1. Trang chủ
  2. » Thể loại khác

AAE352Lecture_14_Aeroelastic_tailoring in Aircarft

12 332 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 553,93 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

AAE 556 Aeroelasticity Lecture 14 Aeroelastic tailoring 14-1 Purdue Aeroelasticity... Aeroelastic tailoring benefitsPurdue Aeroelasticity 14-2... Flexural axis β Definition - a line locu

Trang 1

AAE 556 Aeroelasticity Lecture 14

Aeroelastic tailoring

14-1

Purdue Aeroelasticity

Trang 2

Aeroelastic tailoring benefits

Purdue Aeroelasticity

14-2

Trang 3

Purdue Aeroelasticity

14-3

Apparatus-stiffness tailoring model

θ

K 1

view A-A (looking inboard toward root)

d sin γ f cosγ

δ 2 δ 1

φ

view B-B (looking upstream,chordwise)

d cos γ

K 2 K 1

wing

f sin γ

view B-B (looking upstream,

chordwise)

Trang 4

Stiffness tailoring model

y

V

V cos Λ Λ

φ

θ

γ

K1

f

c

B

B

A A

γ

Purdue Aeroelasticity

=

+

+

=

θ

φ θ

φ θ

φ

θ φ

θ

φ

θ

φ γ γ

γ γ

γ γ

γ

γ θ

φ

M

M K

K K

K

K K

K

K

2 2

cos sin

cos sin

) (

cos sin

) (

sin

cos ]

[

Trang 5

Flexural axis

β

Definition - a line (locus of points) along which the wing structure stream-wise angle of attack is zero when a discrete load is applied there – with the

“wind” off

=

o

o

Px

Py M

M

θ

φ

xo

yo





 −

o

o y

x

1 tan

β

Purdue Aeroelasticity

Λ

Trang 6

Purdue Aeroelasticity

14-6

Structural angular displacements

θ φ

cos sin

sin cos2 K 2 y o K K x o

K K

K

P

− +

+

=

[( ) sin γ cos γ ( cos2 γ sin2 γ )]

θ φ

K K

x y

K

K K

K

P

o

=

Solve for the flexural axis coordinates by setting the chordwise elastic angle of attack to zero

0 tan Λ =

θE

Trang 7

Purdue Aeroelasticity

14-7

Flexural axis with cross-coupling

stiffnesses

0

θE

P

K y K x K y K x

K Kθ φ

tan tan

o o

Trang 8

Purdue Aeroelasticity

14-8

Plug expressions for stiffness terms to

get the flexural axis position

o

x y

β = − ÷

Λ

− +

+

Λ +

+

=

tan cos

sin ) (

sin cos

tan )

sin cos

( cos

sin )

(

2 2

2 2

γ γ

γ γ

γ γ

γ γ

θ φ

θ φ

φ θ

θ

φ

K K

K K

K K

K

K y

x

o o

φ

θ

K

K

R =

Λ

− +

Λ

− +

=

=

tan cos

sin ) 1

( sin

) 1

( 1

tan ] cos

) 1

( 1 [ cos

sin ) 1

(

2

γ γ

γ

γ γ

γ β

R R

R

R y

x

o o

Trang 9

Purdue Aeroelasticity

14-9

example

90 75 60 45 30 15 0 -15 -30 -45 -60 -75 -90 -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

flexural axis angle vs.

struct ural principal axis angle

structural sweep angle (degrees)

30 deg.

sweepback

30 deg.

sweepforward

15 deg.

sweepback

zero sweep

15 deg.

sweepforward

When wing is sweptforward increase

divergence speed

by moving the β

axis forward (plus)

γ

β

forward

aft/back

forward aft/back

Wash-out laminate Increase divergence

Wash-in laminate Increase lift

Trang 10

Purdue Aeroelasticity

14-10

Divergence

y

V

V cos Λ Λ

φ

θ

γ

K 1

K 2 d f

c

B B

A A

γ

q D =

Kθ Sea o

cos2Λ (1−R)

2 tanΛ − b

2e

   sin2γ + 1 −Rb

2e tanΛ

   +(R−1) 1  + 2e b tanΛ  sin2γ

φ

θ

K

K

R =

(1 − R)

2 tanΛCRb

2e

   sin 2γ + 1 − Rb

2e tanΛCR

Get rid of divergence

ΛCR = tan−1

1 + b

2e

(R− 1)

2 sin 2γ +(R− 1)sin2 γ

R b

2e + (R −1)

2 sin2γ − b

2e (R − 1)sin2γ

Trang 11

Purdue Aeroelasticity

14-11

Example (page 171)

b

-30 -20 -10 0 10 20 30 40

structural orientation angle, γ (degrees)

ΛC

0 30 60 90 -90 -60 -30

b/c=6 e/c=0.3

e/c=0.1

5.71deg

divergence impossible

1 3

K R

K

θ φ

= =

γ

Wash-out laminate Increase divergence

Wash-in laminate Increase lift

Wash-in laminate Increase lift

Wash-out laminate Increase divergence

Trang 12

Purdue Aeroelasticity

14-12

Wings with sweep angles above the curves shown

will not diverge.

K R

K

θ φ

=

6 0.1

b c e c

=

=

Ngày đăng: 05/08/2016, 01:00

w