Quá khứ, hiện tại và tương lai của xúc tác dị thể. Xúc tác dị thể là xúc tác trong đó chất xúc tác ở khác pha với chất phản ứng.Chất xúc tác dị thể thường là chất rắn và phản ứng xảy ra trên bề mặt chất xúc tác. Thường gặp nhất là những hệ xúc tác dị thể gồm pha rắn và pha khí (các chất tham gia phản ứng và sản phẩm phản ứng). Ðặc điểm của phản ứng xúc tác dị thể là phản ứng diễn ra nhiều giai đoạn, có hai đặc trưng: Quá trình xảy ra ở lớp đơn phân tử trên bề mặt chất xúc tác. Ðặc trưng này thể hiện ở chỗ trong xúc tác dị thể thì khuếch tán và hấp phụ đóng vai trò quan trọng. Chất xúc tác không phải là những phân tử, ion riêng rẽ mà là một tổ hợp những nguyên tử, ion
Trang 1Ioana Fechetea, Ye Wangb, Jacques C Védrinec,∗
a Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse, CNRS UMR 7515, Université de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg, France
b State Key Laboratory of Physical Chemistry of Solid Surfaces and National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
c Laboratoire de Réactivité de Surface, CNRS UMR 7197, Université Pierre et Marie Curie, 4 Place Jussieu, F- 75252 Paris, France
Thisreviewhighlightskeycatalyticdiscoveriesandthemainindustrialcatalyticprocessesoverthelast
300yearsthatinvolvedcommodities,finechemicals,petrochemicals,petroleumtransformationforfuelsandenergysupply,emissioncontrol,andsoforth.Inthepast,discoverieshaveoftenfollowedeventssuch
aswarsorembargos,whereasthecurrentdrivingforcesofstudies,researchesandthendiscoveriesaim
atabetterunderstandingofcatalyticprocesses,atreducingthecostsofrawmaterialsandprocesses,atdevelopingnewcatalyticmaterialsandataddressingenvironmentalissues.Thisreviewfocusesonthehistoryofmanycatalyticindustrialprocesses,environmentalissues,catalyticmaterials,especiallytheirexpectedcatalyticproperties,oncatalystcharacterisationbyphysicalmethodsanddevelopmentofinsituconditions,i.e.,characterisationunderactualworkingconditionswithreactantsandproductsanalyzedon-line.Emphasisisalsoplacedonhighselectivityincatalyticreactionsandthemajorchallengesforthefuture,suchasenvironmentalissues,energysupply,pollutioncontrolforvehiclesandindustrialplants,air/VOCs/waterpurification,hydrogensourcesandcarbondioxidestorage/upgrading,transformationofbiomassasapromisingsourceofrawmaterials,andcatalyticwatersplittingperspectives
Thisreviewisasurveyofheterogeneouscatalysisandisnotcomprehensivebutleadstotheconclusionthat,althoughmanycatalystsandcatalyticprocesseshavealreadybeendiscoveredanddevelopedoverthepastcentury,manyopportunitiesneverthelessexistfornewdevelopments,newprocessesandnewcatalyticmaterials.Itfollowsthatsubstantialchallengesexistfortheyoungergenerationofresearchersandengineers,asemphasizedattheendofthemanuscript
© 2012 Elsevier B.V All rights reserved
1 Introduction
∗ Corresponding author Tel.: +33 144275514.
E-mail address: jacques.vedrine@upmc.fr (J.C Védrine).
[7–13]
0920-5861/$ – see front matter © 2012 Elsevier B.V All rights reserved.
Trang 2Table 1
Historical aspects in heterogeneous catalysis [7–13]
2 The catalysts
Trang 3fine particles Moreover, one of the most important
state
MeAPOs
process)
Trang 4Fig 2.Illustration of a molecule in a pore and shape selectivity in dealuminated mordenite zeolite.
Trang 5Fig 4. Variations of van der Waals energy W and the force between a
spheri-cal molecule (radius d) and a spherical micropore (radius a) vs curvature (s = d/a)
[47–49]
Fig.3
Fig 5.Adipic acid processes using the old process (left) and the new process (right).
[51–58]hasbeendiscoveredattheBoreskovInstituteofCatalysis
Trang 6Fig 6. Scheme of the effect of the adsorption rate of reactants on the reactivity,
depending on the polarity of the reactants versus that of the zeolite [63,64]
[65–68].However,aconvenientwaytoincreasep-xylene
MCM-22 [100–102],discovered byMobil, which hasa uniquecrystal
Fig 7. Historical view of functions of coordination polymers reported from 1990 to 2005 Structures of 3-D porous coordination polymers, [Cu(SiF 6 )(4,4 -bpy) 2 ] n(1,left), [Zn O(BDC) ] (2,right), and the 1-D oxygen array are listed [124]
Trang 7Fig 8. Self-assembly of polymetallic cluster nodes (left; top: m4-oxo{M4 O(-CO 2 ) 6};bottom:{M2 (-CO 2 ) 4}paddlewheel) and organic linkers (right) yielding metal–organic frameworks (center) [125,126]
etal.[104,105]describedthemicroporousaluminophosphates
Fig 9. MOFs structures: Left: MIL-53, metal terephtalate (with Al, Cr, Fe ou V), which captures hydrogen into the framework formed of tunnels Centre and right: MIL-100, whose octahedra, constituted by chromates (CrO ), organise in tetrahedra and form cavities of diameter 2–3 nm as observed by electron microscopy from [127]
Trang 8thestructure type.AccordingtoMartens[112],eventhehighly
Fig 10.MOF: MIL-101 metal terphthalate with cages of 3.2 nm [128]
[127]
Fig 11. Schematic behavior observed upon adsorption, desorption of guest molecules (a) induced pores (b) breathing pore; (c) pores exchanging guest with
Trang 9Table 2
Comparison of MOFs with zeolites for some properties relevant to catalysis [131]
Brønsted acidity Bridging Si(OH)Al hydroxyl groups Introduced by post synthesis
Diffusion High for small molecules in gas phase, slow in liquid phase High but strongly influenced by linkers
Basicity Arises from framework oxygens Introduced post synthesis or through linkers
Framework defects Important role in many reactions Expected to play a minor role
Active site environment Mostly hydrophilic, but may also be hydrophobic Considerably hydrophobic
Poisoning of active sites Reactivation by thermal treatment Thermal treatment not valid
Chirality Not possible or difficult Homochiral solid from chiral linkers or post synthesis modifications
[137],etc
enzymes
Trang 10Fig 13.World energy consumption in 2005 (∼13 TW or 87 Gbarrels oil) [245]
[141],bettermultifunctionalitytoprocessalargevarietyof
in1991 [154].CNTs have highlyunique electronic,mechanical,
FSM-16[171].Atthemicroscopicscale,thesematerialsareessentially
[200–210],moleculardesigneddispersionapproach[211–213]and
Trang 11[237]andsynergyeffects[238–240].Heterogeneousbifunctional
[242]havealsoshownthatafterabifuntionalcatalyst,9-thiourea
3 Energy resources
Trang 12Fig 14. Some perspectives of oil demand in a near future from WEO 2006 Note that
billions tonnes should read giga tonnes.
Fig.14
Fig.15
Trang 13Table 3
Main chemical products from natural gas.
Source: IFP Energies Nouvelles.
fuel
inTable4.Woodisanimportantsourceforlignin.Theproduction
Trang 14Table 4
Crops mobilised for energy pruposes versus total production in 2007.
Total harvest (Mt) % for bioenergies
From FAOSTA, FAPRI.
4 Hydrogen as a future energy source
product
[260,261],Ni[262,263],Cu[264,265],Ru[266,267],Au[268,269],
Pt[270]
production
Table 5
Commercial uses of wood (in Mm 3 ) and breakdown of conventional energy uses in 2007.
Wood harvest Sawn wood Wood for paper Wood for board Wood for fuel Fuel wood %
Trang 15system
candidates
infancy
RuO [282]
Trang 165 Challenges for refineries
[290].TheconfinementofironoxideparticlesinsidetheCNTsor
(FCC)
[300,301] A two-stage hydrogenation process is usually used
[330–332]andnoblemetalcatalysts[300,324,333–349].Excellent
6 CO 2 emissions as a prospective source for fuels and chemicals [353–358]
Trang 17changes inthe climate Theenergy sector,which is thelargest
7 Activation and upgrading of light alkanes
Trang 188 Waste air, water and VOCs treatments
compounds
[390,391]
[388,389,392–402].Themostactivecatalystsarethenoblemetal
Trang 199 Photocatalysis
[282,420–423]
TiO2[423].ThreecommonTiO2polymorphsexistinnature,which,
carriers
10 Solar photon conversion [433]
Trang 20Fig 16.Major factors influencing selectivity in catalytic reactions [455]
11 Green chemistry – selectivity in catalysis
[436].Theprincipleofgreenchemistryisthatratherthanusing
[293,442–447].Highselectivityisthemostimportantaspectofa
12 Major challenges for the future
field
Trang 21Table 6
Major problems and challenges in automotive car industry.
Lean burn gasoline engine Efficiency higher by ca 25% NO x trapping; SOx tolerant traps Dry particulate emissions from diesel engines DOC reduces SOF, HC, and CO; no
current catalyst/system to treat dry soot
Catalyst to lower lightoff T of soot; addition of Cu and Ce-organometallics
to fuel Diesel engine lean NO x Direct decomposition or reduction of
NO x in O 2 -rich atmosphere
Larger operating window for PM or BM-catalysts, NH 3 or urea SCR.
resources
13 Conclusions
[455].Sunlightandwaterareinfiniteresourcesandcanprovidethe
Chem-[2] A Corma, Chemical Reviews 97 (1997) 2373.
[3] G.A Somorjai, R.M Rioux, Catalysis Today 100 (2005) 201.
[4] A Kieboom, J Moulijn, P van Leeuwen, R van Santen, Studies in Surface Science and Catalysis 123 (2000) 3.
[5] B Lindstrom, L Petterson, CatTech 7 (2003) 130.
[6] J.N Armor, Catalysis Today 163 (2010) 3.
[7] E Jones, Industrial and Engineering Chemistry 42 (1950) 2208.
[8] Ya Guerasimov, V Dreving, E Eriomin, A Kiseliov, V Lebedev, G Pacehnkov, Ashliguin Curso de Fisica Quimica, Tomo II, Editorial MIR, Moscow, 1971 [9] H Davy, Philosophical Transactions of the Royal Society 97 (1817) 45 [10] A Fusinieri, Giurnali Fisica 7 (1824) 371.
[11] J Berzelius, Annales de chimie et de physique 61 (1836) 146.
[12] F Fischer, H Tropsch, Brennst.-Chem 4 (1923) 276.
[13] F Fischer, H Tropsch, Brennst.-Chem 7 (1926) 97.
[14] J.C Védrine, Catalysis Today 56 (2000) 455.
[15] A.D McNaught, A Wilkinson, IUPAC Compendium of Chemical Terminology, 2nd edition, British Royal Society of Chemistry, Cambridge, UK, 1997 [16] J.H Clark, D.J Macquarrie, K Wilson, Studies in Surface Science and Catalysis
[19] J.J Blazek, Oil and Gas Journal 69 (1971) 66.
[20] S.C Eastwood, R.D Drew, F.D Hartzell, Oil and Gas Journal 60 (1962) 152 [21] S.C Eastwood, C.J Plank, P.B Weiss, 8th World Petr Congr 4 (1971) 245 [22] A.W Chester, W.E Cormier Jr., W.A Strover, US Patent 4,368,114 (1983) [23] N.Y Chen, A.B Ketkar, D.M Nace, A.Y Kam, C.R Kennedy, R.A Ware, European Patent Application (1986) 186446.
[24] C Marcilly, J.M Daves, F Raatz, European Patent Application 278 (1988) 839, assigned to IFP.
[25] N.Y Chen, W Grawood, F Dwyer, Shape Selective Catalysis in Industrial cations, Marcel Dekker, New York, 1995.
Appli-[26] R.M Barrer, Advances in Chemistry Series 102 (1971) 1.
[27] S.M Csicsery, ACS Monograph 171 (1976) 680.
[28] E.G Derouane, in: M.S Whittingham, A Jacobson (Eds.), Intercalation istry, Academic Press, New York, 1982, p 101.
Chem-[29] E.G Derouane, Z Gabelica, Journal of Catalysis 65 (1980) 486.
[30] N.Y Chen, S.J Lucki, E.B Mower, Journal of Catalysis 13 (1969) 329 [31] R.M Dessau, ACS Symposium Series 135 (1980) 123.
[32] P Tynjala, T.T Pakkanen, Journal of Molecular Catalysis A – Chemical 122 (1997) 159.
[33] S Inagaki, K Kamino, E Kikuchi, M Matsukata, Applied Catalysis A – General
318 (2007) 22.
[34] E Dumitriu, I Fechete, P Caullet, H Kessler, V Hulea, C Chelaru, T Hulea, X Bourdon, Studies in Surface Science and Catalysis 142A (2001) 951 [35] C Brechtelsbauer, G Emig, Applied Catalysis A – General 161 (1997) 79 [36] I Fechete, A Simon-Masseron, E Dumitriu, D Lutic, P Caullet, H Kessler, Revue Roumaine de Chimie 53 (2008) 55.
[37] F.J Llopis, G Sastre, A Corma, Journal of Catalysis 227 (2004) 227 [38] I Fechete, P Caullet, E Dumitriu, V Hulea, H Kessler, Applied Catalysis A – General 280 (2005) 245.
[39] E Derouane, J.C Védrine, Journal of Molecular Catalysis 8 (1980) 479 [40] J.C Védrine, A Auroux, P Dejaifve, V Ducarme, H Hoser, S.B Zhou, Journal of Catalysis 73 (1982) 147.
[41] E.G Derouane, P Dejaifve, Z Gabelica, J.C Védrine, Faraday Discussions 72 (1982) 331.
[42] M.B Sayed, J.C Védrine, Journal of Catalysis 101 (1986) 43.
[43] G Coudurier, A Auroux, J.C Védrine, R.D Farlee, L Abrams, R.D Shannon, Journal of Catalysis 108 (1987) 1.
Trang 22[45] J.C Védrine, in: R.K Grasselli, J.F Bradzil (Eds.), Solid State Chemistry in
Catal-ysis, 249, ACS Symp Ser., 1985, p 257.
[46] J Frilette, W.O Haag, R.M Lago, Journal of Catalysis 67 (1981) 218.
[47] E.G Derouane, Journal of Catalysis 100 (1986) 541.
[48] E.G Derouane, J.M André, A.A Lucas, Chemical Physics Letters 137 (1987)
336;
E.G Derouane, Chemical Physics Letters 142 (1987) 200.
[49] E.G Derouane, J.M André, A.A Lucas, Journal of Catalysis 110 (1988) 58.
[50] B.F Mentzen, J.C Védrine, R Khouzami, G Coudurier, Comptes Rendus de
l’Académie des Sciences – Series II 305 (1987) 263.
[51] G.I Panov, G.A Sheveleva, A.S Kharitonov, V.N Romannikov, L.A Vostrikova,
Applied Catalysis A – General 82 (1992) 31.
[52] G.I Panov, A.K Uriarte, M.A Rodkin, V.I Sobolev, Catalysis Today 41 (1998)
365.
[53] G.I Panov, CatTech 4 (2000) 18.
[54] L.V Pirutko, S.V Chernyavsky, A.K Uriarte, G.I Panov, Applied Catalysis A –
General 227 (2002) 143.
[55] G.K.A Dubkov, N.S Ovanesyan, A.A Shteinman, E.V Starokon, G.I Panov,
Journal of Catalysis 207 (2002) 341.
[56] T Ren, L Yan, X Zhang, J Suo, Applied Catalysis A – General 244 (2003) 11.
[57] J.B Taboada, E.J.M Hensen, I.W.C.E Arends, G Mul, A.R Overweg, Catalysis
Today 110 (2005) 221.
[58] D Meloni, R Monaci, E Rombi, C Guimon, H Martinez, I Fechete, E Dumitriu,
Studies in Surface Science and Catalysis 142 (2002) 167.
[59] S Grucarevic, V Merz, Chemische Berichte 6 (1873) 60.
[60] P.H Gore, in: G.A Olah (Ed.), Friedel-Crafts and Related Reactions, vol III, John
Wiley & Sons Inc, London, 1964, p 1 (Part 1).
[61] G.A Olah, Friedel-Crafts Chemistry, J Wiley, New York, 1973.
[62] G Sartori, R Maggi, Chemical Reviews 106 (2006) 1077.
[63] E.G Derouane, C.J Dillon, D Bethell, S.B Derouane-Abd Hamid, Journal of
Catalysis 187 (1999) 209.
[64] E.G Derouane, G Crehan, C.J Dillon, D Bethell, H He, S.B Derouane-Abd
Hamid, Journal of Catalysis 194 (2000) 410.
[65] H.G Franck, J.V Standelhofer, Industrial Aromatic Chemistry, Springer, Berlin,
1988.
[66] J.S Beck, W.O Haag, in: G Ertl, H Knozinger, J Weitkamp (Eds.), Handbook
of the Heterogeneous Catalysis, vol 5, Wiley VCH, Weinheim, 1997, p 2136.
[67] F Alario, M Guisnet, in: M Guisnet, J.P Gilson (Eds.), Zeolites for Cleaner
Technologies, Imperial College Press, London, 2002, p 189.
[68] F.G Dwyer, Studies in Surface Science and Catalysis 67 (1991) 179.
[69] Z Zhu, Q Chen, W Zhu, D Kong, C Li, Catalysis Today 93–95 (2004) 321.
[70] P Ratnasamy, R.N Bhat, S.K Pokhriyal, Journal of Catalysis 119 (1989) 65.
[71] I Benito, A Del Riego, M Martinea, Applied Catalysis A – General 180 (1999)
[76] W.S Wieland, R.J Davis, J.M Garcesy, Journal of Catalysis 173 (1998) 490.
[77] J.C Védrine, A Auroux, G Coudurier, P Engelhard, J.P Gallez, G Szabo, in:
D Olson, A Bisio (Eds.), Proceedings 6th International Zeolite Confererence,
Butterworths, Guilford, 1984, p 497.
[78] T Nobusawa, J.C Védrine, Catalysis Science & Technology 1 (1991) 97.
[79] V Ducarme, J.C Védrine, Applied Catalysis 17 (1985) 175.
[80] T.-C Tsai, Applied Catalysis A – General 301 (2006) 292.
[81] S Amokrane, D Nibou, Comptes Rendus de l’Académie des Sciences 13 (2010)
538.
[82] I Fechete, E Gautron, E Dumitriu, D Lutic, P Caullet, H Kessler, Revue
Roumaine de Chimie 53 (2008) 49.
[83] V Mavrodinova, M Popova, Catalysis Communications 6 (2005) 247.
[84] B Sulikowski, R Rachwalik, Applied Catalysis A – General 256 (2003) 173.
[85] Roldán, F.J Romero, C Jiménez, V Borau, J.M Marinas, Applied Catalysis A –
[88] V Mavrodinova, M Popova, R.M Mihályi, G Páł-Borbély, Ch Minchev,
Applied Catalysis A – General 248 (2003) 197.
[89] A.B Halgeri, T.S.R Prasada Rao, Studies in Surface Science and Catalysis 24
(1985) 667.
[90] N.M Tukur, S Al-Khattaf, Chemical Engineering Journal 166 (2011) 348.
[91] S Zheng, A Jentys, J.A Lercher, Journal of Catalysis 241 (2006) 304.
[92] M Guisnet, N.S Gnep, S Morin, Microporous and Mesoporous Materials
35–36 (2000) 47.
[93] K.J Chao, L.J Leu, Zeolites 9 (1989) 193.
[94] A Corma, F Llopis, J.B Monton, Studies in Surface Science and Catalysis 75
(1993) 1145.
[95] D Fraenkel, M Levy, Journal of Catalysis 118 (1989) 10.
[96] H Xu, S Pu, T Inui, Catalysis Letters 41 (1996) 83.
[97] S Namba, H Ohta, J.H Kim, T Yashima, Studies in Surface Science and
Catal-[98] J Kim, T Kunieda, M Niwa, Journal of Catalysis 173 (1998) 433.
[99] A.K Aboul-Gheit, S.M Abdel-Hamid, F.M Abdel-Hay, Applied Catalysis A – General 93 (1993) 131.
[100] B Adair, C Chen, K Wan, M.E Davis, Microporous Materials 7 (1996) 261 [101] R Wendelbo, R Roqul-Malherbe, Microporous Materials 10 (1997) 231 [102] P Wu, T Komatsu, T Yashima, Microporous and Mesoporous Materials 22 (1998) 343.
[103] M.K Rubin, P Chu, US Patent 4,954,325 (1990).
[104] S.T Wilson, B.M Lok, C.A Messina, T.R Cannan, E.M Flanigen, Journal of the American Chemical Society 104 (1982) 1146.
[105] S.T Wilson, B.M Lok, E.M Flanigen, US Patent 4,310,440 (1982).
[106] W.M Meier, D.H Olson, Atlas of Zeolite Structure Types, 2nd edition, worths, 1987.
Butter-[107] B.F Mentzen, J.C Védrine, R Khouzami, Comptes Rendus de l’Académie des Sciences – Series II 304 (1987) 11.
[108] R Khouzami, G Coudurier, B.F Mentzen, J.C Védrine, in: P.J Grobet, et al (Eds.), Innovation in Zeolite Material Science, vol 37, Studies in Surface Sci- ence and Catalysis, 1987, p 355.
[109] J.C Védrine, G Coudurier, B.F Mentzen, in: W.H Flank, T.E Whyte (Eds.), Prospective in Molecular Sieve Science, vol 368, ACS Symposium Series, Washington, 1988, p 66.
[110] R Szostak, Molecular Sieves, Van Nostrand Reinhold Catalysis Ser, New York, 1989.
[111] B.M Lok, C.A Messina, R.L Patton, R.T Gajek, T.R Cannan, E.M Flanigen, Journal of the American Chemical Society 106 (1984) 6092.
[112] J.A Martens, M Martens, P Grobet, P.A Jacobs, Studies in Surface Science and Catalysis 37 (1988) 97.
[113] R.J Pellet, P.K Coughlin, M.T Staniulis, G.N Long, J.A Rabo, US Patent 4,842,714 (1989).
[114] G.C Edwards, J.P Gilson, C.V McDaniel, US Patent 4,681,864 (1987) [115] S Cheng, Catalysis Today 49 (1999) 303.
[116] Y Ma, W Tong, H Zhou, S.L Suib, Microporous and Mesoporous Materials 37 (2000) 243.
[117] F Marme, G Coudurier, J.C Védrine, Studies in Surface Science and Catalysis
[126] M Eddaoudi, J Kim, N Rosi, D Vodak, J Wachter, M.O Keeffe, O.M Yaghi, Science 295 (2002) 469.
[127] G Ferey, Chemical Society Reviews 37 (2008) 191.
[128] G Férey, C Mellot-Draznieks, C Serre, F Millange, Accounts of Chemical Research 38 (2005) 217.
[129] K Uemuraa, R Matsudab, S Kitagawa, Journal of Solid State Chemistry 178 (2005) 2420.
[130] L Josien, A Simon-Masseron, V Gramlich, J Patarin, L Rouleau,
[141] A Karlsson, M Stöcker, R Schmidt, Microporous and Mesoporous Materials
[144] B van der Voort, P.I Ravikovitch, K.P de Jong, M Benjelloun, E van Bavel, A.H Janssen, A.V Neimark, B.M Weckhuysen, E.F Vansant, Journal of Physical Chemistry B 106 (2002) 5873.
[145] C Yu, J Fan, B Tain, D Zhao, G.D Stucky, Advanced Materials 14 (2002) 1742 [146] J Pérez-Ramirez, C.H Christensen, K Egeblad, C.H Christensen, J.C Groen,