1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

The past, present and future of heterogeneous catalysis

26 741 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 2,43 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Quá khứ, hiện tại và tương lai của xúc tác dị thể. Xúc tác dị thể là xúc tác trong đó chất xúc tác ở khác pha với chất phản ứng.Chất xúc tác dị thể thường là chất rắn và phản ứng xảy ra trên bề mặt chất xúc tác. Thường gặp nhất là những hệ xúc tác dị thể gồm pha rắn và pha khí (các chất tham gia phản ứng và sản phẩm phản ứng). Ðặc điểm của phản ứng xúc tác dị thể là phản ứng diễn ra nhiều giai đoạn, có hai đặc trưng: Quá trình xảy ra ở lớp đơn phân tử trên bề mặt chất xúc tác. Ðặc trưng này thể hiện ở chỗ trong xúc tác dị thể thì khuếch tán và hấp phụ đóng vai trò quan trọng. Chất xúc tác không phải là những phân tử, ion riêng rẽ mà là một tổ hợp những nguyên tử, ion

Trang 1

Ioana Fechetea, Ye Wangb, Jacques C Védrinec,∗

a Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse, CNRS UMR 7515, Université de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg, France

b State Key Laboratory of Physical Chemistry of Solid Surfaces and National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China

c Laboratoire de Réactivité de Surface, CNRS UMR 7197, Université Pierre et Marie Curie, 4 Place Jussieu, F- 75252 Paris, France

Thisreviewhighlightskeycatalyticdiscoveriesandthemainindustrialcatalyticprocessesoverthelast

300yearsthatinvolvedcommodities,finechemicals,petrochemicals,petroleumtransformationforfuelsandenergysupply,emissioncontrol,andsoforth.Inthepast,discoverieshaveoftenfollowedeventssuch

aswarsorembargos,whereasthecurrentdrivingforcesofstudies,researchesandthendiscoveriesaim

atabetterunderstandingofcatalyticprocesses,atreducingthecostsofrawmaterialsandprocesses,atdevelopingnewcatalyticmaterialsandataddressingenvironmentalissues.Thisreviewfocusesonthehistoryofmanycatalyticindustrialprocesses,environmentalissues,catalyticmaterials,especiallytheirexpectedcatalyticproperties,oncatalystcharacterisationbyphysicalmethodsanddevelopmentofinsituconditions,i.e.,characterisationunderactualworkingconditionswithreactantsandproductsanalyzedon-line.Emphasisisalsoplacedonhighselectivityincatalyticreactionsandthemajorchallengesforthefuture,suchasenvironmentalissues,energysupply,pollutioncontrolforvehiclesandindustrialplants,air/VOCs/waterpurification,hydrogensourcesandcarbondioxidestorage/upgrading,transformationofbiomassasapromisingsourceofrawmaterials,andcatalyticwatersplittingperspectives

Thisreviewisasurveyofheterogeneouscatalysisandisnotcomprehensivebutleadstotheconclusionthat,althoughmanycatalystsandcatalyticprocesseshavealreadybeendiscoveredanddevelopedoverthepastcentury,manyopportunitiesneverthelessexistfornewdevelopments,newprocessesandnewcatalyticmaterials.Itfollowsthatsubstantialchallengesexistfortheyoungergenerationofresearchersandengineers,asemphasizedattheendofthemanuscript

© 2012 Elsevier B.V All rights reserved

1 Introduction

∗ Corresponding author Tel.: +33 144275514.

E-mail address: jacques.vedrine@upmc.fr (J.C Védrine).

[7–13]

0920-5861/$ – see front matter © 2012 Elsevier B.V All rights reserved.

Trang 2

Table 1

Historical aspects in heterogeneous catalysis [7–13]

2 The catalysts

Trang 3

fine particles Moreover, one of the most important

state

MeAPOs

process)

Trang 4

Fig 2.Illustration of a molecule in a pore and shape selectivity in dealuminated mordenite zeolite.

Trang 5

Fig 4. Variations of van der Waals energy W and the force between a

spheri-cal molecule (radius d) and a spherical micropore (radius a) vs curvature (s = d/a)

[47–49]

Fig.3

Fig 5.Adipic acid processes using the old process (left) and the new process (right).

[51–58]hasbeendiscoveredattheBoreskovInstituteofCatalysis

Trang 6

Fig 6. Scheme of the effect of the adsorption rate of reactants on the reactivity,

depending on the polarity of the reactants versus that of the zeolite [63,64]

[65–68].However,aconvenientwaytoincreasep-xylene

MCM-22 [100–102],discovered byMobil, which hasa uniquecrystal

Fig 7. Historical view of functions of coordination polymers reported from 1990 to 2005 Structures of 3-D porous coordination polymers, [Cu(SiF 6 )(4,4  -bpy) 2 ] n(1,left), [Zn O(BDC) ] (2,right), and the 1-D oxygen array are listed [124]

Trang 7

Fig 8. Self-assembly of polymetallic cluster nodes (left; top: m4-oxo{M4 O(-CO 2 ) 6};bottom:{M2 (-CO 2 ) 4}paddlewheel) and organic linkers (right) yielding metal–organic frameworks (center) [125,126]

etal.[104,105]describedthemicroporousaluminophosphates

Fig 9. MOFs structures: Left: MIL-53, metal terephtalate (with Al, Cr, Fe ou V), which captures hydrogen into the framework formed of tunnels Centre and right: MIL-100, whose octahedra, constituted by chromates (CrO ), organise in tetrahedra and form cavities of diameter 2–3 nm as observed by electron microscopy from [127]

Trang 8

thestructure type.AccordingtoMartens[112],eventhehighly

Fig 10.MOF: MIL-101 metal terphthalate with cages of 3.2 nm [128]

[127]

Fig 11. Schematic behavior observed upon adsorption, desorption of guest molecules (a) induced pores (b) breathing pore; (c) pores exchanging guest with

Trang 9

Table 2

Comparison of MOFs with zeolites for some properties relevant to catalysis [131]

Brønsted acidity Bridging Si(OH)Al hydroxyl groups Introduced by post synthesis

Diffusion High for small molecules in gas phase, slow in liquid phase High but strongly influenced by linkers

Basicity Arises from framework oxygens Introduced post synthesis or through linkers

Framework defects Important role in many reactions Expected to play a minor role

Active site environment Mostly hydrophilic, but may also be hydrophobic Considerably hydrophobic

Poisoning of active sites Reactivation by thermal treatment Thermal treatment not valid

Chirality Not possible or difficult Homochiral solid from chiral linkers or post synthesis modifications

[137],etc

enzymes

Trang 10

Fig 13.World energy consumption in 2005 (∼13 TW or 87 Gbarrels oil) [245]

[141],bettermultifunctionalitytoprocessalargevarietyof

in1991 [154].CNTs have highlyunique electronic,mechanical,

FSM-16[171].Atthemicroscopicscale,thesematerialsareessentially

[200–210],moleculardesigneddispersionapproach[211–213]and

Trang 11

[237]andsynergyeffects[238–240].Heterogeneousbifunctional

[242]havealsoshownthatafterabifuntionalcatalyst,9-thiourea

3 Energy resources

Trang 12

Fig 14. Some perspectives of oil demand in a near future from WEO 2006 Note that

billions tonnes should read giga tonnes.

Fig.14

Fig.15

Trang 13

Table 3

Main chemical products from natural gas.

Source: IFP Energies Nouvelles.

fuel

inTable4.Woodisanimportantsourceforlignin.Theproduction

Trang 14

Table 4

Crops mobilised for energy pruposes versus total production in 2007.

Total harvest (Mt) % for bioenergies

From FAOSTA, FAPRI.

4 Hydrogen as a future energy source

product

[260,261],Ni[262,263],Cu[264,265],Ru[266,267],Au[268,269],

Pt[270]

production

Table 5

Commercial uses of wood (in Mm 3 ) and breakdown of conventional energy uses in 2007.

Wood harvest Sawn wood Wood for paper Wood for board Wood for fuel Fuel wood %

Trang 15

system

candidates

infancy

RuO [282]

Trang 16

5 Challenges for refineries

[290].TheconfinementofironoxideparticlesinsidetheCNTsor

(FCC)

[300,301] A two-stage hydrogenation process is usually used

[330–332]andnoblemetalcatalysts[300,324,333–349].Excellent

6 CO 2 emissions as a prospective source for fuels and chemicals [353–358]

Trang 17

changes inthe climate Theenergy sector,which is thelargest

7 Activation and upgrading of light alkanes

Trang 18

8 Waste air, water and VOCs treatments

compounds

[390,391]

[388,389,392–402].Themostactivecatalystsarethenoblemetal

Trang 19

9 Photocatalysis

[282,420–423]

TiO2[423].ThreecommonTiO2polymorphsexistinnature,which,

carriers

10 Solar photon conversion [433]

Trang 20

Fig 16.Major factors influencing selectivity in catalytic reactions [455]

11 Green chemistry – selectivity in catalysis

[436].Theprincipleofgreenchemistryisthatratherthanusing

[293,442–447].Highselectivityisthemostimportantaspectofa

12 Major challenges for the future

field

Trang 21

Table 6

Major problems and challenges in automotive car industry.

Lean burn gasoline engine Efficiency higher by ca 25% NO x trapping; SOx tolerant traps Dry particulate emissions from diesel engines DOC reduces SOF, HC, and CO; no

current catalyst/system to treat dry soot

Catalyst to lower lightoff T of soot; addition of Cu and Ce-organometallics

to fuel Diesel engine lean NO x Direct decomposition or reduction of

NO x in O 2 -rich atmosphere

Larger operating window for PM or BM-catalysts, NH 3 or urea SCR.

resources

13 Conclusions

[455].Sunlightandwaterareinfiniteresourcesandcanprovidethe

Chem-[2] A Corma, Chemical Reviews 97 (1997) 2373.

[3] G.A Somorjai, R.M Rioux, Catalysis Today 100 (2005) 201.

[4] A Kieboom, J Moulijn, P van Leeuwen, R van Santen, Studies in Surface Science and Catalysis 123 (2000) 3.

[5] B Lindstrom, L Petterson, CatTech 7 (2003) 130.

[6] J.N Armor, Catalysis Today 163 (2010) 3.

[7] E Jones, Industrial and Engineering Chemistry 42 (1950) 2208.

[8] Ya Guerasimov, V Dreving, E Eriomin, A Kiseliov, V Lebedev, G Pacehnkov, Ashliguin Curso de Fisica Quimica, Tomo II, Editorial MIR, Moscow, 1971 [9] H Davy, Philosophical Transactions of the Royal Society 97 (1817) 45 [10] A Fusinieri, Giurnali Fisica 7 (1824) 371.

[11] J Berzelius, Annales de chimie et de physique 61 (1836) 146.

[12] F Fischer, H Tropsch, Brennst.-Chem 4 (1923) 276.

[13] F Fischer, H Tropsch, Brennst.-Chem 7 (1926) 97.

[14] J.C Védrine, Catalysis Today 56 (2000) 455.

[15] A.D McNaught, A Wilkinson, IUPAC Compendium of Chemical Terminology, 2nd edition, British Royal Society of Chemistry, Cambridge, UK, 1997 [16] J.H Clark, D.J Macquarrie, K Wilson, Studies in Surface Science and Catalysis

[19] J.J Blazek, Oil and Gas Journal 69 (1971) 66.

[20] S.C Eastwood, R.D Drew, F.D Hartzell, Oil and Gas Journal 60 (1962) 152 [21] S.C Eastwood, C.J Plank, P.B Weiss, 8th World Petr Congr 4 (1971) 245 [22] A.W Chester, W.E Cormier Jr., W.A Strover, US Patent 4,368,114 (1983) [23] N.Y Chen, A.B Ketkar, D.M Nace, A.Y Kam, C.R Kennedy, R.A Ware, European Patent Application (1986) 186446.

[24] C Marcilly, J.M Daves, F Raatz, European Patent Application 278 (1988) 839, assigned to IFP.

[25] N.Y Chen, W Grawood, F Dwyer, Shape Selective Catalysis in Industrial cations, Marcel Dekker, New York, 1995.

Appli-[26] R.M Barrer, Advances in Chemistry Series 102 (1971) 1.

[27] S.M Csicsery, ACS Monograph 171 (1976) 680.

[28] E.G Derouane, in: M.S Whittingham, A Jacobson (Eds.), Intercalation istry, Academic Press, New York, 1982, p 101.

Chem-[29] E.G Derouane, Z Gabelica, Journal of Catalysis 65 (1980) 486.

[30] N.Y Chen, S.J Lucki, E.B Mower, Journal of Catalysis 13 (1969) 329 [31] R.M Dessau, ACS Symposium Series 135 (1980) 123.

[32] P Tynjala, T.T Pakkanen, Journal of Molecular Catalysis A – Chemical 122 (1997) 159.

[33] S Inagaki, K Kamino, E Kikuchi, M Matsukata, Applied Catalysis A – General

318 (2007) 22.

[34] E Dumitriu, I Fechete, P Caullet, H Kessler, V Hulea, C Chelaru, T Hulea, X Bourdon, Studies in Surface Science and Catalysis 142A (2001) 951 [35] C Brechtelsbauer, G Emig, Applied Catalysis A – General 161 (1997) 79 [36] I Fechete, A Simon-Masseron, E Dumitriu, D Lutic, P Caullet, H Kessler, Revue Roumaine de Chimie 53 (2008) 55.

[37] F.J Llopis, G Sastre, A Corma, Journal of Catalysis 227 (2004) 227 [38] I Fechete, P Caullet, E Dumitriu, V Hulea, H Kessler, Applied Catalysis A – General 280 (2005) 245.

[39] E Derouane, J.C Védrine, Journal of Molecular Catalysis 8 (1980) 479 [40] J.C Védrine, A Auroux, P Dejaifve, V Ducarme, H Hoser, S.B Zhou, Journal of Catalysis 73 (1982) 147.

[41] E.G Derouane, P Dejaifve, Z Gabelica, J.C Védrine, Faraday Discussions 72 (1982) 331.

[42] M.B Sayed, J.C Védrine, Journal of Catalysis 101 (1986) 43.

[43] G Coudurier, A Auroux, J.C Védrine, R.D Farlee, L Abrams, R.D Shannon, Journal of Catalysis 108 (1987) 1.

Trang 22

[45] J.C Védrine, in: R.K Grasselli, J.F Bradzil (Eds.), Solid State Chemistry in

Catal-ysis, 249, ACS Symp Ser., 1985, p 257.

[46] J Frilette, W.O Haag, R.M Lago, Journal of Catalysis 67 (1981) 218.

[47] E.G Derouane, Journal of Catalysis 100 (1986) 541.

[48] E.G Derouane, J.M André, A.A Lucas, Chemical Physics Letters 137 (1987)

336;

E.G Derouane, Chemical Physics Letters 142 (1987) 200.

[49] E.G Derouane, J.M André, A.A Lucas, Journal of Catalysis 110 (1988) 58.

[50] B.F Mentzen, J.C Védrine, R Khouzami, G Coudurier, Comptes Rendus de

l’Académie des Sciences – Series II 305 (1987) 263.

[51] G.I Panov, G.A Sheveleva, A.S Kharitonov, V.N Romannikov, L.A Vostrikova,

Applied Catalysis A – General 82 (1992) 31.

[52] G.I Panov, A.K Uriarte, M.A Rodkin, V.I Sobolev, Catalysis Today 41 (1998)

365.

[53] G.I Panov, CatTech 4 (2000) 18.

[54] L.V Pirutko, S.V Chernyavsky, A.K Uriarte, G.I Panov, Applied Catalysis A –

General 227 (2002) 143.

[55] G.K.A Dubkov, N.S Ovanesyan, A.A Shteinman, E.V Starokon, G.I Panov,

Journal of Catalysis 207 (2002) 341.

[56] T Ren, L Yan, X Zhang, J Suo, Applied Catalysis A – General 244 (2003) 11.

[57] J.B Taboada, E.J.M Hensen, I.W.C.E Arends, G Mul, A.R Overweg, Catalysis

Today 110 (2005) 221.

[58] D Meloni, R Monaci, E Rombi, C Guimon, H Martinez, I Fechete, E Dumitriu,

Studies in Surface Science and Catalysis 142 (2002) 167.

[59] S Grucarevic, V Merz, Chemische Berichte 6 (1873) 60.

[60] P.H Gore, in: G.A Olah (Ed.), Friedel-Crafts and Related Reactions, vol III, John

Wiley & Sons Inc, London, 1964, p 1 (Part 1).

[61] G.A Olah, Friedel-Crafts Chemistry, J Wiley, New York, 1973.

[62] G Sartori, R Maggi, Chemical Reviews 106 (2006) 1077.

[63] E.G Derouane, C.J Dillon, D Bethell, S.B Derouane-Abd Hamid, Journal of

Catalysis 187 (1999) 209.

[64] E.G Derouane, G Crehan, C.J Dillon, D Bethell, H He, S.B Derouane-Abd

Hamid, Journal of Catalysis 194 (2000) 410.

[65] H.G Franck, J.V Standelhofer, Industrial Aromatic Chemistry, Springer, Berlin,

1988.

[66] J.S Beck, W.O Haag, in: G Ertl, H Knozinger, J Weitkamp (Eds.), Handbook

of the Heterogeneous Catalysis, vol 5, Wiley VCH, Weinheim, 1997, p 2136.

[67] F Alario, M Guisnet, in: M Guisnet, J.P Gilson (Eds.), Zeolites for Cleaner

Technologies, Imperial College Press, London, 2002, p 189.

[68] F.G Dwyer, Studies in Surface Science and Catalysis 67 (1991) 179.

[69] Z Zhu, Q Chen, W Zhu, D Kong, C Li, Catalysis Today 93–95 (2004) 321.

[70] P Ratnasamy, R.N Bhat, S.K Pokhriyal, Journal of Catalysis 119 (1989) 65.

[71] I Benito, A Del Riego, M Martinea, Applied Catalysis A – General 180 (1999)

[76] W.S Wieland, R.J Davis, J.M Garcesy, Journal of Catalysis 173 (1998) 490.

[77] J.C Védrine, A Auroux, G Coudurier, P Engelhard, J.P Gallez, G Szabo, in:

D Olson, A Bisio (Eds.), Proceedings 6th International Zeolite Confererence,

Butterworths, Guilford, 1984, p 497.

[78] T Nobusawa, J.C Védrine, Catalysis Science & Technology 1 (1991) 97.

[79] V Ducarme, J.C Védrine, Applied Catalysis 17 (1985) 175.

[80] T.-C Tsai, Applied Catalysis A – General 301 (2006) 292.

[81] S Amokrane, D Nibou, Comptes Rendus de l’Académie des Sciences 13 (2010)

538.

[82] I Fechete, E Gautron, E Dumitriu, D Lutic, P Caullet, H Kessler, Revue

Roumaine de Chimie 53 (2008) 49.

[83] V Mavrodinova, M Popova, Catalysis Communications 6 (2005) 247.

[84] B Sulikowski, R Rachwalik, Applied Catalysis A – General 256 (2003) 173.

[85] Roldán, F.J Romero, C Jiménez, V Borau, J.M Marinas, Applied Catalysis A –

[88] V Mavrodinova, M Popova, R.M Mihályi, G Páł-Borbély, Ch Minchev,

Applied Catalysis A – General 248 (2003) 197.

[89] A.B Halgeri, T.S.R Prasada Rao, Studies in Surface Science and Catalysis 24

(1985) 667.

[90] N.M Tukur, S Al-Khattaf, Chemical Engineering Journal 166 (2011) 348.

[91] S Zheng, A Jentys, J.A Lercher, Journal of Catalysis 241 (2006) 304.

[92] M Guisnet, N.S Gnep, S Morin, Microporous and Mesoporous Materials

35–36 (2000) 47.

[93] K.J Chao, L.J Leu, Zeolites 9 (1989) 193.

[94] A Corma, F Llopis, J.B Monton, Studies in Surface Science and Catalysis 75

(1993) 1145.

[95] D Fraenkel, M Levy, Journal of Catalysis 118 (1989) 10.

[96] H Xu, S Pu, T Inui, Catalysis Letters 41 (1996) 83.

[97] S Namba, H Ohta, J.H Kim, T Yashima, Studies in Surface Science and

Catal-[98] J Kim, T Kunieda, M Niwa, Journal of Catalysis 173 (1998) 433.

[99] A.K Aboul-Gheit, S.M Abdel-Hamid, F.M Abdel-Hay, Applied Catalysis A – General 93 (1993) 131.

[100] B Adair, C Chen, K Wan, M.E Davis, Microporous Materials 7 (1996) 261 [101] R Wendelbo, R Roqul-Malherbe, Microporous Materials 10 (1997) 231 [102] P Wu, T Komatsu, T Yashima, Microporous and Mesoporous Materials 22 (1998) 343.

[103] M.K Rubin, P Chu, US Patent 4,954,325 (1990).

[104] S.T Wilson, B.M Lok, C.A Messina, T.R Cannan, E.M Flanigen, Journal of the American Chemical Society 104 (1982) 1146.

[105] S.T Wilson, B.M Lok, E.M Flanigen, US Patent 4,310,440 (1982).

[106] W.M Meier, D.H Olson, Atlas of Zeolite Structure Types, 2nd edition, worths, 1987.

Butter-[107] B.F Mentzen, J.C Védrine, R Khouzami, Comptes Rendus de l’Académie des Sciences – Series II 304 (1987) 11.

[108] R Khouzami, G Coudurier, B.F Mentzen, J.C Védrine, in: P.J Grobet, et al (Eds.), Innovation in Zeolite Material Science, vol 37, Studies in Surface Sci- ence and Catalysis, 1987, p 355.

[109] J.C Védrine, G Coudurier, B.F Mentzen, in: W.H Flank, T.E Whyte (Eds.), Prospective in Molecular Sieve Science, vol 368, ACS Symposium Series, Washington, 1988, p 66.

[110] R Szostak, Molecular Sieves, Van Nostrand Reinhold Catalysis Ser, New York, 1989.

[111] B.M Lok, C.A Messina, R.L Patton, R.T Gajek, T.R Cannan, E.M Flanigen, Journal of the American Chemical Society 106 (1984) 6092.

[112] J.A Martens, M Martens, P Grobet, P.A Jacobs, Studies in Surface Science and Catalysis 37 (1988) 97.

[113] R.J Pellet, P.K Coughlin, M.T Staniulis, G.N Long, J.A Rabo, US Patent 4,842,714 (1989).

[114] G.C Edwards, J.P Gilson, C.V McDaniel, US Patent 4,681,864 (1987) [115] S Cheng, Catalysis Today 49 (1999) 303.

[116] Y Ma, W Tong, H Zhou, S.L Suib, Microporous and Mesoporous Materials 37 (2000) 243.

[117] F Marme, G Coudurier, J.C Védrine, Studies in Surface Science and Catalysis

[126] M Eddaoudi, J Kim, N Rosi, D Vodak, J Wachter, M.O Keeffe, O.M Yaghi, Science 295 (2002) 469.

[127] G Ferey, Chemical Society Reviews 37 (2008) 191.

[128] G Férey, C Mellot-Draznieks, C Serre, F Millange, Accounts of Chemical Research 38 (2005) 217.

[129] K Uemuraa, R Matsudab, S Kitagawa, Journal of Solid State Chemistry 178 (2005) 2420.

[130] L Josien, A Simon-Masseron, V Gramlich, J Patarin, L Rouleau,

[141] A Karlsson, M Stöcker, R Schmidt, Microporous and Mesoporous Materials

[144] B van der Voort, P.I Ravikovitch, K.P de Jong, M Benjelloun, E van Bavel, A.H Janssen, A.V Neimark, B.M Weckhuysen, E.F Vansant, Journal of Physical Chemistry B 106 (2002) 5873.

[145] C Yu, J Fan, B Tain, D Zhao, G.D Stucky, Advanced Materials 14 (2002) 1742 [146] J Pérez-Ramirez, C.H Christensen, K Egeblad, C.H Christensen, J.C Groen,

Ngày đăng: 09/10/2015, 00:06

TỪ KHÓA LIÊN QUAN