Gọi I là điểm chính giữa cung AB, K là giao điểm của OI với AB.. a Chứng minh hai đờng thẳng OI và AC song song với nhau.. b Qua điểm A vẽ đờng thẳng song song với CI cắt đờng thẳng BI
Trang 1Sở giáo dục và đào tạo phú thọ
Kỳ thi tuyển sinh lớp 10 thpt năm học 2008-2009
Môn: Toán
Thời gian làm bài:120 phút, không kể thời gian giao đề.
(Đề thi có 01 trang)
Ng y thi: 26/6/2008 à
Câu 1(3,0 điểm).
a) Không sử dụng máy tính cầm tay hãy tính:
2 2 3
1 2
2 3
1
−
+
b) Giải phơng trình: x4 - 7x2+ 12 = 0.
c) Cho hàm số y = ax + b Tính a; b biết đồ thị hàm số đi qua điểm A(2; 3) và cắt trục hoành tại điểm có hoành độ bằng 21 .
Câu 2(2,0 điểm)
Cho phơng trình: x2+ 2x+ m = 0 (1), (m là tham số)
a) Giải phơng trình trên với m = -15.
b) Tìm m để phơng trình có hai nghiệm x1; x2 thỏa mãn 3x1+2x2 =1.
Câu 3(4,0 điểm)
Cho nửa đờng tròn tâm O đờng kính BC và dây cung BA ( A ≠ C) Gọi I là
điểm chính giữa cung AB, K là giao điểm của OI với AB.
a) Chứng minh hai đờng thẳng OI và AC song song với nhau.
b) Qua điểm A vẽ đờng thẳng song song với CI cắt đờng thẳng BI tại H Chứng minh tứ giác IHAK là tứ giác nội tiếp
c) Gọi P là giao điểm của đờng thẳng HK với BC, chứng minh đẳng thức:
AB2 = 2BC BP
Câu4(1,0 điểm):
Cho x; y là hai số thực dơng thỏa mãn x+y ≤34, tìm giá trị nhỏ nhất của biểu thức: A=x+y+1x+1y
- HếT
-Ghi chú: Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: Số báo danh:
Đề dự bị
Trang 2Kỳ thi tuyển sinh lớp 10 THPT năm học 2008-2009.
Hớng dẫn chấm thi môn toán ( Đề dự bị , ngày thi 26/6/2008)
Câu1
1 2
2 3
1
−
+ + =(33−+22 22)(+33−+22 22)
0,5
8 9
6 =
−
b Xét phơng trình: x
4 - 7x2+ 12 = 0
đặt y = x2 ( y≥ 0) đợc phơng trình: y2 - 7y + 12 = 0 0,5 Giải phơng trình tìm đợc y = 3 hoặc y = 4
Từ đó tìm đợc các nghiệm của phơng trình đã cho là:
x1= 3; x2 = - 3; x3 = 2; x4 = -2 0,5
c
Đồ thị hàm số y = ax + b đi qua điểm A(2; 3) ⇔2a + b = 3 (1)
cắt trục hoành tại điểm có hoành độ bằng
2
1 ⇔a + 2b = 0 (2) 0,5
Từ (1) và (2) ta có hệ phơng trình:
= +
=
+
0 2
3
2
b a
b a
hệ có nghiệm duy nhất a = 2; b = -1
0,5
Câu 2
a Với m =2 thì phơng trình (1) trở thành: x
2 + 2x - 15 = 0 0,5 Tìm đợc các nghiệm x1 = 3; x2 = - 5 0,5
b
x2+ 2x+ m = 0 (1) là phơng trình bậc hai
có: ∆/ = 1 - m
Phơng trình có nghiệm ⇔ 1 −m≥ 0 ⇔ m≤ 1
0,5
Có
= +
−=
+
1 2 3
2 2 1
2 1
x x
x
x
Tìm đợc x1 = 5 và tính đợc m = -35 ( thỏa mãn)
0,5
A
I H
P O
K
Trang 3Lời giải sơ lợc điểm
Câu3
a
Vì I là điểm chính giữa cung nhỏ AB nên OI⊥AB tại trung điểm K của
Có ∠BAC= 900 ( là góc nội tiếp chắn nửa đờng tròn)
Vậy OI // AC ( cùng vuông góc với AB) 0,5 b
Có ∠BIC = 900 ( là góc nội tiếp chắn nửa đờng tròn)
Suy ra CI⊥BI
Tứ giác AHIK có: ∠AHI +∠AKI = 900 +900 = 1800 nên nội tiếp đợc 0,5
c
Có ∠BKP = ∠HKA ( đối đỉnh)
∠HKA = ∠HIA ( do tứ giác AHIK nội tiếp)
∠HIA = ∠ACB ( do tứ giác BCAI nội tiếp) 0,25
nên hai tam giác BPK và BAC đồng dạng
mà BK AB =
2
2
2
AB AB
Câu 4
y x y x
A= + +1+1
9
5 ) 9
4 ( ) 9
4 (
y x y
y x
y x y
y x
x
+ + +
9
5 9
4 2 9
4
3
13 3 9
5 3
4 3
4
= + +
Dấu bằng xảy ra ⇔x = y=
3 2 Vậy A min = 133 ⇔x = y= 32 0,25