1. Trang chủ
  2. » Giáo án - Bài giảng

THI TOÁN L2 2011(TT TÔ HOÀNG)

4 203 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 2,36 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

TiR UN{;'rertry {,.T"f,}.F[ g* m*,&,jq*

sd +q' - Hq;ri zq}4 F-fr'F'F{ANF{ HGHI

ilT : G,$,22,453 3 3{t - {},# "2:2# t E F 2#

a-#E TEXE TFEti *)AE ffiSC (*qt 2)

na$ru T*€I: T$AN

Ky thi rcgdy:27183I201i T'hbi giarc ldm !;di : 180 pk*t

-:i

pnAru emur*G fHa rAr cA eAc rmisrnr-i

(lau I (Z,fi diArn) Cho y=xr-2(m+i )x2+mr+nr+3 (l;, l) Khao sdi & vC d0 thi lrirnr:,0 khi nr=O

2) ain sir dd thi (1) cit ox rtri + diem c6 hoirnh dQ x,, x2, xr, xo chfng minh rang:

xljrl + irr-t1 +.r1.\:.1 +.r).tr +,y,_rr 1 r ,-r., { $ Cau II {2,t} diAm)

II Ciai phLr,rrlg llinh : sirr' l.r.uti5g.v+sinr3-u= lrin''t.rin 9"

222

2) Girii he iren iP,:

ti _r .,ll

l1l 1-.1 '.=

-{lnu ttl {l.S didrn}

Cdu IV (1,0 diilmr

Lang tlu ABC.A'B'C' cd cirirrr cil-Ldng cao FI ke tr.lr A' 1) trung didm BC 6i = 600, AB=a

AC=2a A.'A=2a, tfnh khoring c{ch gifra A'A & BC

Cau V {1,0 di6m) Gidi phrrong ri'inh: r,f,+qI \' | ^[x1

pniix nrEuo ( rhi sinh chi duoc lirm phdn A hoac phdn B )

Ciu Vila (2,0 diiim) i)Trong h0 rOy cho hinh binh hlnh ABCD c6 C(-4,-5) duong cao (AH): x+Zy-2=A.dudng

ch6o (BD): 8x-y-3=0, tim toii clo A, B, D 2)Trong h0 Oxyz viet phuong trinh mat phing (Q) song song mht phing (F): x+y-22+3=0 sao

cho (Q) cat hai dudng thlng 1ct,): ! =':t = 1e(d,): {-,1 = v :}-= i theo doan AB=9

2 I I 2 t"-"

(A ed,,13

= d, )

Cflu VIIa (1,0 didrn) Girii phuong trinh: logi -r + (.r - l2)log,x + I I -.r = 0

Cau VIb (2,0.tiem)

1) Trong he xOy cho hinh binli hanh ABCD c6 B(1,5), dudng cao (AH): x+2y-2=0 phAn

gi6c i-n lii x-y- l=0 'fim roir do A, C, D

I

r - .1,' /a \ .lJx 7r\

srnl - |

tj \ ! a]t/

4,r

) I J

{)

rffi

{r&

4q$

ft,, w,i

u

rty#

{

-s

rS

,, tR.

T$

& -'*+

N

S"C

&

{EF

*S

o.ip

€b

,f ,rflt

*'*J

d\

(o z\

srnl -+ - I

l? al

2)Trong h0 Oxyz ,, iet phrLcruu rrlnh mat phang (Q) r @,+ =

cdu (s): x2+y2+22 -2;<+4y-62- I l=0 theo dudng rrbn (c) c6 b6n kfnh bang 3

CAu VIIb (1,0 di0m)

Cho s0 phuc z thod mln : l.i- :' = 3(- I +2i), rtm jzl +lrl' +lrl'

0'Cdn bO r:oi rhi khilng gitii rhich gi th\m

-Thi thft,lrtt I nsi,r iQn4l20l I drt rudi nphv I6/06l?0l I

Trang 2

-t e

EEBIqFII€G lEbAFg V& ffiARS ,&ro EqFAH

g'E{F TE{[i *]&g E{{}C S#T {X

r

_;_ _ _

i;:

r

025

1i

,r

\A. 0+ 0 0 -f

- +41

\ '\

"'

- -

4 t"

0.5

I

;i't = i) ,,i,, : i'i 2x) y 2 ((1; 'l){D: It

SR'l': * -y'= 4lt 4-r =.-l.ti-.,;] -i): Ct+,).i

I

L

) i,

-

t-)r

-

I

I no riii (C') n Oy = {0,2);

(C)nOx-Q

U.i)

0.7lt

a.25

n ti

di6m phdn biOt khi phuong trinh

c6 2 nghiQrn duong phin biQt

rfr^ (r), kLt dilr, J-."

-J+ =0

N,tx3 + xtx4 + x)x3 + l,x4 + x.,xa) = ri + 4 + xi +-"ut ) 0

Edt t =xt >0 thi do thi (1) c'at ox b 4,

f -2(m+ 1)/ + m' + nt +2 = 0 (2) Phai t

lL':*-l>0

I

€ l,S =2(nt+ l) > 0 <> in > 1

I

lP = rt2 + m+2> 0

G" rr,/, h, ttghf*;"""g Pha" btcJ;

trinh xl =1, vi xt =tz + xr +.f,' r.Y, *

Ta l4i c6: (x, + \ +x, + xu)t -2(xtx, + t

=0-ZT>A=T 3A

2

i

I

I

I

I

I

iiI

I

0.5

Pt e (L -cos4x)cos6x+ I -cos6x = rin* rinI

22

<> 1-

f,korzr+ cosl0x) = jt.otr-cos10,r) <> cos2x+cosx-2

D+

IL

2cos2

'-.

lr'

- l_-,

L-x+cosx-3

1 y'+9

xz+{v=.y2

COSx=1

-7 ,IJJ

t^ - y

It^

l-6x'+

-g

12x =3

k2

) v'

lf)

+

k

3

e

v = nt - 6xt +l2x -B = y3 +3y2 +3y +l 0.5

Trang 3

L:-, r - l

ilAL t -= ]+ I rhi i - f:ln rr 2tlr =ZJt+rl,r; t- i)dt:J{ tcos2 t -')\dr

I -' rgeli6m cua ACthitirgidthi€tsuy ra BC:a-/i,Znc:900=*, HK,llC.l{A'dli

r r uol K la irtu

m6t vu6ng g6c nhau n€n xem I!(CI,0,0),AFI ='[AE + THt

L?!/ _, ,,,,0trJ -, L- \ : , ru), 0) e {}x

2, ?_

t:

KQ.;,a) eo1,; o(+

lrrc1L!!,o,as L I " N,f

Xem ilaa'c'r'1 = (0, 3,2) =>

11

-tL 1 - /L

-')

.L

72

(t.25

*Tu ,4 B * B'(0,

tl

4.7 5

1.t

3y +22 = 0 =+ d:(AA", BC) = d(A, BB C C') : -:*

vti

EK: x >2.Taco pt€>

r : Vx,+91-10=Vx- Z-r+x= -g€-#- =-Q ,+(-r-3)(x+ j)

"lxt +91 +i0 tJx-2+l

0.5

zd

oiu aa (-2, i) = BC

, -5) vir vu6ng gbc v

+4)-t-(y+5)=0=

l-zr+y-3=0

l+

\-L8t-y-i=0

ltc diqua di€m C(-4

c6 phuorng trinh -2(x

I toa dQ B la nghiCm hQ

I

B(1,5)

Trang 4

Al2 -,) tt,{t}.; Il_ , - o,!tf)e 8x - t' - ] = i-)

.Ek: x > 0 DAi / = log, x, phuorrg trinh tro thirnh:

t(I

l rt * (x-12)t+11-r=0, a+b+c=0 suy ra hodc log, -r=1hcdc log,x=11-x

|* log,r=i=x='l(nhan)

t-| * l"g, -r - I I -x=)x =S lirnghi0m duy nh6t vi VT d,3ngbi6n VP nghich bidn

vib I2d

I eC ai qua ciiem B(1,5) vA vuong goc v6'i tt.-,,(-2,1.=+ BC

, {, A'^ *

I

toa a0 c ld righi€m n*

trl, i, = u " -> C(-4,-5|

I Cqi ,a la diim dOixrmg cuaB quaphAn giitc x-3t-l=O(d),BA n d = K (KB) rii qua B vi

I {"-'-:=^o=0= xf1,trl= A(6,0) Do A=C.4 r-t AH ndn toadol tanghiQm hQ

lf"-y-I=0 '2'2'

ll'-zv' 6=o=o

=A(4.-t)

Ll"?41-o

I n=ID=D(-1,-ll)

0.5

0.25

Q.25

0.5

(,S) c6 tltm I(7,-2,3), fi = 5

(Q) co dang 2x -2y + z + m = 0, d{l,Q) = 4 0,5

12+1+3+n',1

-J

m+9 =12 _-r,

m+9 = -1'2

m=3

-i m=-2I

(Q):2x*2y+z+3=A (Q):2x -2y + z -21= A

0.5

VIIb 1d

i

Gi6 sit z = x* yi

regt=.p.t _1- - -i _ - l ll" rlx" +y-.

lY=3

(x,veR)'

I Er;.]

-2(* - !i) = -3+6i <3' i v^' )/

lzv=s

A4 t1 t1:

lx/-r:l "l-l ) €>1 2

f"' +9 = 12x-3)2 L:r' -l2r = 0

=l'l+ltl' +lrl' =5+25+125 =155

0.5

- Thi thfi dot 3 nsdy 3010412011

- Thi thit rlrtr ntdi nadv I6106120l I

Ngày đăng: 16/11/2015, 20:33

w