2006 In vitro release dynamics of an anticancer drug from
swellable gelatin nanoparticles J Appl Polym Sci 101, 2320–2332.
Chang, R.K., Shojaei, A.H., 2004 Effect of hydroxypropyl beta-cyclodextrin on
drug solubility in water–propylene glycol mixtures Drug Dev Ind Pharm 30,
297–302.
Chen, J.F., Zhang, Z.Y., Shen, Z.G., Zhong, J., Yun, J., 2006 Preparation and
characteriza-tion of amorphous cefuroxime axetil drug nanoparticles with novel technology:
high-gravity antisolvent precipitation Ind Eng Chem Res 45, 8723–8727.
Cheng, F.Y., Wang, S.P.H., Su, C.H., Tsai, T.L., Wu, P.C., Shieh, D.B., Chen, J.H., Hsieh,
P.C.H., Yeh, C.S., 2008 Stabilizer-free poly(lactide-co-glycolide) nanoparticles
for multimodal biomedical probes Biomaterials 29, 2104–2112.
Cho, K., Wang, X., Nie, S., Chen, Z.G., Shin, D.M., 2008 Therapeutic nanoparticles for
drug delivery in cancer Clin Cancer Res 14, 1310–1316.
Dhumal, R.S., Biradar, S.V., Yamamura, S., Paradkar, A.R., York, P., 2008 Preparation of
amorphous cefuroxime axetil nanoparticles by sonoprecipitation for
enhance-ment of bioavailability Eur J Pharm Biopharm 70, 109–115.
Fitch, R.M., Prenosil, M.B., Sprick, K.J., 1969 The mechanism of particle formation in
polymer hydrosols I Kinetics of aqueous polymerization of methyl
methacry-late J Polym Sci 27, 95–118.
Gudlur, S., Sukthankar, P., Gao, J., Avila, L.A., Hiromasa, Y., Chen, J., Lwamoto,
T., Tomich, J.M., 2012 Peptide nanovesicles formed by the self-assembly of
branched amphiphilic peptides PLoS ONE 7, e45374.
Hosokawa, T., Yamauchi, M., Yamamoto, Y., Iwata, K., Kato, Y., Hayakawa, E., 2002.
Formulation development of a filter-sterilizable lipid emulsion for lipophilic
KW-3902, a newly synthesized adenosine A 1 -receptor antagonist Chem Pharm.
Bull 50, 87–91.
Jeong, Y.I., Cheon, J.B., Kim, S.H., Nah, J.W., Lee, Y.M., Sung, Y.K., Akaike, T., Cho, C.S.,
1998 Clonazepam release from core-shell type nanoparticles in vitro J Control.
Release 51, 69–178.
Jeong, Y.I., Shim, Y.H., Song, K.C., Park, Y.G., Ryu, H.W., Nah, J.W., 2002
Testosterone-encapsulated surfactant-free nanoparticles of poly(d,l-lactide-co-glycolide):
preparation and release behavior Bull Korean Chem Soc 23, 1579–1584.
Kayser, O., Lemke, A., Hernández-Trejo, N., 2005 The impact of nanobiotechnology
on the development of new drug delivery systems Curr Pharm Biotechnol 6,
3–5.
Landry, V., Riedl, B., Blanchet, P., 2008 Alumina and zirconia acrylate
nanocompos-ites coatings for wood flooring: photocalorimetric characterization Prog Org.
Coatings 61, 76–82.
Lai, J.-Y., Lu, P.-L., Chen, K.-H., Tabata, Y., Hsiue, G.-H., 2006 Effect of charge and
molecular weight on the functionality of gelatin carriers for corneal endothelial
cell therapy Biomacromolecules 7, 1836–1844.
Ledo-Suárez, A., Rodríguez-Sánchez, L., Blanco, M.C., López-Quintela, M.A., 2006 Electrochemical synthesis and stabilization of cobalt nanoparticles Phys Stat Sol 203, 1234–1240.
Leuner, C., Dressman, J., 2000 Improving drug solubility for oral delivery using solid dispersions Eur J Pharm Biopharm 50, 47–60.
Li, M., Zhang, Y., Jiang, M., Zhu, L., Wu, C., 1998 Studies on novel surfactant-free polystyrene nanoparticles formed in microphase inversion Macromolecules 31, 6841–6844.
Liversidge, E.M., Liversidge, G.G., Cooper, E.R., 2003 Nanosizing: a formulation approach for poorly water-soluble compounds Eur J Pharm Sci 18, 113–120 Loftsson, T., Brewster, M.E., 2000 Pharmaceutical application of cyclodextrins J Pharm Sci 85, 1017–1025.
Motornov, M., Roiter, Y., Tokarev, I., Minko, S., 2010 Stimuli-responsive nanoparti-cles, nanogels and capsules for integrated multifunctional intelligent systems Prog Polym Sci 35, 174–211.
Muller, R.H., Jacobs, C., Kayser, O., 2001 Nanosuspensions as particulate drug for-mulations in therapy: rationale for development and what we can expect for the future Adv Drug Deliv Rev 47, 3–19.
Nunez, F.A.A., Yalkowsky, S.H., 1998 Solubilization of diazepam J Pharm Sci Tech-nol 52, 33–36.
Radtke, M., 2001 Pure drug nanoparticles for the formulation of poorly soluble drugs New Drugs 3, 62–68.
Ran, Y., Jain, A., Yalkowsky, S.H., 2005 Solubilization and preformulation studies on PG-300995 (an anti-HIV drug) J Pharm Sci 94, 297–303.
Sahoo, S.K., Panyam, J., Prabha, S., Labhasetwar, V., 2002 Residual polyvinyl alcohol associated with poly(d,l-lactide-co-glycolide) nanoparticles affects their phys-ical properties and cellular uptake J Control Release 82, 105–114.
Serajuddin, A.T.M., 1999 Solid dispersion of poorly water-soluble drugs: early promises, subsequents problems, and recent breakthroughs J Pharm Sci 88, 1058–1066.
Torchilin, V.P., 2006 Nanoparticulates as Drug Carriers., ISBN 1-86094-630-5 Tran, P.H.L., Tran, H.T.T., Lee, B.-J., 2008 Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release J Control Release 129, 59–65.
Tran, P.H.L., Tran, T.T.D., Lee, B.-J., 2009 Dissolution-modulating mechanism of alka-lizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug Eur J Pharm Biopharm 72, 83–90.
Tran, P.H.L., Tran, T.T.D., Vo, T.V., Vo, C.L.N., Lee, B.-J., 2013a Novel multifunctional biocompatible gelatin–oleic acid conjugate: self-assembled nanoparticles for drug delivery J Biomed Nanotechnol 9, 1416–1431.
Tran, P.H.L., Tran, T.T.D., Lee, B.-J., 2013b Biodistribution and pharmacokinetics
in rats and antitumor effect in various types of tumor-bearing mice of novel self-assembled gelatin–oleic acid nanoparticles containing paclitaxel J Biomed Nanotechnol (in press).
You, J., Li, X., Cui, F.D., Du, Y.Z., Yuan, H., Hu, F.Q., 2008 Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity Nanotechnology 19, 1–9.
Zhang, Y., Zhuo, R., 2005 Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycapro-lactone Biomaterials 26, 6736–6742.