1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

The utilization of rice husk silica as a catalyst

13 639 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 1,61 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Việc sử dụng trấu silica như một chất xúc tác. Đây là nghiên cứu mới của ông Đinh Tấn Thành, Công ty TNHH Cao su Kỹ thuật Tiến Bộ, cùng nhóm cộng sự sản xuất silica gel khí từ vỏ trấu, góp phần làm giảm ô nhiễm môi trường, tiết kiệm chi phí. Quy trình chế tạo silica aerogel được thực hiện theo các bước: Vỏ trấu sau khi được rửa sạch và sấy khô để loại bỏ tạp chất, sẽ được tiến hành xử lý làm giảm thành phần kim loại sau đó nung hai cấp ở 500oC và 700oC. Quy trình xử lý tạo ra silica vô định hình, đạt mức độ tinh khiết cao, thành phần silica trong tro trấu trên 90%. Ngoài ra, thành phần oxit kim loại khác với hàm lượng không đáng kể. Sau đó điều chế dung dịch silicat natri. Từ silica thu được ở bước 1, hòa tan với dung dịch sút để điều chế dung dịch silicat natri 6 và 8% Si02. Tiếp đến tạo Silica sol, chất này được tạo thành từ dung dịch silicat natri và axit citric có pH 3,5. Sau đó tạo gel. Silica sol dần dần thành gel nước và được ủ ở nhiệt độ 60oC trong 24 giờ giúp ổn định cấu trúc gel. Gel nước sau khi ủ, được rửa bằng nước nhiều lần loại bỏ muối citrate có trong gel trước khi biến tính bằng hỗn hợp tetramethyl chloro silane (TMCS). Cuối cùng là sấy khô tự nhiên và xử lý nhiệt. Gel sau khi biến tính được để bay hơi tự nhiên ở nhiệt độ thường, sau đó xử lý nhiệt ở 200oC để tạo ra silica aerogel khí. Theo nhóm nghiên cứu, do có diện tích bề mặt cao và cấu trúc xốp nhẹ, vật liệu này có thể dùng làm chất cảm biến, chất xúc tác cho một số phản ứng hóa học, ứng dụng trong việc chế tạo tế bào quang điện, vật liệu cách nhiệt, cách âm và các vật liệu cao cấp khác...

Trang 1

jo u r n al h om epa ge :w w w e l s e v i e r c o m / l oc a t e / c a t t o d

Review

Farook Adama,∗, Jimmy Nelson Appaturia, Anwar Iqbalb

a School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

b Kulliyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

a r t i c l e i n f o

Article history:

Received 15 October 2011

Received in revised form 18 April 2012

Accepted 21 April 2012

Available online 15 June 2012

Keywords:

Rice husk

Biomass

Silica

Catalyst

Transition metal

a b s t r a c t

Inthisreviewarticle,wereporttherecentdevelopmentandutilizationofsilicafromricehusk(RH) fortheimmobilizationoftransitionmetalsandorganicmoieties.Siliconprecursorwasobtainedinthe formofsodiumsilicateandasricehuskash(RHA).Sodiumsilicatewasobtainedbydirectsilica extrac-tionfromricehuskviaasolventextractionmethodwhilericehuskashwasobtainedbypyrolyzing theRHintherangeof500–800◦Cfor5–6h.Transitionmetalswereimmobilizedintothesilicamatrix viathesol–geltechniquewhiletheorganicmoietieswereincorporatedusingagraftingmethod 3-(Chloropropyl)triethoxy-silane(CPTES)wasusedasabridgetolinktheorganicmoietiestothesilica matrix.Allthecatalystsexhibitedgoodphysicalandcatalyticpotentialinvariousreactions

© 2012 Elsevier B.V All rights reserved

Contents

1 Introduction 3

2 Synthesismethodologies 4

2.1 Silicafromricehusk:bycalcinationandsolventextraction 4

2.2 Modificationofsilica:incorporationofmetalandimmobilizationoforganic 4

3 Transitionmetal-basedcatalystsfromricehusk 4

3.1 Chromium 4

3.2 Molybdenum 5

3.3 Tungsten 5

3.4 Iron 6

3.5 Cobalt 7

4 Metalbasedcatalystfromricehuskash 7

4.1 Friedel–Craftsreactionusingironcatalysts 7

4.2 Ricehuskashsupportedrutheniumcatalyst 7

4.3 RHAsupportedgallium,indium,ironandaluminumforthebenzylationofxylenesandbenzene 8

4.4 RHAsupportedaluminum,galliumandindiumforthetert-butylationofaromatics 8

4.5 Photocatalysisreactionusingsilica–tinnanotubes 8

4.6 OxidationofbenzeneoverbimetallicCu–Cesilicacatalysts 9

4.7 Benzoylationofp-xyleneonironsilicacatalyst 9

4.8 SynthesisofnanocrystallinezeoliteLfromRHA 9

5 Organic–inorganichybridcatalysts 10

5.1 One-potsynthesisviasol–gelmethod 10

5.2 Graftingmethod 11

5.3 Esterificationusingorganic–inorganichybridcatalysts 11

5.4 Silicafromricehuskashimmobilizedwith7-amino-1-naphthalenesulfonicacid 11

5.5 Silicafromricehuskashimmobilizedwithsulfanilicacid 12

∗ Corresponding author Tel.: +60 46533567; fax: +60 46574854.

E-mail addresses: farook@usm.my , farook dr@yahoo.com (F Adam).

0920-5861/$ – see front matter © 2012 Elsevier B.V All rights reserved.

Trang 2

References 13

1 Introduction

Silicaisthemostabundantoxideintheearth’scrust,yetdespite

thisabundance,silicaispredominantlymadebysyntheticmeans

foritsuseintechnologicalapplicationsanditisoneofthevaluable

inorganicmultipurposechemicalcompounds[1]

Althoughsilicahasasimplechemicalformula(SiO2),itcanexist

inavarietyofforms,eachwithitsownstructuralcharacteristics,as

wellaschemicalandphysicalproperties.Silicacanexistintheform

ofgel,crystallineandamorphousmaterial.Generally,thestructure

ofSiO2isbaseduponaSiO4tetrahedron,whereeachsiliconatomis

bondedtofouroxygenatomsandeachoxygenatomisboundtotwo

siliconatoms.Thesurfaceofsilicaconsistsoftwotypesoffunctional

group:silanolgroups(Si O H)andsiloxanegroups(Si O Si).The

silanolgroupsarethelocusofactivityforanyprocess-takingplace

onthesurface,whilethesiloxanesitesareconsiderednon-reactive

[1].Porousamorphoussilicacontainsthreetypesofsilanolonits

surface:isolated,geminalandvicinal[2]

Theunequaldistributionofthesilanolsinthematrix,

result-ingfrom irregular packingof the SiO4 tetrahedralunit aswell

astheincompletecondensation,resultsinaheterogeneous

sur-face(i.e.,non-uniformityinthedispersionofsilanolgroups)for

synthesizedsilica.Thevarioussilanolscanhavedifferent

adsorp-tionactivitiesandcurrentknowledgeindicatesthattheisolated

silanolsare themorereactivespecies Withincreasing

temper-atureofheattreatment, thesilicasurfacebecomeshydrophobic

duetothecondensationofsurfacehydroxylgroupsresultingin

theformationofsiloxanebridges.Commercialsilicamanufacture

is a multi-stepprocess involvinghighheat and pressure,

mak-ingit less costeffective and not very environmentally friendly

[3]

Thediscoveryofmesoporousmaterialsbyresearchersfromthe

MobilOilCompanyinitiatedanintenseresearcheffortresulting

inmorethan3000publications,especially intheareaof

meso-porousmaterialsmadefromsilica.Theinertnessofsilicaaidedwith

theeaseofstructuraltailoringhasmadeitagoodinorganic

mate-rialonwhichtosupportotherorganicandinorganicmoieties[4]

Inmostpublishedreports,themajorsilicaprecursorsusedwere

commerciallymadealkoxysilane compounds suchas

tetraethy-lorthosilicate(TEOS),sodiumsilicateandtetramethylorthosilicate

[5].Nakashimaetal reportedthatacute exposuretoTEOS can

leadtodeath.Thus,thereisaneedtofindasafer,lessexpensive

andmoreenvironmentallyfriendlysilicaprecursor[6].Naturally

occurringsilicas,especiallythosefoundinagrowaste,canprovide

analternativesourcetoreplacecommercialsilicaprecursors.Rice

husksawdust[7],andrapeseedstalk[8]areamongthewidely

stud-iedagrowasteswhichhavebeenconvertedintomorevaluableend

products

Rice(OryzasativaL.)isaprimarysourceoffoodforbillionsof

peopleanditcovers1%oftheearth’ssurface.Globally,

approxi-mately600milliontonnesofriceareproducedeachyear.Forevery

1000kgofpaddymilled,about220kg(22%)ofhuskisproduced

[9].Ricehusk(RH)isthereforeanagriculturalresidueabundantly

availableinriceproducingcountries.Muchofthehuskproduced

fromtheprocessingofriceiseitherburntordumpedaswaste.RHis

composedof20%ash,38%cellulose,22%lignin,18%pentoseand2%

otherorganiccomponents[10,11].Eventhoughsomeofthishusk

isconvertedintoendproductssuchasfeedstock[12]and

adsor-bent[13]mostisburntopenly,causingenvironmentalandhealth

Scheme 1.Various utilizations of the rice husk silica.

problemsespeciallyinpooranddevelopingcountries.Therefore,it

isveryimportanttofindpathwaystofullyutilizethericehusk Silicacanbepyrolyzedatelevatedtemperaturetoformricehusk ash(RHA)oritcanbeextractedfromricehuskintheformofsodium silicatebyusingasolventextractionmethod.Inmostapplications, ricehuskashismorefavorablecomparedtoricehusk.Ricehusk ashisageneraltermdescribingallformsoftheashproducedfrom burningricehusk.Inpractice,theformofashobtainedvaries con-siderablyaccordingtotheburningtemperature.Thesilicaintheash undergoesstructuraltransformationsdependingontheconditions (time,temperature,etc.)ofcombustion.At550–800◦Camorphous ashisformedandattemperaturesgreaterthanthis,crystallineash

isformed[14].Thesetypesofsilicahavedifferentpropertiesand

itisimportanttoproduceashofthecorrectspecificationforthe particularenduse(seeScheme1).Eventhoughtheuseofsodium silicateextractedfromricehuskusingsolventisstilllimited,our studieshaveshownthatitcanbeutilizedformanypurposes Tran-sitionmetalscaneasilybesupportedonsilicaviasodiumsilicate extractedfromricehusk.Thesetransformedmetalsilicateshave goodpotentialasheterogeneouscatalysts

Severalresearchershavereporteddifferenttypesofsynthesis procedurestopreparemesoporoussilicafromricehuskfor incor-porationofmetals.Tsayetal.[15]haveusedaluminumsulfate, nickel nitrate and aqueous ammonia to prepareNi/RHA–Al2O3

via simple impregnation and ion exchange methods Chen

et al [16] have reported the preparation Cu/RHA using the deposition–precipitationmethodandcalcinationat673K,andthe materialwastested for partialoxidationof methanol(POM)to obtainH2.Changetal.[17]describedthesynthesisofCu/RHAfor thedehydrogenationofethanolusingcoppernitratetrihydrateas thecoppersourceviaanincipientwetnessimpregnationroute Duetothehighinterestinusingricehusksilicainadsorptionand catalysis,severalstudieshavebeencarriedoutonthesynthesis

ofmesoporousmolecularsieveM41Smaterials.Grisdanuraketal

[18] reported the synthesis of MCM-41 mesoporous materials usingCTABasstructure-directingagent(SDA),fortheadsorption

Trang 3

of chlorinated volatile organic compounds and photocatalytic

degradationof herbicide (alachlor)[19] and

tetramethylammo-nium[20].Someresearchershadalsouseddirecthydrothermal

synthesis[21]andgasificationprocesses[22]toobtainMCM-41

fromrice husk ash.In 2009,Janget al.[23] synthesizedhighly

siliceous MCM-48fromRHA usinga cationicneutral surfactant

mixtureasthestructure-directingtemplate.Thematerialswere

usedforCO2adsorption.Todate,variousparameterssuchasthe

sourceofsilica,effectofsurfactantandconcentration,temperature

andpHhavebeenconsideredasmajorpivotalfactorsthat

influ-encetheformationofstructuralmaterialwiththedesiredporesize

distributionforcatalyticstudies.Inthepresentarticle,wereview

work performed on the use of silica, obtained from rice husk

eitherviacombustionorbysolventextraction,tosupportvarious

transitionmetalsandorganicmoietiesforheterogeneouscatalysis

2 Synthesis methodologies

2.1 Silicafromricehusk:bycalcinationandsolventextraction

Initially,adhereddirtandsoilonRHcanberemovedbywashing

withplentyoftapwaterandrinsingwithdistilledwater.The

metal-licimpuritiesinRHcanbereducedtonegligiblelevelsbystirring

withnitricacid[24]orrefluxingwithhydrochloricacid[17].Direct

extractionofsilicacanbeperformedbystirringtheacidtreated

RH(afterdrying)withsodiumhydroxidesolution.Duringthis

pro-cess,silicaisextractedintheformofsodiumsilicatetogetherwith

otherorganicmoieties,accordingtothemethodpatentedbyAdam

andFua[25].Thesodiumsilicateobtainedisconvertedtosilicaby

addingsuitableamountsofmineralacid

Ricehuskash(RHA)canbeobtainedbypyrolyzingtheRHat

temperaturesrangingfrom500◦Cto800◦Cfor5–6hinamuffle

furnace.TheRHAwasthendissolvedusingsodiumhydroxideto

obtainsodiumsilicate.Modificationswereundertakentothis

pro-cedureaccordingtocatalystpreparationparameters.Thus,Chang

etal.[17]pyrolyzedRHat900◦Cfor1hinafurnaceandN2flow

toobtainablackcrudeproduct,whichwasthenpyrolyzedagainin

airunderthesameconditionstoobtainawhiteash.In2006,

Chan-drasekharetal.[26]studiedcriticallytheeffectofacidtreatment,

calcinationtemperatureandtherateofheatingofRHandshowed

thattheseparametersinfluencedthesurfacearea,reactivitytoward

limeandbrightnessoftheash

2.2 Modificationofsilica:incorporationofmetaland

immobilizationoforganic

SilicaprecipitationfromRH andframework transitionmetal

incorporation was undertaken using the sol–gel technique A

greaterdegreeofcontrolonthefinalpropertiesofacatalystcan

beobtainedbyusingthesol–geltechnique,whichisduetothe

abilityofthemetalprecursortobemixedhomogeneouslywiththe

molecularprecursorofthesupport[27].Metaloxidecanbetrapped

withinthepolymerizinggel,permittingprecipitationfromsolution

wherethemetalioncanoccupyneighboringpositionsinthegel

matrix.Furtherprocessingandcalcinationdecomposesthe

resul-tantamorphousmixtureofmetaloxide,hydroxidesandmetalsalts

leadingtotheformationofanM O Mbond[28].Toobtaina

struc-turalmaterial,cetyltrimethylammoniumbromide(CTAB)asaSDA

wasaddedintothesodiumsilicatesolution.Severalresearchers

havereporteddifferentsyntheticroutesforpreparationofsilica

incorporatedmetalcatalysts.Changetal.[29]incorporatednickel

nitrateintothesilica matrixviaanionexchange method.They

alsousedaqueouscopperandchromiumnitratesolutionsto

syn-thesizeCu/Cr/RHAviaincipientwetnessimpregnation.Themetal

salt solution was added slowly to thesupport and thoroughly

stirred at room temperature Recently, Chen et al [16] used deposition–precipitationtoincorporatethecoppernitrateinRHA

Inthistechnique,themetalsaltwasdissolvedinureasolutionand addedtoRHAtoyieldasuspension.Thesuspensionwasheatedat

90◦CandthepHwasadjustedto2–3byaddingnitricacid Theimmobilizationoforganicmoietieswascarriedoutintwo steps.FirsttheCPTESwasreactedwiththesodiumsilicatefrom RHAinasinglestep.ThisledtotheformationofRHACCl,which containedthe Clfunctionalgroupattheendoftheorganicchain Thischlorinefunctionalgroupwasthenreactedwiththerequired organicligandinasubstitutionreactiongivingrisetothe immobi-lizedRHAC-Rcatalysts,whereRistheligand

3 Transition metal-based catalysts from rice husk

3.1 Chromium Our interest inchromium-incorporated silicafromrice husk began with theaim of incorporating chromium into the silica matrixfromricehuskusingthesol–geltechnique[30].The cat-alytic potentialofthechromium-loadedcatalystswastestedin theoxidationofcyclohexane,cyclohexeneandcyclohexanol.The as-synthesizedchromium–silicacatalyst’ssurfaceareawasonly 0.542m2g−1.Subsequentpreparationresultedinasurfaceareaof 1.20m2g−1whenitwascalcinedat500◦Cfor5h.Surface direct-ingagentwasnotaddedduringthepreparation.Thesecatalysts containedonlyCr(III)species.Calcinedchromium–silicacatalyst wasobservedtobehighlyhygroscopic.Calcination ofthe cata-lysthadimprovedtheselectivityofcyclohexanonebutlowered theselectivityofcyclohexanolintheoxidationofcyclohexane.The conversionofcyclohexanewas27.13% whentheas-synthesized chromium–silica catalyst was used while the conversion was 12.69%whencalcinedchromium–silicacatalystwasusedinstead Onlyaslightchangewasobservedintermsofcyclohexene conver-sionandproductselectivitywhenthesecatalystswereused.Both catalystsyielded100%cyclohexanoneselectivity

Byprolongingtheagingperiod andbyincorporatingsurface directingagent,thesurfaceareacouldbeincreased.Thesurface areawasincreasedto3.95m2g−1,and theconversionof cyclo-hexane was100% in6h Cyclohexanolandcyclohexanonewere formedinapproximately80:20ratio.Theselectivityoftheproducts wereimprovedwhen4-(methylamino)benzoicacidwasaddedto thecatalystpreparationmediumtoincreasethesurface hydropho-bicityandtheselectivityofcyclohexanolandcyclohexanonewas foundtobearatioof50:50.Thegreaterhydrophobiccharacterof chromium–silicacatalystmodifiedwith4-(methylamino)benzoic acidenhancestheinteractionofthecyclohexanemoleculewiththe polarcatalystsurfaceforadsorptionandsubsequent transforma-tion.Thenitrogenatomlonepairin4-(methylamino)benzoicacid mayformhydrogenbondswiththehydroxylgroupsthusretarding theconversionofcyclohexanoltocyclohexanone.AgainonlyCr3+

specieswereidentifiedtobetheactivesite[31] Theeffectof pHontheoxidation stateofchromiumandits influenceintheoxidationofstyrenewasalsostudiedtoidentify whichchromiumspecieswasmoreactiveintheoxidation reac-tion[32].ThecatalystswerepreparedatpH10,pH7andpH3

AtpH10,onlyCr(VI)specieswerefoundwhileatpH7andpH

3,Cr(VI)andCr(III)speciesco-existed.ChromiumloadingatpH

10(7.3w/w%)washighest,anditwaslowestatpH3(2.3w/w%)

AtpH10,theinteractionbetweenthenegativelychargedsilicate particlesandpositivelychargedchromiumionishigh,thus increas-ingthepossibilityofSi O Crbondformationandtheadsorption

ofchromiumhydroxide,Cr(OH)3 onthesilica support.Asnitric acidwasfurtheraddedtoreducethepH,adsorbedCr(OH)3can

bere-dissolvedintothesolutionasCr(III)ionsthusresultingin

Trang 4

Fig 1. The SEM image of tungsten–silica catalysts from rice husk prepared at (a) pH 10, (b) pH 7 and (c) pH 3 [37]

lowerchromiumcontent.ItishypothesizedthattheSi O Crbond

especiallyinthecatalystpreparedatpH3wasstrongenoughto

preventtheoxidationofCr(III)speciestoCr(VI)speciesduring

cal-cination.TheCr(VI)speciesfoundinthechromium–silicacatalyst

preparedatpH10 andpH7wasdue totheoxidationof Cr(III)

speciesinCr(OH)3[33].Withtheaidofcetyltrimethylammonium

bromide(CTAB)asasurface-directingagent,thesurfaceareaof

thecatalystswasimprovedto143–564m2g−1.Higherchromium

containingcatalystsyieldedlowersurfaceareaandviceversa.The

surfaceofthecatalystswascomposedofrockyparticles.Catalysts

preparedinacidicmediawerefoundtobemoreactivein

catalyz-ingtheoxidationofstyreneusinghydrogenperoxideasoxidant

Benzaldehydewasobtainedasthemajorproduct.Themaximum

conversionofstyrenewas99.9%with63.1%selectivityto

benzalde-hyde.Thehighercatalyticactivityofthechromium–silicacatalysts

preparedinacidicmediaisrelatedtothehighersurfaceareaand

theco-existenceofCr(III)andCr(VI)species.Therateofhydrogen

peroxidedecompositionisincreasedinacidicreactionmedia

Re-characterizationofthecatalystafterreactionindicatedareduction

inchromiumcontentand thechromiumdetectedby AAS

anal-ysiswas1.0w/w% aftercatalytic testing However,the leached

chromiumspeciesdidnotcontributesignificantlytocatalytic

activ-ity.Thiswasconfirmedbyleachingtests.Thecatalystwasfoundto

bereusableseveraltimeswithoutlossofcatalyticactivity

3.2 Molybdenum

Thesamereactionconditionswereusedtostudytheeffectof

pHontheincorporationofmolybdenumintotheframework of

silicafromricehusk[34].AASanalysisdemonstratedthat

high-estconcentrationofmolybdenumwasinthecatalystspreparedin

acidicmedia.SpectroscopicanalysesshowedthepresenceofMo(V)

andMo(VI)speciesonthesurfaceofthemolybdenum–silica

cat-alystpreparedatpH3whileonlyMo(VI)specieswasdetectedon

thesurfaceofthecatalystpreparedatpH10andpH7.Thepore

systeminthecatalystsnarrowedasthepHwasreduced.Thisis

duetothedepositionofmolybdenumspeciesintothelargerpores

thusresultinginaunimodalporesystem.Anotherreasoncouldbe

duetothepresenceofnitrateions.AtpH10andpH7,the

pres-enceofNO −ionscanshifttheequilibriumofthesurfactantand

silicateassembly.TheNO3− ionblockstheadsorptionofsilicate ionsonmicellesanddelaystheformationofthesilica/surfactant mesophases.Thiscancauseincompleteinteractionbetween sili-catespeciesandsurfactant,resultinginsmallerporesbeingformed

bythetemplate.Thelargerporeswereformedbythe agglomer-ationofsilica nanoparticlesduringthehydrolysis–condensation process[35,36].Shortorderedporearrangementsexistedinthe molybdenum–silica catalystsprepared at pH 10 and started to deteriorate as the pH was reduced The SEM images indicate thatthecatalystshadrockyparticleswithsphericalsurfaces[33] Molybdenum–silica catalystprepared at pH3 showeda higher styreneconversionandbenzaldehydeselectivitycomparedtothe othertwocatalysts.Benzaldehyde(Bza)wasobtainedasthemajor product.Theconversionwas82.2%andtheBzaselectivitywasca 82.8%.Asignificantamountofmolybdenumleachedoutfromthe supportwhenitwasusedforthefirsttime.Duetothelossofthe activesites,styreneconversiondroppedabout50%whenthe cat-alystwasreused.However,thecatalystsremainedheterogeneous duringconsecutivereuse.Re-characterizationoftheusedcatalyst indicatedthatonlyMo(VI)specieswerefoundonthesurfaceof thecatalyst.Theporesystemofthecatalystchangedfrombeing unimodaltobimodalaftercatalyticreactionduetoleaching.The re-characterizationofusedmolybdenum–silicacatalystindicatesthat themajorityofthemolybdenumspecieswasphysicallyadsorbed

onthesurfaceofthecatalystandmostprobablythiswastheMo(V) species

3.3 Tungsten Tungstenspecieswereinsertedintothesilicamatrixusingthe samemethodandconditionsasmentionedabove[37].Thehighest tungstenconcentrationwasfoundinthecatalystspreparedatpH

3whilethelowestwasfoundinthecatalystspreparedatpH10 Theincreasingtrendintheimmobilizationoftungstencontentas thepHwasdecreasedcanberelatedtotheinteractionbetween tungstatespecies(WO4)2 −andthesilicatespecies.AtpH10,lack

ofinteractionbetweenthesetwospeciesduetonegativecharge repulsion,yieldedcatalystswithlowerincorporationoftungsten Theinteractionbecamestrongerasthenegativecharacterofthe silicaoligomersreducedasthepHapproachedtheisoelectricpoint

Trang 5

O Si O

W

6+

(b) Si

O

Si

O Si

O W

O Si

(a)

Fig 2. The structure of (a) isolated tungsten species and (b) isolated (WO 4 ) 2−

species.

ofsilica(∼pH2).Thus,thecatalystswithhigheramountsof

tung-stenformedunderconditionsofacidicpH.TheSEMimageofthe

catalystshowedthatbrightspotsstartedtoappearastheacidityof

thecatalystspreparationwasincreased.Theimagesareshownin

Fig.1.EDXanalysisdetectedaslightlyhighertungsten

concentra-tiononthebrightspotscomparedtothedarkareasasshowninthe

SEMimagesofthecatalyst(Fig.1).Isolatedtetrahedral(WO4)2−

speciesweretheonlytungstenspeciesfoundonthesurfaceofthe

tungsten–silicacatalystpreparedatpH10

UV–visdiffusereflectancespectroscopicanalysissuggestedthe

presenceofdifferentkindsoftungstenspecies.Isolated

tetrahe-dral(WO4)2 −species,isolatedtungstenspeciesorlowoligomeric

tungstenoxidespecieswasfoundinthecatalystpreparedatpH7

Ontheotherhand,tungstenoxidewasdetectedtogetherwith

iso-latedtetrahedral(WO4)2 −species,isolatedtungstenspeciesorlow

oligomerictungstenoxidespeciesonthesurfaceoftungsten–silica

catalystpreparedatpH3

Isolatedtungstenspeciesreferstotungstenionsincorporated

insidethesilicaframeworkasshowninFig.2(a),whereasthe

iso-latedtetrahedral(WO4)2−speciesisthespeciesthatwasformed

onthesurfaceofthecatalystasshowninFig.2(b).XRDanalysis

indicatesthatthepeakrelatedtotheamorphoussilicaat2=23◦

startedtosplitinto3relativelynarrowbandswithsharppeaks

Newpeaksstartedtoappearaswellat2=27◦,29◦,33◦,34◦,42◦,

47◦and48◦whenthepHofthesynthesismediumwasdecreased,

indicatingphasesegregationleadingtowardtheformationoflarger

WO3crystalsonthecatalystsurface[38].Thesplitbecamemore

obviousintungsten–silicacatalystpreparedatpH7andpH3.All

thecatalystshave abimodalporesystem.Theformationofthe

bimodalporesystemcouldbeduetothepresenceofnitrateions

[39]andduetothetungstenprecursor.Normallymetalspeciesare

abletospeedupthecondensationandhydrolysisprocess

How-everthisdidnothappeninthiscase.Thiscanberelatedtothe

bulkysizeof(WO4)2 −species.Thebulkysizeof(WO4)2 −species

mayhavepreventedthehydrolysisandcondensationprocessfrom

takingplaceleadingtotheformationofdifferentporesizes.Some

researchersconcludedthattheFT-IRbandaround963cm−1inthe

tungsten–silicamaterialindicatedtheincorporationof tungsten

speciesinsidethesilicamatrix.Thisbandstartedtodiminishwhen

theaciditywasdecreased.ThisindicatestheagglomerationofWO3

crystalsleadingtotheformationofextra-frameworkWO3onthe

supportsurface,especiallyintungsten–silicacatalystpreparedin

acidicmedium[39,40].Asimilarphenomenonwasalsoobservedby

uswhenweincorporatedindiumintothematrixofsilicafromrice

huskash[41].AstheIn3+ionconcentrationwasincreased,thisband

startedtodisappearindicatingtheformationofextra-framework

metaloxideonthesurface.Thestructureofsurfaceactivesitesof

tungsten–silicacatalystspreparedinanacidicmediumisshownin

Fig.3

Thehigheststyreneconversionof61.9%and 100%selectivity

towardbenzaldehydewasachievedwhenatungsten–silica

cata-lystpreparedinacidicmediumwasused.Higherconcentrationsof

tungstenandthepresenceofdifferentkindsoftungstenspecies

havebeen identifiedtobethemain factorscontributingtothe

higheractivityofthecatalystpreparedatpH3.Thereactionwas

Fig 3.Proposed surface active sites of tungsten–silica catalyst prepared at pH 3 [37]

proposedtobecatalyzedbypertungsticacidlikeintermediates, withstyrene oxideas theintermediate activereagent Asmall amountof tungsten species wasfoundto beleached from the supportand catalyzethereactionhomogeneously.Thephysical propertiesofthecatalystwerenotaffectedbythelossoftungsten activesites[38]duetoleaching

3.4 Iron Ironisacheaptransitionmetalwhichisnon-toxictohuman healthandwhichhasbeenknowntocatalyzemanyorganic reac-tions.When4-(methylamino)benzoicacidwasusedasasurface directingagentitincreasedthecatalystsurfacearea[42].The 4-(methylamino)benzoic acidwasproposedtobeattachedtothe silicamatrixviathenitrogenatom.TheformationoftheSi Nbond

isshowninFig.4 Thesurfaceareaofthecatalystincreasedfrom267to331m2g−1 aftermodification.Theincreaseinsurfaceareawasaccompanied

byaporesizereduction asexpected.Theporesizeofthe cata-lystdecreased from9.2to6.0nm.A seriesofcross-linkedlines arrangedinanorderlymannerwasobservedintheTEMimageof 4-(methylamino)benzoicacidmodifiediron–silicacatalyst,which werenotpresentintheTEMimageofunmodifiedcatalyst.This couldbeduetotheamineactingasatemplateduringthesyntheses Both catalystswere tested in theFriedel–Crafts benzylation

oftoluenegiving100%tolueneconversion.Themono-substituted (ortho-andpara-)productswerefoundtobethemajorcomponents

intheproduct.Theunmodifiediron–silicacatalystwasfoundtobe lessselectivetothemono-substituted(ortho-andpara-)product comparedtothe4-(methylamino)benzoicacidmodifiediron–silica catalyst

Inanotherstudy,apurelyiron–silicacatalystwasfoundtobe veryactiveintheoxidationofphenolusinghydrogenperoxideas oxidantundermildconditions[43].Oxidationofphenolusingthis catalystyieldedcatecholandhydroquinoneastheonlyproducts TwosignalsrelatedtotheQ3andQ4siliconcentersat−100.4and

−108.7ppmwereobservedwhenthecatalystwassubjectedto29Si MASNMRanalysis.Signalsrelatedtothespinningsidebandswere observed,suggestingtheparamagneticnatureofFe(III)species[44]

whichwasdetectedatca.10and−210ppm

Oxidation of phenolhas beenassociated witha free radical mechanismbymanyauthors[45–47].Inthisresearch,wehad pro-posedanon-freeradicalmechanism.Freeradicalmechanismsare knowntoproducebenzoquinonewhichcanlaterbetransformed

topolymericmaterialsandtar.Howevertheseproductswerenot detectedinourstudy.Theintermediatewasformedonthesurface

ofthecatalystassistedbytheformationofcoordinatebondsby thereactantstotheFe3+activesites.Thepolarnatureofthe cata-lyststronglysuggeststhereactantswereadsorbedonthecatalyst surfaceviahydrogenbond

Trang 6

HO O

H3C

Si O

O

O- Na+

Strongly basic

HO O

N

CH3 Si

O

O O

Si

Si

Si

+ NaOH

Fig 4.The formation of Si N bond [42]

3.5 Cobalt

Cobaltcatalysts,includingnanoparticles,havebeenprepared

usingricehusk silicaasthesupport.Mostof theprocedures in

theliteraturewereexpensive,tediousandtimeconsuming

How-ever,weintroducedasimplewaytopreparecobalt–silicacatalyst

andnanoparticles.Thesol–gelmethodwasusedtopreparethe

cobaltricehusksilicananoparticlesundermild conditions[48]

Thecobaltnanoparticlespreparedwereintherangeof2–15nm

TheFT-IR spectraof thenanoparticlesindicated some

similari-tieswithtungsten–silicacatalystsmentionedinSection3.3.The

bandat967cm−1disappeareduponcobaltadditionintothe

sil-icaframework Thisis due tothepresence of cobaltsilicate or

hydrosilicate[49].FT-IRandXRDanalysesindicatethatthecobalt

nanoparticlescomprisedCo3O4 and CoO Cobaltnitrate

decom-posedintoanintermediatecobaltsilicatephasefirstandlaterinto

Co3O4duringthedryingprocess.Cobaltricehusksilica

nanopar-ticlesprepared viathis methodexhibitboth ferromagnetic and

antiferromagneticproperties.Thecorrespondingsaturation

mag-netization(Ms),coercivity(Hc)andremanentmagnetization(Mr)

werenotedtobe0.245emu/g,340.09Oeand0.0115emu/g

respec-tively.Msforcobalt–silicananoparticleswasmuchlowercompared

toMbulkCo=166emu/g[50].DecreaseinMsismostlydue tothe

smallercobaltrice husk silicananoparticlessynthesized in this

study.Hardmagnet behaviorisshownfromthehysteresisloop

byshowinglargeHc(>100Oe)[51].Thehysteresisofthismaterial

showthepresence ofa ‘curvature’shape whichindicates

ferro-magnetic(FM)natureanda‘straight’shapewhichcorrespondto

antiferromagnetic(AFM)properties.Similarmagnetichysteresis

plotwasreportedforCoOnanoparticleswithsizerangingfrom10

to80nmpreparedbysol–gelmethod[52].Theantiferromagnetic

propertyofthecatalystisduetothepresenceofCoO

nanoparti-cles.TheConanoparticlespreparedinthisworkareproposedto

followthecore–shellmodel,inwhichthecoreisattributedto

fer-romagneticmetallicandtheshellconsistsofantiferromagneticCoO

species[53]

4 Metal based catalyst from rice husk ash

4.1 Friedel–Craftsreactionusingironcatalysts

TheFriedel–Crafts(benzylation)reactionbetweentolueneand

benzylchloridehasbeencarriedoutusingsolid,environmentally

friendlyandreusablecatalysts(RHA-FeandRHA-Fe700)[11].The

mono-substitutedbenzyltoluenewasthemajorproductandboth catalystsyieldedmorethan92%oftheproductat100◦C,in1h, withoutsolvent

Thecatalystsshowpromisingactivitywithalmostequal dis-tribution of ortho- and para-isomers Sixteen minor products consistingofvariousdi-substituted isomerswerealsodetected Theortho-substitutedproduct waspresent in largerproportion (49.53%)comparedtothepara-substituted(46.01%)productwhen using RHA-Fe700 as the catalyst The higher yield of ortho-substituted product was due basically, to the presence of 2 ortho-positionsforsubstitutiononthetoluenemolecule.For

RHA-Fe,about48.1%and44.8%ofortho-andpara-substitutedproducts wereobservedrespectively.However,RHA-Fe700gavea signif-icantly loweryield of the di-substituted productscompared to RHA-Fe

It was foundthat theRHA-Fe700 gave slightly higher yield (∼97.1%)forthemono-substitutedproductandsignificantlylower yield(∼2.8%)for thedi-substitutedproductsduringthesecond reusabilitystudies.However,therewasnotmuchdifferenceinthe distributionoftheortho-andpara-derivatives

4.2 Ricehuskashsupportedrutheniumcatalyst RHA-Ru(as-synthesized)andRHA-Ru700(calcinedat700◦C) heterogeneouscatalystswerepreparedsimilarlyusingricehusk ashsilica as the support.The effect of calcinationon the sur-face and bulk structure of the catalyst was investigated and compared with as-synthesized RHA-Ru catalyst using several physico-chemicaltechniques[54].XRD studiesshowedRHA-Ru was largely amorphous (2=22◦) with some crystalline peaks presentin RHA-Ru700.Ruthenium wasshowntobepresent in the form of its dioxide (RuO2) in RHA-Ru700 These materials werefurtherinvestigatedusingN2sorptionstudies.Theisotherm and hysteresis loop were shown to be of type IV with type H3hysteresisrespectively forbothcatalystsaccordingtoIUPAC classification The BET surface areaof RHA-Ru was65.1m2g−1 comparedtoRHA-Ru700(10.4m2g−1).Thesignificantreduction

in the surface area was attributed to a collapse in the pore structure at 700◦C due tothe condensationof adjacentsilanol groups

FineneedlelikestructurewasseenintheSEMmicrographsfor RHA-Ru700.Theneedleslookedlikethinflatelongatedpiecesof fiberwithsharpedgesandofnanodimension.Thewidthofthe needleswasestimatedtobeabout200nm.However,thiswasnot

Trang 7

Table 1

The effect of different xylene isomers on the percentage conversion and product distribution at 80 ◦ C and Xyl/BC molar ratios of 15:1 [55]

Time (min) Selectivity (%) Time (min) Selectivity (%)

RHA-Ga

RHA-In

RHA-Fe

a Turnover rate for 50% conversion in ␮mol g −1 s −1

b Two mono-substituents 2,4-DMDPM and 2,6-DMDPM in a percentage ratio of about 79:21.

observedinRHA-Ru.RHA-Ruingeneralhadaporousmatrixdue

totheamorphousstructureofthecatalyst

4.3 RHAsupportedgallium,indium,ironandaluminumforthe

benzylationofxylenesandbenzene

LiquidphaseFriedel–Craftsreactionof xylenes(o-Xyl,m-Xyl

andp-Xyl) withbenzylchloride(BC)overthepreparedcatalyst

(RHA-Fe,RHA-GaandRHA-In)wascarriedoutat80◦C[55].The

differencesinactivityandselectivitybetweenthexyleneisomers

andcatalystsareshowninTable1

FromTable1,theRHA-Feshowedthehighestcatalyticactivity

whereas RHA-In and RHA-Ga gave higher selectivity to

2,5-dimethyldiphenylmethane (2,5-DMDPM) withina shorter time

The rate of reaction decreased in the following order:

RHA-Fe>RHA-In>RHA-Ga.Ironhasaredoxpotentialof+0.77Vwhile

galliumandindiumhavearedoxpotentialof−0.44V.Thehigher

redoxpropertyofironwasexpectedtoplayacrucialrolefor

initiat-ingtheBCcarbocationandshowedsuperiorcatalyticactivityover

therest.However,thehigheractivityofRHA-InoverRHA-Gacould

beduetotheloweramountofnon-frameworkGaspeciespresent

onthesurfaceofRHA-Ga.Thecatalystcouldbereusedseveraltimes

withoutsignificantchangeintheiractivityandselectivity[55]

In2009,AhmedandAdam[56]usedaluminum,galliumandiron

incorporatedRHAforthebenzylationofbenzene(Bz)withBC.Iron

basedcatalyst,showedexcellentactivity,whereasRHA-Ga gave

goodselectivitytowarddiphenylmethane(DPM).However,

RHA-Alwasalmostinactiveinthisreactionduetothelowredoxproperty

oftheAl3+ion.Amongthemainadvantagesofthesecatalystwas

thattherewas,noneedforcalcinationaftercatalystpreparation

andmoreimportantwasthefactthatRHA-GaandRHA-Fewere

notmoisturesensitiveandcanbehandledandstoredundernormal

conditions

4.4 RHAsupportedaluminum,galliumandindiumforthe

tert-butylationofaromatics

Thetert-butylationofsomesubstitutedbenzenes(tolueneand

chlorobenzene)withtert-butylchloride(TBC)wascarriedoutusing

RHA-Al,RHA-GaandRHA-Inat80◦C[57].Attheinitialstageofthe

reaction,thetert-butylcationwasformedsubsequentlyviathe

rad-icalmechanismprocess,whichinturnattacksthebenzeneringfor

theformationoftert-butylbenzene(TBB)anddi-tert-butyl

ben-zene(DTBB)viatheSN1mechanism(mainreaction).However,a

protoneliminationreaction(sidereaction)alsooccurred,resulting

intheformationofisobutenedimmers(IBD)andisobutenetrimers

(IBT) Theextent ofthese sideproducts wasfoundtodecrease

significantlywithtime,indicatingthereversibilityofthe

oligomer-izationreactions.Thecatalystswerestableagainstleachingand

werereusableseveraltimesbutwithanobservabledropin cat-alyticactivity.RHA-Galostalmost20%ofitsactivityaftereachrun, whereas,RHA-Inwasstableuntilthe3rdrunandthenlost∼13%

ofitsactivityatthe5thrun.Thedeactivationwassuggestedtobe inducedbythepoisoningeffectofthebulkysideproductsthatwere stronglyadsorbedonthecatalystsurface

Basedontheproductanalysis,amechanismwasproposedfor the tert-butylation of aromatics It was suggested the reaction proceedsinitiallythroughtheradicalmechanismforthe conver-sionofTBCtotert-butylcarbocations.However,thecarbocations remainedadsorbedonthecatalyst,possiblyattheframework posi-tionreplacingtheextra-frameworkNa+ionsformingtert-butoxide Thesetert-butoxidespeciescaneitherattackthearomatictoform thetert-butylproducts(SN1)orcanundergoeliminationreaction (E1)fortheformationofIBmonomers.Thelatterspecies(i.e.,IB) hasextraordinaryreactivitytowardpolymerizationunderalltypes

ofacidicconditions(i.e.,LewisorBrønsted).Itisnoteworthythat thepolymerizationreactioncanbeinitiatedbyunconverted tert-butylcarbocationorlibratedHCl.Thecapabilityofthecatalystfor convertingtheTBCtoTBcarbocationdependsmerelyonitsredox potentialandthenumberofactivesitesonitssurface.However, theproductionoftert-butylatedproductsdependsonitsabilityto activatethearomaticfortheSN1reactionaswellasthehigh nucle-ophilicityofthearomatic,i.e.,thepresenceofelectrondonatingand notelectronwithdrawingsubstituentsinthebenzenering[57] 4.5 Photocatalysisreactionusingsilica–tinnanotubes

Silica–tin nanotubes (RHA-10Sn) with external diameter of 2–4nmandinternaldiameterof1–2nmweremadebyasimple sol–gelmethodatroomtemperature[24].Thesenanotubespossess

ahollowinnercorewithopentubeends(Fig.5(a))

The specific surface area of RHA-10Sn was found to be

607m2g−1 comparedtoRHA-silica(315m2g−1).Theincreasein surfaceareasuggeststhattinparticlewerewelldispersedwithin thesilicamatrix.Nocrystallinephasewasdetectedinthehighangle powderXRDanalysis.Theroot-mean-squareroughnessandheight distributionofRHA-10Snwerefoundtobe111.5and322.6(nm) fromAFManalysis(Fig.5(b)).Thesehighvaluescorrelatewellto thehighlyporoustubularmaterialwithahighBETsurfacearea Thephotocatalytic activityofRHA-10Snwasstudiedtoward degradationof methyleneblue (MB)under UV-irradiation.Asa controlexperiment,darkreaction(withoutUVandcatalyst)and photolysiswasconductedtocomparewiththeadsorptionand pho-tocatalyticstudies.About96%of MBremainedunchanged after

60mininthedarkreaction.ThedegradationofMBwasconfirmed withthereduction in concentrationafter 960min Thecatalyst RHA-10Sngave maximum degradationcompared toRHA-silica Thisbehaviorisduetothewidebandgap(E =3.6eV)ofSnandhigh

Trang 8

Fig 5. (a) The TEM micrographs at 110 K, and (b) the 3-D AFM topography image of RHA-10Sn [24]

surfacearea.Thedegradationproductswereidentifiedasinorganic

anionssuchasnitrate,chlorideandsulfateusingion

chromatogra-phyanalysis[24]

4.6 OxidationofbenzeneoverbimetallicCu–Cesilicacatalysts

Aseries ofmesoporous RHA silicasupported Cu–Cebimetal

catalystwaspreparedwithcetyltrimethylammoniumbromide(as

atemplate).ThesecatalystswerelabeledasRHA-10Cu5Ce,

RHA-10Cu20Ce,andRHA-10Cu50Ce.TG/DTGanalysisof thecatalysts

confirmedthecompleteremovalofthetemplateat773K.TheXRD

patternshowedthatRHAandmetalincorporatedsilicacatalysts

haveamorphouscharacteristicsduetothepresenceofabroadpeak

intheregionof20–30◦2.However,anobservedshiftofthe

diffrac-tionbandforRHA–10Cu50Ce,tothe25–35◦2regioncanbedue

tothepoorcrystallizationofCeO2withincreaseinCeloading[58]

Thesecatalystswereusedforasinglestepoxidationofbenzene

withH2O2 asoxidantandacetonitrileassolventat343Kunder

atmosphericpressure.Theincorporationoftwodifferentmetals

withsilicaplaysacrucialroleinthecatalyticactivityduetoa

syn-ergyeffectbetweenthemetalions.Theequationforthecatalytic

oxidationispresentedinScheme2

In a typical run, 84.3% benzene conversion and 96.4%

phe-nol selectivity was achieved using 70mg of RHA-10Cu20Ce at

343Kwithotherparameterskeptconstant(H2O2=22mmol;

ben-zene=11mmol;acetonitrile=116mmolandreactiontimeof5h)

The high activity and phenol selectivity observed under mild

reactionconditionscouldbecorrelatedtotheenhancedtextural

propertiessuchasthespecificsurfacearea(329m2g−1),largepore

volume(0.95m3g−1)andgooddispersionofloadedCuandCeions

whichgavemoreactivecentersontheamorphoussilica.However,

themonometalceria(RHA-20Ce)orcopper(RHA-10Cu)showed

lowactivity(23.5%or47.7%)andphenolselectivity(34.6%or79.4%)

incomparisontothebimetalliccatalysts.Thisisanindicationthat

theexistenceofcopperandceriatogetherinthecatalyticsystem

wasnecessaryforimprovingtheoxidationofbenzene

The oxidation of benzene over different metal loaded

cata-lystsresultedinthesameproducts.However,theselectivityfor

phenolwassignificantlylowerandasaconsequence,ahigher

per-centage ofhydroquinone and 1,4-benzoquinonewere obtained

Thecatalyticoxidation followed theorderRHA-10Cu5Ce<

RHA-10Cu20Ce<RHA-10Cu50Cewhiletheorderofphenolselectivity

was RHA-10Cu50Ce<RHA-10Cu5Ce<RHA-10Cu20Ce The

cata-lyst,RHA-10Cu20Cewasfoundtobethemostsuitable for this

reactionbasedonitsreusability(uptothreerecycleswithsome

lossincatalyticactivity)[58]

4.7 Benzoylationofp-xyleneonironsilicacatalyst RHAwasusedtosynthesizeRHA-5Fe,RHA-10Fe,RHA-15Feand RHA-20Feviathesol–geltechnique(pH5.0)atroomtemperature

[59].Theacidityofthecatalystswasconfirmedbypyridine adsorp-tion, and FT-IR spectra show typical bands around 1551cm−1 and1565cm−1(attributedtoBrønstedacidsites)and1450cm−1 (attributedtoLewisacidsites).Thesurfaceofthecatalysts exhib-ited irregular shaped particles, compared to RHA-silica which showedagglomeratesofsphericalparticles

TheliquidphaseFriedel–Craftsacylationreactionofp-xylene (p-xyl)withbenzoylchloride(BzCl)wascarriedoutoverthe as-synthesizedcatalyst.TheRHA-10Fecatalystexhibitedthehighest activityforbenzoylationofp-xyl.TheconversionofBzClandthe selectivitytoward 2,5-dimethylbenzophenone (2,5-DMBP)were foundtobe98.4and88.9%respectivelyat413K[59]

Asthemolarratioincreasedfrom1:5to1:20,(BzCl:p-xyl)the BzClconversionalsoincreased.Atamolarratioof1:20,high con-versionofBzCl(86.0%)wasobserved.Atthelowerconcentration

ofBzCl,moreactivesitesofcatalystareavailableforadsorption, whichresultsintheformationofactiveelectrophilicbenzoylinium cationsthatcanreactwithp-xyl.Inaddition,theselective forma-tionof2,5-DMBPwasnotaffectedasthemolarratiowaschanged from1:5to1:20.Thebenzoylationoverdifferentmetalloaded cat-alystsresultedinthesameproducts.However,theselectivityof 2,5-DMBPwasreducedslightlyaftertheFeloadingincreasedmore than10wt.%.Whentheamountofironincreasedfrom5to10wt.%, theBzClconversionincreasedfrom77.7to98.4%.However,further increaseofmetalloadingto15and20wt.%didnothavemucheffect

onthecatalyticactivity.TheRHA-SiO2,didnotshowanyactivity forthebenzoylationreactionunderthesamereactionconditions Hence,thepresenceofironwascrucialforboostingthecatalytic activity.TheRHA-10Fewassuccessfullyreusedseveraltimes How-evertheamountofFeonthecatalystwasfoundtobereduced from7.22to4.96w/w%.Adecreaseinconversion(42.4%)wasalso observedforthesecondcyclewithinsignificantdecreasein selec-tivityof2,5-DMBP(86.8%).Thereductioninconversionisdueto thereducednumberofmetalactivesitesonthecatalystandmay alsobeduetotheblockageoftheporesystembyproducts[59] Themechanismforthecatalysisinvolvestheformationofan adsorbedBzCltransitionspecies(faststep).Thisreactswithp-xyl

toform2,5-DMBP(abimolecularslowstep)withthesimultaneous eliminationofHCl[59]

4.8 SynthesisofnanocrystallinezeoliteLfromRHA Wongetal.[60]havereportedthemicroscopicinvestigation

ofaluminosilicatezeoliteL(structurecodeLTL)nanocrystalsusing

Trang 9

Scheme 2. The oxidation of benzene to phenol with the Cu–Ce silica catalyst [58]

RHAasthereactivesilicasourceinatemplate-freehydrothermal

system.Unliketheconventionalcylindrical-shapedzeoliteL,the

nanocrystalline zeolite L synthesizedfrom RHAexhibits a

one-dimensionalchannelstructure withtablet-like features(shorter

c-dimensionforbetterdiffusionofproductsand reactants).The

frameworkstructureofzeoliteLconsistsofcancrinite(CAN)cages

andhexagonalprisms(D6R),alternatingtoformcolumnsthatrun

paralleltothec-axis.Theresearchinterestinthesynthesisofzeolite

Lisbasedonitsexcellentcatalyticpropertiesandwideapplications

inhost–guestchemistry.Microscopicandspectroscopicanalyses

showedthatthenucleationofzeoliteLtookplaceintheveryearly

partofthereaction.ThisrapidformationofLTLnanocrystalsisdue

totheuseofRHAasthereactivesilicasourceintheprecursor

solu-tion.FullycrystallizedzeoliteLwasachievedafter24hresulting

inaproductwithameancrystallitesizeof210nm.TEMimages

(Fig.6)confirmedthearrangementofhexagonalpattern,whichis

thedistinctivefeatureofzeoliteL

5 Organic–inorganic hybrid catalysts

5.1 One-potsynthesisviasol–gelmethod Therearevarioussynthesismethodsthathavebeenutilizedto attachorganicgroupstosilicasurfaceviatheformationof cova-lentbonds.Thesearepost-syntheticfunctionalization(grafting), co-condensation(directsynthesis),productionofperiodic meso-porousorganosilanes(PMO)and“ship-in-bottle”techniques.More recently,Adametal.hadsuccessfullyimmobilized chloropropy-ltriethoxysilane (CPTES) onto the silica network via a one-pot synthesisusingthesol–gelmethod[61]

The 29Si MAS NMR spectrum of the resulting organo-silica product,RHACCl(Fig.7(a))showschemicalshiftsattributedtoQ4

andQ3[Qn=Si(Osi)n(OH)4−n],i.e.atı=−109.92and−100.65ppm

Achemicalshiftat−65.2ppmindicatestheformationofSi O Si linkageofCPTEStothesiliconatomofthesilicaviathreesiloxane

Trang 10

Fig 7.The MAS NMR spectra of RHACCl: (a) the 29 Si MAS NMR spectrum for RHACCl and (b) the 13 C MAS NMR spectrum for RHACCl [61]

bonds, SiO2( O )3Si CH2CH2CH2Cl (T3).The chemical shift at

−57.4ppm wasdue totwo siloxane bondstothesilica matrix,

i.e.SiO2( O )2Si(OH)CH2CH2CH2Cl.The13CMASNMRofRHACCl

(Fig.7(b))showedthreepeakswithchemicalshiftat10.37,26.70

and47.69ppmwhich correspondstotheC1,C2andC3carbons

fromCPTESrespectively[61]

5.2 Graftingmethod

Graftingisamethodtofunctionalizeormodifythesurfaceof

mesostructuredsilicawithorganicgroups.Thisprocesswascarried

outusingRHACClwithsaccharine(Sac)(anartificialsweetening

agent) [62] and melamine (Mela)[63] The synthesis of

silica-saccharine(RHAC-Sac)andsilica-melamine(RHAPrMela)catalysts

werecarriedoutusingdrytolueneandtriethylamine

(deprotonat-ingagent)underrefluxconditionsat110◦C

EDXconfirmedthepresenceofchlorine(RHACCl;3.07%),

nitro-gen(RHAPrMela;3.65%)andsulfur(RHAC-Sac;2.29%)respectively

RHAPrMelaexhibitedahollownanotubelikestructureand

RHAC-Sacshowedagglomeratedparticles

The results of 29Si MAS NMR studies for both RHA-Sac

and RHAPrMela indicated the successful immobilization

of these organic molecules on the solid support

Chemi-cal shifts were observed which were attributed to Q4 and

Q3 silicon atoms A chemical shift at −64.78 and −57.41

(ppm) indicates the formation of Si O Si linkages via

three siloxane bonds, (SiO2)( O )3Si CH2CH2CH2 Sac and

(SiO2)( O )3Si CH2CH2CH2 Mela (T3) respectively A

chemi-calshiftat −57.4and −49.16(ppm)indicatestheformation of

two siloxane linkages, i.e (SiO2)( O )2Si(OH)CH2CH2CH2 Sac

and (SiO2)( O )2Si(OH)CH2CH2CH2 Mela (T2), to the silica

respectively

The13CMASNMRofRHA-SacisshowninFig.8(a).Severalbroad

chemicalshiftsat124and130ppmwhichwereeasilyassignableto

thearomaticcarbonatC8,C4,C6andC9areapparent.Thechemical

shiftofthecarbonofthelactamring(C10)canbeseenat160ppm

The13CMASNMRforRHAPrMelashowstwostrongchemical

shiftsat161.52and169.67ppmwiththeirrespectivespinningside

bands(marked*),indicatingthatthecarbonatomsinmelamineare

notequivalent.Toprovetheexistenceofthespinningsidebands,

the13CMASNMR wasrecordedatdifferentspin frequenciesof

7MHz(Fig.8(b)),and5MHz(Fig.8(c)).Theresultclearlyshowed

theshiftinginthespinningsidebandswhilethemainchemical

shiftsofthemelamineringwerenotaffected.Thechemicalshiftat

161.52ppmwasassignedtothetwocarbonatomswithfreeamine

groupsC5(Scheme3)whicharechemicallyequivalent.Thesecond

chemicalshiftat169.67ppmwasassignedtothecarbonatomofthe

melamineringwhichisbondedtothepropylgroupC4(Scheme3) throughtheC3carbonatom

5.3 Esterificationusingorganic–inorganichybridcatalysts

Asimple,environmentallyfriendly,cheap,time-savingand non-toxiccatalyst(RHA-Sac[62]andRHAPrMela[63])wasusedforthe esterificationreactionusingethanolandaceticacid.Aconversionof 66%wasachievedat85◦C,and6hreactiontimewith(acid:alcohol) 1:1molarratio.Thecatalystcontainsweakbasicsites(strong con-jugateacid)andtheaminegroupwhichwasbelievedtoplayan importantroleinthiscatalyticactivity.However,similarcatalytic activitywasalsoobtainedwhenthehomogeneouscatalyst(Sac) wasused.Minimallossofcatalyticefficiencywasobservedwhen thesolidcatalystwasreusedafterregenerationat150◦C

Theesterification of aceticacid withethanol wasalso stud-iedat 85◦C usingRHAPrMela.About73%conversionwith100% selectivity (ethyl acetate) was achieved in the esterification The higher conversion was obtained due to the strong basic character of the secondary amine in RHAPrMela compared to RHA-Sac The esterification of severalalcohols were also stud-ied over RHAPrMela The alcohols studied were 1-propanol (conversion=47%),1-butanol(conversion=42%),2-propanol (con-version=25%),tert-butanol(conversion=14%)andbenzylalcohol (conversion=20%).Theconversiongenerallydecreasedasthe rel-ativemolecularmassofthealcohol increased.Primaryalcohols alsoshowedahigherconversionratecomparedtothe2◦ orthe

3◦derivativesasshownforpropanolandbutanol.Thesevariations couldbedue tosteariceffects asdemonstrated for1-propanol, 2-propanol,tert-butanolandbenzylalcohol.However,itmustbe notedthatthesestudieswerenotcarriedoutattheoptimal con-ditionsfor therespectivealcohols,butrathertheconditionsfor ethanolwasused

5.4 Silicafromricehuskashimmobilizedwith 7-amino-1-naphthalenesulfonicacid

RHAwasfunctionalizedwith3-(chloropropyl)triethoxysilane and7-amino-1-naphthalenesulfonicacidtopreparea heteroge-neouscatalystfortheesterificationofn-butylalcoholwithdifferent mono-anddi-acidswithstrongBrønstedacidsites.Eventhough thesurface area of thecatalyst was only111m2g−1,it gave a conversion of 88% and 100% selectivity toward the ester The esterificationreactionwasproposedtotakeplaceattheterminal

SO3Hgroup.Thesulfonicgroupcanadsorbthecarboxylicacid andformaneightmemberedtransitionstateforsubsequentattack

Ngày đăng: 09/10/2015, 00:09

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm