1. Trang chủ
  2. » Giáo án - Bài giảng

bai tap hay

5 106 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 298,51 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Khảo sát sự biến thiên và vẽ đồ thị của hàm số Cm với m 1.. Tìm tham số m để hàm số Cm có ba cực trị tạo thành tam giác đều.. Trên đường thẳng vuông góc với mặt phẳng P tại H, lấy điểm

Trang 1

TRƯỜNG THPT LÝ THƯỜNG KIỆT

Năm học : 2010 – 2011

ĐỀ THI THỬ ĐẠI HỌC NĂM 2011 LẦN THỨ 4

Môn : TOÁN - Khối A

Thời gian làm bài : 180 phút, không kể thời gian phát đề

I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH

Câu I (2.0 điểm)

Cho hàm y x4 2m x2 2 1 (Cm), với m là tham số

1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (Cm) với m 1

2 Tìm tham số m để hàm số (Cm) có ba cực trị tạo thành tam giác đều

Câu II (2.0 điểm)

1 Giải phương trình:

3

1 os2 1 os

3

1 os2 1 sin

2 Giải phương trình: x25x2 2x470.

Câu III (1.0 điểm) Tính tích phân:

4 s inx 2 cos

3

0 s inx cos

x

x

 

Câu IV (1.0 điểm)

Cho hình thang ABCD nằm trong mặt phẳng (P), có  BAD CDA  90 ,0 ABADa CD,  2 , (a a 0) Gọi H là hình chiếu vuông góc của D trên AC Trên đường thẳng vuông góc với mặt phẳng (P) tại H, lấy điểm S sao cho góc tạo bởi SC và (P) là 600 Tính thể tích khối chóp S.ABCD theo a

Câu V (1.0 điểm) Tìm các giá trị của m để phương trình sau có đúng hai nghiệm thực, phân biệt

mx x  x  

II PHẦN RIÊNG

Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B)

A Theo chương trình Chuẩn

Câu VI.a (2.0 điểm)

1 Trong không gian với hệ trục tọa độ Oxyz, cho (1; 6; 2)v

và mặt phẳng   :x4y z 110 Viết phương trình mặt phẳng song song hoặc chứa giá của (1; 6; 2)v

và vuông góc với  , đồng thời tiếp xúc với mặt cầu 2 2 2

( ) :S xyz 2x6y4z  2 0

2 Trong mặt phẳng (Oxy), cho điểm C ( 2;5)và đường thẳng   : 3x4y  4 0

Tìm trên   hai điểm A, B đối xứng với nhau qua (2; )5

2

I và diện tích tam giác ABC bằng 15

Câu VII.a (1.0 điểm) Giải bất phương trình : 2 1

x

x  

B Theo chương trình Nâng cao

Câu VI.b (2.0 điểm)

1 Trong hệ trục Oxyz, cho A( 4;1;1), ( 2;1; 0) B  và mặt cầu ( ) : 12  12  12 1

9

S x  y  z  Viết phương trình mặt phẳng chứa đường thẳng AB và tiếp xúc với mặt cầu (S)

2 Trong mặt phẳng (Oxy), cho tam giác ABC vuông tại A, B( 4; 0), (4; 0) C Gọi I, r là tâm và bán

kính đường tròn nội tiếp tam giác ABC Tìm tọa độ điểm I, biết r  1

Câu VII.b (1.0 điểm) Giải bất phương trình : log4 (4 3) log 2 2

2

x

 

 

 

- -Hết -

Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm

ĐỀ THI CHÍNH THỨC

http://www.VNMATH.com

Trang 2

HƯỚNG DẪN CHẤM TOÁN THI THỬ LẦN 4

ĐIỂM

TP

TỔNG ĐIỂM

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số 4 2

y xx

2 Tìm tham số m để hàm số có ba cực trị tạo thành tam giác đều

y   xm xxxm g x   xm

ĐK có ba cực trị

2

0

(0) 0

m m

g

+Tìm được các điểm cực trị A(0;1), (Bm;1m4), ( ;1C mm4) 0,25

I

3

m

AB AC

m

II 1

Giải phương trình:

3

1 os2 1 os

3

1 os2 1 sin

+ĐK:

2

, ( , )

2

c x

 

 

 (2)

(1) 1 cos )(s inx x cos )(s inxx cosxs inx.cosx 0

0,25

cos 1

4

s inx cos s inx.cos 0

x x

 +s inxcosxs inx.cosx0 (4) Đặt

2 1

t

1 2 ( )

t

   

 

  



Tìm được các họ nghiệm

2

, ( , , ) 4

2 1

x k

0,5

+So sánh ĐK và kết luận đúng các họ nghiệm

2

, ( , , ) 4

2 1

x k

    

1

2 Giải phương trình: 2  

xxx   +ĐK x  2

Đặt t 2x 4 (t 0)

1

http://www.VNMATH.com

Trang 3

Phương trình có dạng 4 2

0 4

2 6 ( )

t t

t

 

   

   

0,5

Tìm đúng các nghiệm và so sánh điều kiện ta được x 2,x6,x 3 2 6 0,5 III

Tính tích phân:

4 s inx 2 cos

3

0 s inx cos

x

x

 

Ta có

2

0 s inx cos 0 s inx cos 0 s inx cos

Xét

,

0 s inx cos 0 s inx cos

x

Tính

4

2 0

4

dx

c x

Tính

4

0

4 2(s inx cos ) 4

N M

x x

0,5

1 Tính được 1 3 2

8

IV Tính thể tích khối chóp S.ABCD 1

5 5

+

3

5

S ABCD

a

VI Tìm tham số để pt   2

mx x  x   có 2 nghiệm pb

+ĐK x   1;1

Đặt t 1x 1x

'

2

2 1

t

x

 Tìm được điều kiện t 2; 2

 , mỗi t 2; 2

 ta được 2 giá trị x   1;1

0,25

YCBT

2

7 :

3

t

pt m

t

 có đúng một nghiệm t 2; 2

0,25

Tìm được 3; 5

5 3 2

m  

VIa

1 Viết phương trình mặt phẳng

+Gọi (P) là mặt phẳng cần tìm, suy ra (P) có một VTPT (2; 1; 2)n

 Phương trình mặt phẳng (P) có dạng: 2x y 2zm0 0,5

+Đkiện tiếp xúc và tìm được hai nghiệm hình:

( ) : 2P x y 2z 3 0, ( ) : 2P x y 2z21 0 0,5

1

http://www.VNMATH.com

Trang 4

VIa 2 Tìm hai điểm A, B

+Tìm được A a(4 ;1 3 ), (4 4 ; 4 3 ) a BaaAB5 4a24a1 0,25 +Tính được 1 ( , ) 11 2 1

2

+YCBT

13 11

11 2 1 15

2 11

a a

a

  



+ĐS: (52 50; ), ( 8 5; )

11 11 11 11

A B  hoặc ( 8 5; ), (52 50; )

11 11 11 11

0,5

1 VIIa

Giải bất phương trình : 2 1

x

x   (1)

+ĐK x 2 (2) +Với đk (2),

1

2

x

x x

 

0,25

+Lập bảng xét dấu của biểu thức

1

( )

2

f x

x

  

Tìm được tập nghiệm S   ;0  2; 

0,75

1 VIb

1 Viết phương trình mặt phẳng 1

+Gọi (P) mặt phẳng cần xác định và có một VTPT 2 2 2

n a b c a bc

(P): ax by cz2a b 0

ĐK cần để (P) chứa AB:  AB n 0c2a

0,25

http://www.VNMATH.com

Trang 5

+ĐK tiếp xúc

220

( , ( ))

b a

a c

d I P R

 

0,25 +ĐS:

( ) :P x 220y2z 2 2200, ( ) :P x 220y2z 2 220 0 0,5

2 Tìm tọa độ điểm I

+Đặt ABx AC, y x, ( 0,y0,xy8), giả sử xy

+Tìm được ( 7; 7), ( 7; )7

1 VIIb

Giải bất phương trình log4 (4 3) log 2 2

2

x

 

 

  +Đkiện 0, 1

4

xx

Đặt tlog4x, ta được BPT

2

0 1

t t

0,25

ĐS: 0;1  1

4

S  

Chú ý: học sinh làm theo cách gải khác và đúng với đáp án, đề nghị giám khảo chấm điểm tối đa

http://www.VNMATH.com

Ngày đăng: 07/11/2015, 19:03

Xem thêm

w