Giúp tra cứu các tiêu chuẩn, kích thước hình học cho các bộ phận, chi tiết máy trong thiết kế và gia công cơ khí. Các qui chuẩn, tiêu chuẩn theo ISO hoặc DIN. Rất quan trọng đặc biệt trong quá trình làm việc tại các nhà máy có ứng dụng việc bảo dưỡng, sửa chữa, chế tạo mới các vật tư, phụ tùng cơ khí..
Trang 1Kon-41.2010 Machine design basics B (4 cr)
Machine elements
Strength calculation 1
Symbols and units 1
Stresses 1
Failure theories 2
Static load 3
Fatigue loads 3
Stress concentration factors 4
Reversed stress (mean stress zero) 5
Smith diagrams (non-alloy structural steels) 7
Engineering materials 8
Steels 8
Cast irons 10
Aluminium 11
Copper alloys 11
Physical properties of steels and cast irons 12
Physical properties of materials 13
Bolted joint 14
1 Stresses of a bolt during tightening 14
2 Torque required to tighten the bolt 15
Welded connections 17
Stresses in fillet weld 17
Simple calculation method 17
Parallel keys 18
Interference fits 19
Spring design 20
1 Helical extension and compression springs 20
2 Belleville springs 21
3 Rubber springs 22
Gears 23
Helical gears (external gears) 24
Forces on gear teeth 25
Mechanical power transmission 26
Narrow V-belt drives (SFS 3527) 27
Datum lengths of narrow V-belts and datum diameters of pulleys 28
Rolling bearings 30
Equivalent dynamic bearing load (constant) 32
Lubrication and lubricant classification 33
1 Lubrication mechanisms 33
2 Oil classification 34
Design of pressure vessels 36
1 Pressure equipment directive 36
2 Nominal design stress 36
3 Cylindrical and spherical shells 36
4 Dished ends 38
Trang 2Strength calculation
Symbols and units
N
N kgm2
Nm
kg r/min, r/s
Trang 3ReH upper yield strength
ReL lower yield strength
Trang 5Stress concentration factors
Bending
Torsion
Fig 3. Stress concentration factor for a shaft shoulder
The maximum stress (bending)
Trang 6Fig 4. Surface quality factor k1
1 0,9 0,8 0,7 0,6 0,5
300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Surface roughness R = 0,3 a
0,6
3,2 6,3
25
0,8 1,6
0,6
10 20 30 40 50 60 70 80 90 100 110 120
d (mm)
k2
Fig 5. Size factor k2
Reversed stress (mean stress zero)
Bending or tensile-compression load (mean stress σm = 0)
nim
wσ
σft
2 1
K
k k
Torsion load (mean stress τm = 0)
nim
wτ
τfv
2 1
K
k k
In other cases the safety factor is calculated using Smith diagram
Table 1. Physical properties of structural steels
(N/mm2)
τvsτvw 170 135
205
175
240
215
Trang 7Notched specimen Shape Stress concentration factor Kf
* Stress concentration factor depends on corner radius and material
Fig 6 Preliminary design values for stress concentration factors
Trang 8Smith diagrams (non-alloy structural steels)
Raaka-ainekäsikirja 1 Muokatut teräkset 3 uudistettu painos Metalliteollisuuden Kustannus
E295 S235
195
-195
300 400 500 N/mm 2
-175
135
300 N/mm 2
S235
-215 -135
Trang 9• P steels for pressure purposes
• L steels for pipelines
• E engineering steel
̇ followed by a number being the specified minimum yield strength (N/mm2), e.g S235, E295
̇ for steel casting the name shall be preceded by the letter G
̇ additional symbols for impact strength etc, e.g S355J2
Tensile strength 2)
Impact strength
SFS-EN
10025
SFS 200
v 2004 ReH (N/mm 2 ) Rm (N/mm 2 ) KV (J) / t (°C) v 1991 v 1986 S235JR
Classification by impact strength
Trang 102 Steels designated according to chemical composition
(Examples in tables 2…4)
Non-alloy steels
• letter C and the carbon content % multiplied by 100
high speed steels) where the content, by weight, of every alloying element is < 5 %
• carbon content % multiplied by 100
• chemical symbols indicating the alloy elements (in decreasing order)
• numbers indicating the values of contents of alloy elements
Alloy steels (except high speed steels)
• letter X
• carbon content % multiplied by 100
• chemical symbols indicating the alloy elements (in decreasing order)
• numbers indicating the values of contents of alloy elements
Table 2. Quenched and tempered steels (SFS-EN 10083)
̇ heat treatment including hardening and annealing in relative high temperature (500…700 °C)
̇ shafts, couplings, gears, bolts and nuts
Table 3. Case hardening steels
̇ higher carbon content in thin surface layer
̇ high wear resistance and fatigue strength and bending strength
̇ gears and shafts
Table 4 Stainless steels
SFS-EN Yield strength Tensile strength Modulus of elasticity
̇ ductile at low temperatures
̇ pipes, vessels, valves, machinery in process industry, containers and tanks
Trang 11̇ low cost, good for casting and easy machining, absorption of vibration
̇ machine beds, valves, pipes, cylinders and lining, brake drums and disks
Table 6. Spheroidal graphite cast irons (ductile irons)
̇ high strength compared to grey cast iron, heat treating possible
̇ gears, bodies and frames, power transmission, combustion engine and paper machine components
Table 7. Austempered Ductile Irons (ADI)
EN 1564
Yield strength
(N/mm2)
Tensile strength(N/mm2)
Elongation(%)
Hardness (HB) 800-8 500 800 8 260 320
1000-5 700 1000 5 300 360
1200-2 850 1200 2 340 440
Trang 12Aluminium
̇ low weight
̇ corrosion resistant
̇ good heat and electricity conductivity
̇ special alloys with high strength
Table 8. Aluminium profile alloys
Alloy Yield strength
(N/mm2)
Tensile strength(N/mm2)
Elongation
A5 (%)
Hardness(HB)
Modulus of elasticity E ≈ 70 000 N/mm2
Copper alloys
̇ journal bearings are most important applications
Table 9. Common copper alloys
Alloy
Products
Yield strength (N/mm2)
Tensile strength (N/mm2)
Elongation
A5 (%)
Hardness (HB)
Tin bronze
Gears and worm wheels, sliding surfaces, journal bearings
GS-CuPb10Sn10
Lead tin bronze
Heavily loaded journal bearings (edge contact) 80 180 7 65 GS-CuAl10Fe3
Aluminium bronze
Crane wheels, bushings, gears, journal bearings 180 500 13 115
Trang 13Physical properties of steels and cast irons
(GN/m 2 )
Poisson's ratio
ν
Density ρ
(kg/m 3 )
Linear sion coefficient
expan-α (1/K)
Thermal conductivity
λ (W/(m K))
Specific heat capacity c
(kJ/(kg K))
Structural steels
Quenched and tempered steels
Case hardening steels
52…63 42…59 42…59
15 13,5
0,50 0,50 0,50 0,44 0,44 Grey cast irons
0,26 0,26 0,26 0,26 0,26
1) 52,5 50,0 48,5 47,5 45,5
0,46 0,46 0,46 0,46 0,46 Spheroidal graphite cast irons
2) 36,2 36,2 36,2 35,2 32,5 31,1 31,1 31,1
0,515 0,515 0,515 0,515 0,515 0,515 0,515 0,515 ADI - Austempered ductile
22,1 21,8 21,5 21,2 1) t = 100 °C
Trang 14Physical properties of materials
(GN/m 2 )
Poisson's ratio
ν
Density ρ
(kg/m 3 )
Linear sion coeffi- cient α (1/K)
expan-Thermal conductivity
λ (W/(m K))
Specific heat capacity c
0,30 0,30 0,30 0,33 0,2 0,3
7800
7800 7100 7300
11,9⋅10 -6 11⋅10 -6 17⋅10 -6 10,3⋅10 -6 10…13⋅10 -6
35
15 31 53
0,450 0,450 0,46 0,54 Diamond (natural)2)
800
2000
30
50 30,7
55
102
0,510 0,510 0,752 0,670 0,710 0,543 0,205 Graphite3)
68
0,30 0,32 0,36 0,32 0,36 0,41 0,45 0,16
(135…151) ⋅ 10-6
0,6⋅10 -6
178 0,25 0,22…0,48 0,36…0,98 0,24 1,25
0,710 1,670
- 1,13…1,30 1,050 0,800 1) Values are representative Exact values vary with composition and processing
2) Materials are anisotropic Values vary with crystallographic orientation
3) Typical properties of bearing quality materials Ceramics are hot pressed or equivalent sintered These erties are representative and depend on detailed composition and processing
Trang 15Bolted joint
1 Stresses of a bolt during tightening
A flange joint is a typical bolted joint (fig 1-1)
Fig. 1-1 Flange joint
When the bolt is tightened, a tensile stress and torsional stress is developed in the bolt For ISO metric threads (thread angle 60°) the friction torque in threads is /1/
2 2
1
d
P F
d M
π
where FM is the preload (from tightening)
d2 the pitch diameter (table 1-1)
µG the friction coefficient in threads
S
M 2 v
d
P d
F d W
M
π
µπ
where d3 is the root diameter of the thread If the bolt has a reduced diameter (< dS), use the
minimum diameter dT The tensile stress in the cross-section due to the preload force is
2 S
M S
Trang 16The effective stress should not be more than 90 % of the yield stress (0,9Rp0,2 or 0,9ReL) The maximum tensile stress during tightening is /1, 3/
2
2
G S
2
2 , 0 S
)155
,1(231
9,0
=
d
P d
d R
πµ
The friction coefficient in threads depends on the material, surface treatment and lubrication (table 1-2) For bolts M6 M16 σS ≈ 0,7ReL, when the friction coefficient in threads is µG = 0,15 The maximum axial force (in assembled state) is
d/mm
Pitch
P/mm
Pitch diameter
d2/mm
Root diameter
d3/mm
Tensile stress area
Table 1-2 Friction coefficient µG in threads /4/
Untreated Phosphated Phosphated black Zinc electroplated Cadmium electropl
0,20 0,35 0,28 0,40 0,26 0,37 0,14 0,20 0,10 0,19
0,16 0,23 0,16 0,33 0,24 0,27 0,14 0,19 0,10 0,17
0,13 0,19 0,13 0,19 0,14 0,21 0,10 0,17 0,13 0,19
Table 1-3. Property classes (strength grades) of bolts
Rm / N/mm 2 (nominal) 500 600 800 1000 1200
ReL or Rp0,2 / N/mm2 (nominal) 300 480 640 900 1080
Rm tensile strength, ReL or Rp0,2 yield strength
2 Torque required to tighten the bolt
The total torque required to tighten the bolt is a sum of the friction torque in threads and
torque between the head or nut and the surface (fig 2-1) The friction torque MK between the nut and the surface is
M km K 2
1
Trang 17where µK is the friction coefficient between the nut (or head) and the surface
Dkm = (dK+DK)/2 the mean diameter (location of friction force)
dK the outside diameter of the nut (or head) ≈ width across flats s (wrench opening)
DK the diameter of the hole
The friction coefficient between the nut (or head) and the surface is µK ≈ 0,08 0,22 ing on the material, surface treatment and lubrication The friction coefficient of stainless steels (between the nut (or head) and the surface or in threads) can be even 0,5
depend-The total torque required to tighten the bolt is
=
πµ
F M
Fig 2-1 Bolt tightening using wrench
The preload FM depends on friction coefficients and torque With hand tools only bolts M10 (10.9) and M12 (8.8) are tightened properly (preload of small bolts is usually too high and preload of big bolts is too small) /1/
References
1 Verho A Ruuviliitokset ja liikeruuvit Julkaisussa: Airila M et al Koneenosien suunnittelu, 2 painos
Porvoo: WSOY 1997 S 161 243 ISBN 951-0-20172-3
2 Decker K-H Maschinenelemente Gestaltung und Berechnung 12 Auflage München: Carl Hanser Verlag 1995 677 s ISBN 3-446-17966-6
3 VDI Richtlinie 2230 Blatt 1 Systematische Berechnung hochbeanspruchter Schraubenverbindungen
Düsseldorf: VDI-Verlag 1986 (Systematic calculation of high duty bolted joints)
4 Haberhauer H & Bodenstein F Maschinenelemente Gestaltung, Berechnung, Anwendung 10 Auflage
Berlin: Springer-Verlag 1996 626 s ISBN 3-540-60619-X
Trang 18Welded connections
Stresses in fillet weld
The stresses of the fillet weld are calculated for the minimum cross section A = al (a is the throat thickness (height of the cross section area) and l is the length of the weld) The mini-
mum cross section area is located at 45° to the legs The stresses of the area are divided into three components (fig 1)
a
Simple calculation method
In the simple calculation method the equation for the stress of the weld σw is regardless of the direction of the load
The calculation method is valid when 3 mm ≤ a ≤ 15 mm (SFS 2373) The length of the weld has also limitations
Mechanical properties of structural steels are in the table 1
Steel Thickness t / mm ReL / N/mm2 σsall / N/mm2 σwsall / N/mm2 Factor β
S 235 (Fe 37) .16
17 40 41
Trang 19Parallel keys
The torque that can be transmitted (the bearing action between the side of the key and the hub material) (fig 1)
where pn is the compressive stress of the hub
l is the length of the key
t2 the depth of the keyway in the hub
d the diameter of the shaft
The torque that can be transmitted (the bearing action between the side of the key and the
shaft material)
where pa is the compressive stress of the hub and t1 the depth of the keyway in the shaft
The compressive stress po is:
◊ the steel 150 N/mm2
◊ grey cast iron 90 N/mm2
◊ spheroidal graphite cast iron 110 N/mm2
The load factor is in the table 2
a
Fig 1. Parallel key (SFS 2636)
Table 1. Dimensions of keys (SFS 2636) Key length is in the standard
One-way load, heavy shocks
Reverse load, light shocks
Reverse load, heavy shocks
Trang 20Fig 1 An interference fit and stresses in interference fits
Nominal
> ≤ Devia-tions
tions
tions
tions
tions 3
Devia-+0,010 0
+0,020 +0,014
+0,024 +0,018
+0,012 0
+0,027 +0,019
+0,031 +0,023
+0,015 0
+0,032 +0,023
+0,037 +0,028
+0,060 +0,047
0 +0,035 +0,054
+0,041
+0,061 +0,048
+0,068 +0,055
30 40 +0,025 +0,059
+0,064 +0,048
+0,076 +0,060
+0,084 +0,068
0 +0,043 +0,070
+0,054
+0,086 +0,070
+0,097 +0,081
50 65 +0,030
+0,072 +0,053
+0,085 +0,066
+0,106 +0,087
+0,121 +0,102
0 +0,078 +0,059
+0,094 +0,075
+0,121 +0,102
+0,139 +0,120
80 100 +0,035
+0,093 +0,071
+0,113 +0,091
+0,146 +0,124
+0,168 +0,146
0 +0,101 +0,079
+0,126 +0,104
+0,166 +0,144
+0,194 +0,172
+0,117 +0,092
+0,147 +0,122
+0,195 +0,170
+0,227 +0,202
+0,040 0
+0,125 +0,100
+0,159 +0,134
+0,215 +0,190
+0,253 +0,228
+0,133 +0,108
+0,171 +0,146
+0,235 +0,210
+0,277 +0,252
+0,151 +0,122
+0,195 +0,166
+0,265 +0,236
+0,313 +0,284
Table 1. Interference fits (sizes mm)
Trang 21Spring design
1 Helical extension and compression springs
Common forms of helical springs are in fig 1 For springs with end treatments the total
num-ber of coils nt is bigger than the number of active coils n Other forms are possible such as
conical helical compression springs If the place for a spring is small it is possible to put eral helical springs within each other
sev-Fig 1 Helical compression springs (a) and extension spring (b)
The force of a helical spring is
where G is the shear modulus of elasticity
d the wire diameter
D the mean coil diameter
n the number of active coils
Trang 22where k is the stress concentration factor The stress concentration factor kw for the dynamic
load (the Wahl factor) is as a function of the spring index C = D/d in fig 2
The stress concentration factor for the static load is
C
k
2
11
C C
C
44
14
Fig 3. Forms of Belleville springs, the top and bottom of springs in group 3 are
cham-fered Belleville springs have three dimension classes A, B and C (DIN 2093)
The force-deflection relationship is nonlinear The allowed deflection f ≤ 0,75h0
Trang 23Fig 4. Deflection of Belleville spring
3 Rubber springs
The modulus of elasticity E and G (in shear) for rubber depends on the durometer hardness
number (e.g IRHD) Dynamically loaded rubber springs have higher stiffness than statically loaded A cylindrical rubber spring is frequently used as a compression spring (fig 5)
Fig 5 Cylindrical rubber spring with compression loading
Fig 6. Simple rubber shear spring Fig 7 Cylindrical rubber spring
(torsion loading)