Dinh nghia vecto: Vccta la doan thang co huong, nghia la trong hai diem m u t cua doan thang da chi ro diem nao la diem dau, diem nao la diem cuoi.. Co bao nhieu vecto khac vecto-khong
Trang 1516.0076
PH121L
) A U THANH KY - NGUY§N M J N H NHIEN "
_JYEN ANH TRUING - NGUYEN TAN SIENG
D6 N G O G T H U Y (Nhom giao vien chuyen toan trifdng THPT)
PHANLOAI
mmm WHIM
(Tai Ban, SCfa ChOa Va Bo Sung)
• Danh cho hoc sinh Idp 10 on tap va nang cao kien thufc
• Bien soan theo noi dung sach giao khoa cua bp GD&DT
AT BAN DAI HOC QUOC GIA HA NOI
Trang 21
w a\ DAU THANH KY - NGUYEN MINH NHIEN 7«3UYElsrPFrtrKFwi\iFr
NGUYEN ANH TRUdNG - NGUYEN TAN SIENG
D6 N G O C T H U Y (Nhom glao vien chuyen toan trudng THPT)
if I ! ri; :
PEIANLQAI
& FHlTdNG PHAP GIAI
(Tai Ban, Sufa ChOa Va Bo Sung)
Danh cho hoc sinh Idp 10 on tap va nang cao kien thiJc Bien soan theo npi dung sach giao khoa cua bp GD&DT
mm, ^ ^ ^ - - ^ A l l j i/Sn riiA HA NOI
Trang 3Cac em hoc sinh than men!
"Phan loai va phuong phap giai Hinh hoc 10" la mot trong nhi>ng cuon
thuoc bo sach "Phan loai va phuang phap giai lop 10,11,12 ", do nhom tac gia
chuyen toan T H P T bien soan
Vai each vie't khoa hoc va sinh dpng, cuon sach se g i u p ban doc tiep can voi
mon Toan mot each t u nhien, khong ap luc, ban doc trd nen t u tin va nang
dong hon; hieu ro ban chat, biet each phan tich de t i m ra trong tarn cua van de
va biet giai thich, lap luan cho tung bai toan Su da dang cua he thong bai tap
va tinh huong giup ban doc iuon hung thu khi giai toan
Tac gia chii trong bien soan nhung cau hoi ma, noi d u n g ca ban bam sat
sach giao khoa va cau true de thi Dai hoe, dong thai phan bai tap thanh cac
dang toan eo 161 giai chi tie't Hien nay de thi Dai hoc khong kho, to hgp cua
nhieu van de d o n gian, nhung chiVa nhieu cau hoi m a neu khong nam chac ly
thuyet se lung tung trong viec tim loi giai bai toan Vai mot bai toan, khong
nen thoa man ngay voi mot loi giai minh vua tim dugc ma phai c o g a n g t i m
nhieu each giai nhat cho bai toan dcS, moi mot each giai se c6 them phan kien
thue moi on tap
M o n Toan la mot mon rat ua phong each tai tu, n h u n g phai la tai t u mot
each sang tao va thong m i n h K h i giai mot bai toan, thay v i dCing thoi gian de
luc loi tri nha, thi ta can phai suy nghi phan tich de t i m ra p h u a n g phap giai
quyet bai toan do Doi voi Toan hoc, khong c6 trang sach nao la thua T u n g
trang, t u n g dong deu phai hieu Mon Toan doi hoi phai kien nhan va ben bi
ngay tu n h u n g bai tap dan gian nhat, nhi>ng kien thue co ban nhat Vi chinh
nhiing kien thue co ban m o i giup ban doe hieu dugc n h u n g kien thue nang cao
sau nay
L u d w i g Van Beethoven t u n g noi: "Gigt nuoe co the lam mon tang da,
khong phai v i gigt nuoe co sue manh, ma do nuae chay lien tuc ngay dem Chi
CO sir phaii da'u khong met moi moi dem lai tai nang Do do ta co the khSng
djnh, khong nhich tung buae thi khong bao gio co the di xa ngan d a m "
Mac d i i tac gia da danh nhieu tam huyet cho cuon sach, song su sai sot la
dieu kho tranh khoi Chung toi rat mong nhan dugc su phan bien va gop y quy
bau ciia quy doe gia de nhung Ian tai ban sau cuon sach dugc hoan thi^n han
*' , r\ \ ^V'Q' ^^^y "^^^ nhom bien soan
y\n Phu Khanh
1. Dinh nghia vecto:
Vccta la doan thang co huong, nghia la trong hai diem m u t cua doan thang da chi ro diem nao la diem dau, diem nao la diem cuoi
Vecto CO diem dau la A, diem cuoi la B ta k i hieu: AB
Vecto eon dugc k i hieu la: a, b, x, y,
Veeta - khong la vecto co diem dau trung diem cuoi K i hieu la 0
2 Hai vecto cung phuomg, citng huong
- D u o n g thang d i qua diem dau va diem cuoi ciia vecto ggi la gid cua vecto
- H a i vecto co gia song song hoac triing nhau ggi la hai vecto ciing phwang
- H a i vecto ciing p h u a n g thi hoac eung huong hoac nguge h u o n g
c D Hinh 1.2 H
Vi du: 6 hinh ve tren tren (hinh 2) thi hai vecto A B va C D ciing h u o n g eon
EF va H G nguge huong
Dac biet: vecto - khong cung huong voi mgi vec to
3 Hai vecto bSng nhau A B
- D g dai doan thSng AB ggi la do dai vecto
A B , k i h i e u AB Vgy AB = A B
Trang 4B CAC D A N G T O A N VA P H l T a N G PHAP G I A I
DANG TOAN 1: XAC DINH MOT VECTO; PHUONG, HUONG CUA
' VECTO; DQ DAI CUA VECTO
Vi du 1: Cho tu giac ABCD Co bao nhieu vecto khac vecto-khong c6 diem
dau va diem cuoi la dinh cua tu giac
Lai gidi
Hai diem phan biet, chang han A, B ta xac djnh dupe hai vecto khac
vecto-khong la AB, BA Ma tu bon dinh A, B, C, D ciia tu giac ta c6 6 cap diem
phan biet do do c6 12 vecto thoa man yeu cau bai toan
Vi du 2: Chung minh rang ba diem A,B,C phan bi^t thang hang khi va chi
khi A B , A C ciing phuong
Lcri giai
Neu A , B , C thang hang suy ra gia cua AB, AC deu la dudng thang di qua
ba diem A,B,C nen AB, AC cung phuong i
Ngup-c lai neu AB, AC ciing phuong khi do duong thSng AB va AC song
song hoac triing nhau Nhung hai duong thang nay ciing di qua diem A nen
hai duong thang AB va AC triing nhau hay ba diem A, B, C thing hang
Vi du 3: Cho tam giac ABC Goi M,N,P Ian lupt la trung diem cua
BC,CA,AB
a) Xac djnh cac vecto khac vecto - khong ciing phuong v6i M N c6 diem dau
va diem cuoi lay trong diem da cho
b) Xac dinh cac vecto khac vecto - khong ciing huong vdi AB c6 diem dau
va diem cuoi lay trong diem da cho
c) Ve cac vecto bang vecto NP ma c6 diem dau A, B
Lcri gidi (Hinh 1.4)
a) Cac vecto khac vecto khong ciing phuong voi M N la
N M , AB, BA, AP, PA, BP, PB
b) Cac vecto khac vecto - khong cung huong voi AB la AP, PB, N M c) Tren tia CB lay diem B' sao cho BB' = NP ^ ' ^
Khi do ta CO BB' la vecto c6 diem
dau la B va bang vecto NP '
Qua A dung duong thang song
song voi duong thang NP
Tren duomg thang do lay diem
A ' sao cho A A " ciing huong
vo-iNP va A A " = NP Hinh 1 1 "
Khi do ta CO A A ' la vecto c6 diem dau la A va bang vecto NP
Vi du 4: Cho hinh vuong ABCD tam O canh a Goi M la trung diem cua
AB, N la diem doi xung voi C qua D Hay tinh do dai ciia vecto sau:
M D , M N ^
Lai gidi (hinh 1.5)
Ap dung djnh ly Pitago trong tam giac vuong M A D ta c6 DM^ = A M ^ + AD^ =
Suy ra MD = M D
-a' + a = — 2 5a'
Qua N ke duong thing song song vol AD cat AB tai P | Khi do tu giac ADNP la hinh vuong va|
3 B A I T A P L U Y £ N T A P * ^ " " ^
Bai 1.1: Cho ngii giac ABCDE Co bao nhieu vecto khac vecto-khong c6 diem
dau va diem cuoi la dinh ciia ngii giac ^
Huang dan gidi
I Hai diem phan biet, chang han A, B ta xac dinh dupe hai vecto khac khong la AB, BA Ma tir nam dinh A, B, C, D, E ciia ngu giac ta c6 10 ca
vecto-I diem phan biet do do c6 20 vecto thoa man yeu cau bai toan
P
Trang 5Bai 1.2: Cho ba diem A, B, C phan bi^t thang hang
a) Khi nao thl hai vecto AB va AC cung huong ? ^
b) Khi nao thi hai vecto AB va AC ngiroc huong ?
Huang dan gidi ^
a) A nam ngoai doan BC
b) A nam trong doan BC
Bai 1.3: Cho bon diem A, B, C, D phan biet
a) Neu AB = BC thi c6 nhan xet gi ve ba diem A, B, C f>r{>
b) Neu AB = DC thi co nhan xet gi ve bon diem A, B, C, D
Huang dan gidi , (^fy.-j
a) B la trung diem cua AC
b) A, B, C, D thang hang hoac ABCD la hinh binh hanh, hinh thoi, hinh vuong,
hinh chij' nhat
Bai 1.4: Cho hinh thoi ABCD c6 tam O Hay cho biet khang djnh nao sau day
dung ?
^ b) AB = DC c) OA = -OC
a) AB = BC
d) OB = OA e) AB BC f) 2 OA BD
Huang dan gidi
a) Sai b) Dung c) Dung
d) Sai e) Dung f) Sai
Bai 1.5: Cho luc giac deu ABCDEF tam O Hay tim cac vecto khac vecto-khong
CO diem dau, diem cuoi la dinh ciia luc giac va tam O sao cho
a) Bang voi A B b) Ngugc huong voi OC
Huang dan gidi
a) Fd,OC,ED b) c6,OF,BA,DE
Bai 1.6: Cho hinh vuong ABCD canh a , tam O va M la trung diem AB
Tinh dp dai cua cac vecto AB, AC, OA, OM, OA + OB
Huang dan gidi
-Ggi E la diem sao cho tu giac OBEA la hinh
binh hanh khi do no cung la hinh vuong
Ta CO OA + OB = OE => OA + OB = OE = AB = a
Hinh 1.40
Bai 1.7: Cho tam giac ABC deu canh a va G la trong tam Goi I la trung
diem cua A G Tinh do dai cua cac vecto AB, AG, B I
Ta C O AB = AB = a Goi M la trung diem cua BC
Ta C O
AG = AG = - A M = - 7 A B 2 - B M 2 = ^ - A M = -\// 3 3
BI = BI = N/BM'+MI2 = ^ ^ + ^ = — — j _ ( a W ^ a V 2 T
Bai 1.8: Cho truoc hai diem A,B phan biet Tim tap hop cac diem M thoa man
Huang dan gidi
o M A = MB => Tap hop diem M la duong trung true cua doan
M A MB
MA MB thang AB
D A N G T O A N 2: C H U N G M I N H H A I V E C T O BANG N H A U :
1 PHLTONG P H A P G l A l '
• De chiing minh hai vecto bang nhau ta chung minh chung c6 ciing do dai
va cung huong hoac dua vao nhan xet neu tii giac ABCD la hinh binh hanh
thi AB = DC va AD = BC
2 C A C VI D U y ;,rt 7 ,
V i d « l : C h ^ giac ABCD Goi M, N, P, Q Ian lugt la trung diem AB, BC,
CD, DA Chung minh rSng MN=QP •
' • Lai gidi (hinh 1.6)
Do M , N Ian luat la trung diem cua AB va BC nen M N la duong trung binh cua tam giac ABC Suy ra M N / / A C va M N = i A C (1)
Tuong tu QP la duong trung binh cua tam giac
ADC suy ra QP//AC va QP = ^ A C (2)
Trang 6Tir (1) va (2) suy ra MN//QP va M N = QP
do do tur giac M N P Q la hinh binh hanh
V a y t a c 6 M N = Q P
Vi du 2: Cho tarn giac A B C c6 trong tarn G Goi I la t r u n g diem ciia BC
D u n g diem B' saocho B'B = A G ^ ,>^,.,i i , ,
a) C h u n g m i n h rang BI = IC % -; • '''-^
b) Goi J la trung diem ciia BB' C h u n g m i n h rang BJ = I G
^ L o i ^ a x (hinh 1.7) a) V i I la t r u n g diem cua BC nen BI = C I va BI ciing Huang v o i I C do do
hai vecto B I , IC bang nhau hay BI = IC
b) T a c o B'B = A G suy ra B"B = A G va B B 7 / A G
D o do BJ, I G cung huong (1)
V i G la trong tam tam giac ABC nen
* I G = ^ A G , J la trung diem BB' suy ra
BJ
=1BB-^ V i v a y BJ = I G (2)
I T u (1) va (2) ta CO BJ = I G
Hinh 1.7
Vi du 3: Cho hinh binh hanh A B C D Tren cac doan thSng DC, A B theo t h u
hr lay cac diem M , N sao cho D M = B N Goi P la giao diem ciia A M , DB
va Q la giao diem cua C N , D B C h u n g m i n h rang A M = N C va
D P = Q B
LOT ^ « » (hinh 1.8)
Ta CO D M = B N => A N = M C , mat khac A N song song v o i M C
do do t u giac A N C M la hinh binh hanh
M a t khac D P M = APB (do! dinh)
va A P Q = N Q B (hai goc dong vj) suy ra D M P = B N Q
D o d o A D M P = ABNQ (c.g.c) suy ra DP = QB
De thay DP, QB ciing h u o n g v i vay D P = Q B
8
3 B A I T A P L U Y C N T A P Bai 1.9: Cho t u giac A B C D Goi M , N , P, Q Ian lugt la trung diem AB, BC, CD,
D A C h u n g m i n h rang M Q = NP m-ofi
Huong dan gidi • V ^ * * ^
D o M , Q Ian lugft la trung diem ciia AB va A D nen A
M Q la d u o n g trung binh ciia tam giac A B D suy
A B ; P la giao diem ciia A M , DB va Q la giao diem ciia C N , DB C h u n g
m i n h rang D M = NB va DP PQ = QB
Huang dan gidi '
Ta CO t u giac D M B N la hinh binh hanh v i D M = NB = | A B , D M / /NB
Suy ra D M = N B Xet tam giac C D Q c6 M la trung diem ciia
DC va M P / / Q C do do P la trung diem ciia
D Q T u o n g t u xet tam giac ABP suy ra dugc Q la trung diem ciia PB
V i vay DP = PQ = QB t u do suy ra DP = PQ = QB Bai 1.11: Cho hinh thang A B C D c6 hai day la A B va C D v o i A B - 2 C D T u C
ve C i = D A C h u n g m i n h rang
Huang dan gidi
a) A D = IC va D I = CB a) Ta CO C I = D A suy ra A I C D la hinh binh hanh
= > A D = IC
Ta CO D C = A I ma A B - 2CD do do A I = i A B
=> I la trung diem A B
Trang 7Ta CO DC = IB va DC / /IB => tir giac BCD! la hinh binh hanh
Suy ra DI = CB
b) I la trung diem cua AB=>AI = IB va tu giac BCDI la hinh binh hanh
=> IB = DC suy ra A I = IB = DC
Bai 1.12: Cho tam giac ABC c6 true tarn H va O tarn la duong tron ngoai tiep
Goi B' la diem doi xung B qua O Chung minh: A H =B'C
Huang dan gidi
a) Dinh nghla: Cho hai vecto a; b Tir diem A tuy y ve AB = a roi tu B ve
BC = b khi do vecto AC duoc goi la tong cua hai vecto a; b
Ki hieu AC = a + b (Hinh 1.9)
b) Tinh chat:
+ Giac hoan : a + b = b + a
+ Ket hop : (a + b) + c = a + (b + c)
+ Tinh chat vecto - khong: a + 0 = a, Va
2 Hieu hai vecta Hinh 1.9 ?
a) Vecto doi cua mot vecto
Vecta doi ciia vecto a la vecto ngugc huang va cung do dai vol vecto a
Ki hieu -a
Nhu vay a + (-a) = 0, Va va AB = -BA
b) Djnh nghta hieu hai vecto:
Hieu ciia hai vecta a va b la tong ciia vecto a va vecto doi ciia vecto b Ki
hi^u la a - b = a + (-b)
3 Cac quy tic:
Quy tac ba diem: Cho A, B ,C tuy y, ta c6 : AB + BC = AC
Quy tic hinh binh hanh: Neu ABCD la hinh binh hanh thi AB + AD = AC
Quy tac ve hieu vecto: Cho O, A, B tiiy y ta c6: OB - O A = AB
10
Chu ij: Ta c6 the mo rpng quy tic ba diem cho n d i e m A , , A 2 , , A n thi
A1A2 + A2A3" + + A„_,An = A, A„
B C A C D A N G T O A N V A P H l / Q N G P H A P G I A I
D A N G T O A N 1: XAC DINH DO DAI TONG, HIEU CUA CAC VECTO
1 PHLTONG P H A P G I A I
De xac dinh do dai tong hieu ciia cac vecto
• Truoc tien sir dung djnh nghla ve tong, hieu hai vecto va cac tinh chat, quy
tac de xac djnh phep toan vecto do
• Dua vao h'nh chat cua hinh, sir dung djnh li Pitago, he thuc lugng trong tam
giac vuong de xac djnh do dai vecto do
2 C A C V i D U
Vidu 1: Cho tam giac ABC vuong tai A c6 ABC = 30" va BC = aVS
Tinh do dai ciia cac vecto AB + BC, AC - BC va AB + AC
Lai gidi (hinh 1.10)
Theo quy tac ba diem ta c6 AB + BC = AC
Goi D la diem sao cho tir giac ABDC la hinh binh hanh
Khi do theo quy tic hinh binh hanh ta c6 AB + AC = AD
Vi tam giac ABC vuong 6 A nen tir giac ABDC la hinh chu nhat suy ra
A D = BC = a>/5 Vay AB + AC AD = A D = a>/5
11
Trang 8Vtdu 2: Cho hinh vuong ABCD c6 tarn la O va canh a M la mpt diem bat ky
a) Tinh AB + A D OA - BO CD - DA
b) Chung minh rang u = M A + MB - MC - M D khong phu thuoc vi tri diem
M Tinh do dai vecto u
Lai gidi {hinh 1.11)
a) + Theo quy tac hinh binh hanh ta c6 AB + AD = AC
Suy ra A B + A D AC = A C
Ap dung dinh li Pitago ta c6
AC^ = AB^ + BC^ = 2a^ ^ AC = >/2a
h Ma |BD| = B D = 7AB^ + AD^ = suy ra |CD - D A | = a^f2
b) Theo quy tSc phep tru ta c6: u = (MA - MC) + (MB - M D ) = C A + DB
Suy ra u khong phu thuoc vj tri diem M
Qua A ke duong thang song song v6i DB cat BC tai C
Khi do tu giac ADBC la hinh binh hanh (vi co cap canh doi song song) suy
^ Huong dan gidi '^A'
Theo quy tac phep tru ta c6
A B - A C = CB: A B - A C =BC = a
Gpi A' la dinh ciia hinh binh hanh A B A C va
O la tam hinh binh hanh do Hinh 1.45
b) Tinh do dai vecto M A - MB - MC + MD
Huang dan gidi
Huang dan gidi
a) Tu gia thie't suy ra ba diem A, B, C tao thanh tam giac deu nhan O lam trongtamdodo AOB = BOC=COA = 120" ,
Trang 9b) Gpi I la trung diem BC Theo cau a) AABC deu nen AI = — a
2
O B + A C - O A " =a>/3
Bai 1.17: Cho goc Oxy Tren Ox, Oy lay hai diem A, B Tim dieu ki?n cua A,B
sao cho OA + OB nam tren phan giac ciia goc Oxy !
Huang dan gidi
Dung hinh binh hanh OACB Khi do: OA+OB = OC
Vay OC nam tren phan giac goc xOy <=> OACB la hinh thoi <=> OA = OB
D A N G T O A N 2: CHUNG MINHDANG THUC VECTO
1 PHLTONG PHAPGIAI
• De chung minh dang thuc vecta ta c6 cac each bien doi: venay thanh vekia,
bien doi tuong duong, bien doi hai veciing bang mot dai lirong trung gian
Trong qua trinh bien doi ta can su dung linh boat ba quy t3c ti'nh vecto
Lmi I/: Khi bien doi can phai liitmi<^ dicli, chang han bien doi vc'phai, ta can
xem vetrai c6 dai luong nao de tu do lien tuang den kie'n thuc da c6 de lam
sao xuat hien cac dai lugng 6 vetrai Va ta thuang bien doi ve'phuc tap ve
vedan gian hon
2 CAC Vi DU
Vtdu 1: Cho nam diem A,B,C,D,E Chung minh r5ng
a M B +CD + EA = CB + ED b) AC + C D - E C = A E - D B + CB
Lai gidi
a) Bien doi vetrai ta c6 ^
VT = (AC + CB) + C b + (Eb + DA)
= (CB + Eb) + (AC + Cb) + DA =(CB + Eb) + AD + DA
= CB + ED = VP (DPCM) :
b) Dang thuc tuong duong voi
( A C - A E ) + ( C D - C B ) - E C + DB = d<:>EC + B D - E C + DB = 0
BP + DB = 6 (dung) (DPCM)
Vidu 2: Cho hinh binh hanh ABCD tam O M la mot diem bat ki trong m|it
phang Chung minh rang
Ac;
M A - M B = M D - M C » B A - C D (dung do A B C D la hinh binh hanh)
Vi du 3: Cho tam giac ABC Goi M, N, P Ian lugt la trung diem cua
BC, CA, AB Chung minh rang a) BM + CN +AP = d
b) AP + A N - A C + BM = d c) OA + OB + OC = OM + OIV + OP voi O la diem bat ki '
Lai gidi {H\nh 1.13)
a) Vi P N , M N la duang trung binh cua tam giac ABC nen PN//BM, M N / / B P suy ra tu giac BMNP la hinh binh hanh
BM = PN
N la trung diem cua A C => C N = NA
Do do theo quy tac ba diem ta co
Trang 10c) Theo quy tac ba diem ta c6
„ ' • Huang dan gidi
a) Ap dung quy tac phep tru ta c6 _
D A - C A = D B - C B < » D A - D B = C A - d B c>BA = BA (dung) V
b) A p dung quy tac ba diem ta c6
A C + DA + BD = A D - CD + BA » (DA + AC) + BD = (BA + A D ) - C D
o DC + BD = 150 - CD (diing)
Bai 1.19: Cho cac diem A , B, C , D , E , F
Chung minh rang A D + BE + CF = AE + BF + CD
Hu&ng dan gidi Cdch 1: Dang thuc can chung minh tuang duong voi
Bai 1.20: Cho hinh binh hanh ABCD tam O M la mot diem bat ki trong mat
phang Chung minh r^ng
Ma ob = BO suy ra BA + BC + OB = MO - MB
Bai 1.21: Cho tam giac ABC Goi M, N , P Ian lugt la trung diem ciia
BC, CA, AB Chung minh rang a) NA + PB + MC = 0 b) MC + BP + NC = BC
Huang dan gidi ^
Huang dan gidi ,
Theo quy tac trir va quy tac hinh binh hanh ta CO ^ , ,.<^
B ' B + CC' + ITD = ( A B - AB') + (AC' - AC) + (AD - A D '
j^pl = ( A B + A D ) - A C - ( A B ' + A D ' ) + A C = 0
Chung minh rang OA + OB + OC + OE + OF = 0
Huang dan gidi
Dat u = OA + OB + OC + OE + OF *
Vi ngu giac deu nen vecto OA + OB + OC + OE cung phuong voi OF nen
u cung phuong voi OF • / <
Tuong t u u cung phuong voi OE suy ra u = 0 ^ •
Bai 1.24: Cho hinh binh hanh ABCD Dung A M = BA, M N = DA, NP = DC,
PQ = BC •••
Chung minh rang: AQ = 0 A;
' Theo quy tac ba diem ta c6 AQ = A M + MN + NP + PQ = BA + DA + DC + BC
Mat khac BA + BC = BD, DA + DC = DB suy ra AQ = BD + DB = 0
Trang 11§ 3 TiCH CUA MOT VECTO VOI MOT SO
A TOM T A T L Y T H U Y E T
1 Dinh nghia: Tich ciia vecta a vai so thuc k ^ 0 la mpt vecto, ki hieu la ka
C l i n g huong voi a neu k > 0, ngUQic huong vai a neu k < 0 va c6 dp dai
bang |k| a •
Quy uoc: Oa = 0 va kO = 0
2 Tinhchat:
i) (k + m)a = ka + ma ii) k(a ± b) = ka ± kb
iii) k(ma) = (km)a iv) ka = Oc:> _ ^ ^ ,
v) la = a, (-l)a = -a
3 Dieu k i f n de hai vecta cung phirong
• b cung phuong a (a 5^ 0) khi va chi khi CO so k thoa b = ka
• Dieu ki^n can va dii de A, B, C thang hang la c6 so' k sao cho AB = kAC
4 Phan tich mpt vecto theo hai vecto khong cung phuong
Cho a khong cung phuong b Voi moi vecta x luon duoc bieu dien
X = ma + nb vai m, n la cac so thuc duy nhat
B C A C D A N G T O A N V A P H l / Q N G P H A P G I A I
DANG TOAN 1: DUNG VA TINHDO DAI VECTO CHUA TICH
MOT VECTO VOI MOT SO
1 PHUONG PHAPGlAl
Su dung djnh nghia tich cua mpt vecta vai mpt so' va cac quy tac ve phep toan
• vecta de dung vecto chua tich mpt vecto vai mpt s6^ ke't hap vai cac djnh li
pitago va he thuc lupng trong tam giac vuong de tinh dp dai ciia chiing
2 CAC Vi DU
Vi du 1: Cho tam giac deu ABC canh a diem M la trung diem BC Dung
cac vecta sau va tinh dp dai ciia chung
Khi do ta CO i AB = A N , 2AC = AQ suy ra theo quy tac hinh binh hanh ta
CO i AB + 2AC = A N + AQ = AP Gpi L la hinh chie'u ciia A len PN
Trang 128
\idu 2: Cho hinh vuong ABCD canh a , ' /
a) Chung minh r^ng u = 4MA - 3MB + MC - 2Ml5 khong phu thuoc vao vj
tri diem M
b) Tinh do dai vecto u
Lm^»d« (Hinh 1.15) a) Goi O la tarn hinh vuong
Theo quy tac ba diem ta c6
u = 4 ( M d + OA) - 3 ( M d + OB) + (MO + OC) - 2 { M d + O D )
- 4 0 A - 3 0 B + O C - 2 0 D
Ma OD = - O B , OC = - O A nen u = 30A - OB
Suy ra u khong phu thuoc vao vj tri diem M
b) Lay diem A" trcn tia OA sao cho OA' = 30A khi do
OA' = 30A do do u = OA' - OB = BA *
Mat khac BA' = VOB^ +OA'^ = VoB^ +90A^ =aS
Suy ra |u| = a>/5 ' " ^ ^ ^ ^ " '
3 BAI TAP LUY^N TAP
Bai 1.25 Cho tam giac deu ABC canh a Goi diem M , N Ian luot la trung
diem BC, CA Dung cac vecto sau va tinh do dai ciia chung
A B E F , theo quy tSc hinh binh hanh ta
a) Chung minh r3ng u = MA - 2MB + 3MC - 2MD khong phu thuoc vao vj tri
diem M b) Tinh do dai vecto u
Huong dan gidi |
Goi O la tam hinh vuong
Theo quy tac ba diem ta c6
> '* 21
Trang 13li = ( M O + OA") - 2 ( M O + O B ) + 3{M6 + O C ) - 2 ( M O + O D )
= O A - 2 0 B + 3 0 C - 2 0 D
Ma OD = -OB, OC = -OA nen u = -20A
k Suy ra u khong phu thu(
b) l i = -20A =20A = aN/2
Suy ra u khong phu thugc vao vj tri diem M 1
D A N G T O A N 2: CHUNG MINHDANG THUC VECTO
1 PHUONG PHAPGIAI •
Si'e dun^ cdc kie'n Ihiec sau debich ddi venay thanh vckia hoqc cd hai bieu thirc a
hai vecung blin<f bieu thiec thu ba hoqc bicn dot tuan^ duang vcdang thi'tc dung:
• Cac tinh chat phep toan vecta
• Cac quy t3c: quy tac ba diem, quy tac hinh binh hanh va quy tac phep tru \
• Tinh chat trung diem: j
M la trung diem doan thang AB o MA + MB = 0
M la trung diem doan th5ng AB o OA + OB = 20M (Vai O la diem tuy y)
• Tinh chat trong tam:
G la trong tarn ciia tam giac ABC <=> GA + GB + GC = O
G la trong tam aia tam giac ABC <=> OA +dB+OC = 30G (Voi O la diem tuy y)
2 CAC VI Dg
Vidu 1: Cho tu giac ABCD Goi I, J Ian lugt la trung diem ciia AB va CD, O
la trung diem ciia IJ Chung minh rang:
Vay AC + BD = (Ai + Bl) + ( JC + fd) + 2IJ = 2lj dpcm
b) Theo he thuc trung diem ta c6 OA + OB = 20i, OC + OD = 20]
Mat khac O la trung diem IJ nen OI + OJ = 0 Suyra OA+ OB+ OC + O D = 2(Oi + Oj) = 6 dpcm
c) Theo cau b ta c6 OA + OB + OC + OD = 0 do do vai moi diem M thi
OA + OB + OC + O b = d
o (OM + M A ) + (OM + M B ) + (OM + MC) + ( O M + M D ) = 0 ' ' '
<j> MA + MB + MC + MP = 4MO dpcm
Vi du 2: Cho hai tam giac ABC va AiB^Ci c6 ciing trong tam G Goi
Gi, G2, G3 Ian lugt la trong tam tam giac BCA^, ABCj, ACBj Chung minh rang GG^ + GG2 + GG3 = 0 •
Lai gidi
Vi Gi la trong tam tam giac BCAj nen 3GG,' = GB + GC + GAj
Tuong tu G2, G3 Ian lugt la trong tam tam giac ABC|, ACBj suy ra'
VI du 3: Cho tam giac ABC c6 true tam H, trong tam G va tam duang tron
ngoai tiep O Chung minh rSng: _ _ a)HA + HB + HC = 2Hd b) OA + dB + OC = OH c) GH + 2GO = 0 —
Lmgifli (Hinh 1.17) a) Pe thay HA + HB + HC = 2Hd neu tam giac ABC vuong Neu tam giac ABC khong vuong goi P
la diem doi xung ciia A qua O khi do j BH//PC (vi cung vuong goc vai AC)
BP//CH (vi cung vuong goc voi AB) ' Suy ra BPCH la hinh binh hanh,
do do theo quy tic hinh binh hanh thi ^
HB + HC = HP (1) Mat khac vi O la trung diem ciia AD <
nenHA + HD = 2 H d (2)
Tu (1) va (2) suy ra H A + HB + H C = 2H6 M i n h 1.17
23
Trang 14b) Theo cau a) ta c6
H A + H B + H C = 2 H O i ,
o ( H O + OA) + ( H O + O B ) + ( H O + Oc) = 2HO
<=> OA + OB + OC = OH dpcm
c) Vi G la trong tam tam giac ABC nen OA + OB + OC = 30G
, , Mat khac theo cau b) ta c6 OA + OB + O C = OH
- Suy ra O H = 30G c:> (OG + G H ) - 30G = 0 « G H + 2Gd = 0
Vi du 4: Cho tam giac ABC voi AB = c, BC = a, CA = b va c6 trong tam G
Goi D,E,F Ian lugt la hinh chieii G len canh BC,CA, AB ^ rlftif i ;|
Chung minh rSng a^ GD + b^ GE + c^ GF = 0 ^
% LmgitJi (hinh 1.18)
Tren tia G D , G E , M P Ian luot lay cac diem N , P, Q sao cho
G N = a, G P = b, G Q = c va dung hinh binh hanh G P R N
Ta CO a ^ G D + b ^ G E + c^GF = 0
<=> a G D G N + b.GE.GP + c.GF.GQ = 0 (*) >
Ta CO a.GD = 2S\(3gc, b.GE = 2S , C.GF = 2S^GAB' "^9*^ khac G la trong
tam tam giac A B C nen S,,GBC S^^GCA = SACAB suy ra a.GD =b.GE =c.GF
Vay (*) G N + G P + G Q = 0
Ta CO A C = G P = b, PR = B C = a ^
va ACB = GPR (goc c6 cap canh vuong goc voi nhau) fj
Suy ra AACB = AGPR(c.g.c) / ^
=> GR = AB = c va POR = BAC
Ta CO QGP + BAC = ] 8 0 " ^ Q G P + GPR = 180°
=> Q, G, R thang hang do do G la trung diem ciia QR
Theo quy tMc hinh binh hanh va h^ thuc trung diem ta c6 yy
GN + GP + GQ = GR + GQ = d ;„
Vay a^GEJ + b^GE + c^ GF = 0 •
Vi du 5: Cho tam giac ABC voi cac canh AB = c, BC = a, CA = b Goi I la
tam duong tron noi tiep tam giac ABC •»* •
Chung minh rang alA + bIB + cIC = 0
ID - IB = ^(IC - I D ) (b + c ) I D = bIB + ciC (1)
Do I la chan duong phan giac nen ta c6 :
Tu (1) va (2) ta CO dieu phai chung minh _
Cdch 2: (hinh 1.20)Qua C dung duong thang song song vai A l cat BI tai B';song
song voi BI cat AI tai A' d
Ta CO IC = IA"' + IB' (*) Theo djnh ly Talet va tinh chat duong phan giac trong ta c6 :
I B ^ B A = £ = , i B - = - b i B ( l ) IB' CA, b c ^ ^
BC, CA, AB Chung minh rang * a a) A M + BN + CP = d
b) OA + OB + OC = OKi + ON + OP voi O la diem bat ky
Huang dan gidi u i
a) A M + BN + Cr'=
j ( A B A C ) l b) O M + ON + OP =
- ^ ( 0 B + 0 ( : ) + i ( 0 C + 0 A ) + l ( 0 A + 0 B ) ^
= 6 A + O B + O C
Bai 1.28: Cho tam giac ABC Goi H la diem doi xung voi B qua G vai G la trong
tam tam giac Chung minh rang ' - fei™ srfal j
= 1( A B + A C ) + i ( B C + B A ) + 1 ( C A + C B ) = 6
Trang 15Bai 1.31: Cho n vecto doi mot khac phuong va tong ciia n - 1 vecto ba't ki
trong n vecto tren ciing phuong voi vecto con lai Chung minh rang tong n
vecto cho d tren bang vecto 0
Huang dan gidi
Gia sir n vecto la aj, i = l,2, ,n Dat u =aj + + a„
Vi tong ciia n - 1 vecto bat ki trong n vecto tren ciing phuong voi vecto con
lai do do u Cling phuong voi hai vecto aj, aj nen u = 0
Bai 1.32: Cho tam giac ABC voi cac canh AB = c, BC = a, CA = b Goi I la tam
va D, E, F Ian lugt la tiep diem ciia canh BC, CA, AB ciia duong tron noi
tiep tam giac ABC M , N, P Ian lugt la trung diem ciia BC, CA, AB Chung
minh rang:
a) cot—+ cot — B 2 2 C) IA + f C cot — + cot — 2 2 ) I B + cot— + cot — A B^ 2 2J ic = d
c o t y I M + c o t | l N + cot|lP = d c) (b + c - a)IM + (a + c - b)IN + (a + b - c)IP = 0 d) aAD + bBE + cCF = d
• ' Huang dan gidi
a) Ggi r la ban kinh duong tron ngi tiep AABC ta c6
a = r cot —+ cot— B C 2 2 ; b = r cot—+ cot— 2 2 ; c = r
J
Theo vi du 5 ta c6 alA + bIB + cIC = 0
f B C^ cot—+ cot— IA + cot— + cot — IB + cot— + cot— ( c A^ IB + r A B^
Theo cau a) ta c6 c o t y ( i B + ic) + cot|(lA + ic) + c o t y ( l A + I B ) = 6
=>alb + bIE + cIF = ( 2 p - b - c ) l A + ( 2 p - c - a ) l B + ( 2 p - a - b ) l C
= alA + bIB + cIC => a AD + bBE + cCF = 0
Bai 1.33: Cho tam giac ABC M la diem bat ky n^m trong tam giac
Chung minh rang : SMBC M A + S M C A M B + SMABMC=d
Trang 16Huang dan gidi
A ' C A ' B
Goi A ' la giao diem A M v6i B C ta c6 M A ' = M B + _ M C (*)
Mat khac: — - ^MK^ - ^MAC
Bai 1.34: Cho da giac loi A, A j - A ^ ( n > 3 ) ; e j j < i < n la vecto dan vi vuong
gocvai AjAj^, (xem A„+| = A , ) va huang ra phi'a ngoai da giac
Chung minh rMng: A,A2e] + A2K^e2 + - + A n A , e „ = 0 (dinh ly con nhim)
Huang dan gidi
Ta chung minh bang quy nap
Vai n = 3 dang thuc tro thanh
a.e, +b.e2 +c.e3 = 0
(diing vi dang thuc nay tuang
duong vai dang thuc a bai 1 1 )
Gia su dung voi n = k - l , k >4
Goi e la vecto don vj vuong goc voi
A,A|^_, va huong ra ngoai tam giac
' Theo gia thiet quy nap ta c6
A,A2e,+A2A3e2+ + A , „ 2 A , _ , e , : 2 + A ^ _ , A , ( - e ) = d ( 1 )
MatkhacxettamgiacA,A|^_,A,^ taco >
A]Ak_,e + A^_,Ake^_; + A ^ A , e ^ = 0 ( 2 )
Tir ( 1 ) va (2) suy ra dieu phai chirng minh
Bai 1.35: Cho da giac loi A] A2 An ( n > 3 ) voi I la tam duong tron tiep xiic cac
canh ciia da giac; goi ej,l < i < n la vec to don vi ciing huong voi vec to
A,
l A j Chung minh rang cos—i-e, + cos-^e, + + cos—^e " = 0
Huang dan gidi Goi Bj, i = 1 , 2 , , n la cac tiep diem duang tron noi tiep vai canh A^Aj^j Xettugiac A,B,IB„ c6 A ^ i ; , ! = A^B,! = 9 0 " va B ; A , I = B7A,I
Suy ra B ^ , = B^IA, Mat khac IB = IB„ do do lA, ± B,B„
Tuong tu ta c6 lA; ± Bj„,Bj,i = 2 , 3 , , n
Xet da giac loi B,B2 Bn theo dinh ly con nhim ta c6
B„ B, e; + B, B2 e2 + + B„ _, B„ e„ = 6
Hiiih 1.54
A • A • A
-o IB|.c-os-y-e, + IB2.c-os-Y-e2+••• + I ^ n ' ^ " ^ " ^ ' - ' n
Ma IB, = IB2 = = IB,, suy ra dpcm
Bai 1.36: Cho tam giac ABC vuong tai A I la trung diem cua duang cao AH
Chiing minh rang : a^ lA + b^ IB + c^ IC = 0
Huang dan gidi
DANG TOAN 3: XkC DINH DIEM M THOA MAN MOT
DANG THUC VECTO CHO TRUOC
1 PHUONG PHAPGIAI
• Ta bie'n doi d5ng thuc vecto vc dang A M = a trong do diem A va a da biet Khi do ton tai duy nha't diem M sao cho A M = a, de dung diem M ta lay A lam goc dung mot vecto b5ng vecto a suy ra diem ngon vecto nay chinh la
diemM • j ^ ^ ^
-• Ta bieh doi ve d3ng thuc vecto da biet ciia trung diem doan thang va trong tam tam giac
Trang 172 C A C VJ D g
Vidu 1: Cho hai diem A, B phan biet Xac djnh diem M bie't 2 M A - 3MB = 0
LaigidiiKmh 1.21) T a c o 2 M A - 3 M B = ()
« 2 M A - 3 ( M A + AB) = d ^ ^
o A M = 3AB
M nam tren tia A B va A M = 3AB - i i'
Vidu 2: Cho t u giac A B C D Xac djnh diem M , N , P sao cho
a) 2 M A + M B + M C = 0 b) N A + N B + N C + N D = 0
c) 3PA + PB + PC + P D = 6
LOT^ifli(hlnh 1.22) a) Goi I la t r u n g diem BC suy ra M B + M C = 2 M i
D o d o 2 M A + M B + M C = 0
« 2 M A + 2 M i = d c> M A + M I = 0
Suy ra M la trung diem A I
b) Goi K, H Ian luat la trung diem ciia AB, C D ta c6
N A + N B + N C + N D = d <=> 2 N K + 2 N H = 0
« N K + N H = d <r> N la trung diem cua K H
c) Goi G la trong tam tam giac BCD khi do ta c6
PB + PC + PD = 3PG
Suy ra 3PA + re + PC + P D = d<=>3PA + 3PG = 0 Hinh 1.22
<=:>PA + PG = 6<:z>P la trung diem A G
Vi du 3: Cho truoc hai diem A, B va hai so thuc a , P thoa man a + p ^ 0
C h u n g m i n h rang ton tai duy nha't diem I thoa man a l A + piB = 0
T u do, suy ra vai diem bat ki M thi a M A + PMB = (a + p ) M I
Lai gidi
Ta c6: a l A + pre = d <:> a l A + P(IA + AB) = d
0 ( a + p)IA + pAB = d. « ( a + P)Ai = pAB o A I = BA
a + p
V i A , B CO d j n h nen vecto — ^ B A khong doi, do do ton tai d u v nha't diem
a + p • •'
1 thoa man dieu ki^n
T u d o suy ra a M A + pMB = a ( M I + l A ) + P(Mi + IB)
3 ) I A - 2 r B = 6^ b ) J A - J B - 2 J C = 6 ^
c ) K A + KB + K C = BC d) 2 L A - L B + 3 L C = A B + A C
Huong dan gidi
a) I la diem doi x u n g cua A qua B /•}
r r ^ l A B c ) A k = - A B d ) A L = - B C ^ ^ ,
Bai 1.38: Cho t u giac A B C D T i m diem co dinh I va hang so k de he thuc sau
thoa man v o i m o i M
a ) M A + M B + 2 M C = k M I b) 2 M A + 3MB - M D = k M I c) M A + 2MB + 3 M C - 4 M D = k M I
Huang dan gidi
a) Cho M ^ I ^ i A + i B + 2fc = 0 o l i + IC: = 0
V o l J la t r u n g diem cua AB, suy ra I la trung diem ciia JC , >( x
M A + M B + 2 M C = kMi<=>4MI = k M i = > k = 4 ^ b) k = 4, A i = - ( 3 A B - A D ) ^ c) k = 2, I A = 2AB + 3 A C - 4 A D
Bai 1.39: Cho tam giac A B C va ba so thuc a, p, y khong dong thai bang khong
Chung m i n h rang:
a) N e u a + p + y ^ 0 thi ton tai duy nha't diem M sao cho
a M A + pMB + y M C = d
b) N e u a + P + y = 0 t h i khong ton tai diem N sao cho a N A + PNB + y N C = d
Huang dan gidi
a) V i a + p + y # 0 = ^ ( a + p) + (p + Y) + (Y + a ) * 0
Khong mat tinh tong quat gia su a + P ^ 0 => 3 ! D : a D A + pDB = 6 I
Suy ra a M A + pNS + y M C = 0<::>(a + p ) M D + y M C = 0 '
Do d o ton tai d u y nha't diem M
b) Gia sir ton tai d i e m N va a ^ 0 ' / ^ 7
T a c o a N A + pNB+yNC=6<:>CA = — C B (mau thuan v o i A B C la tam giac)
Trang 18Bai 1.40: Cho n diem A | , A 2 , , A „ va n scV k , , k 2 , , k„ ma
k, + k2 + ••• + k„ = k 0 , , ,
a) C h u n g m i n h rang c6 d u y nhat diem G sao cho
k , G A , + k j G A j + + k „ G A „ = 0
D i e m G n h u the g o i la taiti ti cir cua Iw diciu A j \^(in vai he so' k, Trong
t r u o n g hop cac he so k; bang nhau(ta c6 the chon cackj deu bang 1 ) thi G
goi la fr('//y taifi ci'in he diem A;
b) C h i i n g m i n h rang neu G la tam ti cu noi o cau a) thi voi diem M bat ky ta c6
- ( k , M A i + k 2 M A 2 + + k„MA„") = O G
Ihiang dan giiii
tA v:;,m ur^ nun K r i i
-O la diem tu\ v, ta c6:
if k , G A , + k G A , + + k „ G A , , = 0
k, ( O A , - O G ) + k2 ( O A 2 - O G ) + + k„ ( O A , , ' - O G ) = 0
o O G = ^ ( k , O A , + k 2 0 A 2 + + k „ O A „ ' )
Suy ra G xac d i n h d u y nhat
D A N G T O A N 4: PHAN TICH MOT VECTO THEO HAI
VECTO KHONG CUNG PHUONG
1 PHUONG PHAPGIAI
Sir d u n g cac tinh chat phep toan vecto, ba quy tac phep toan vecto va tinh
chat trung diem, trong tam trong tam giac
2. CAC Vi Dg
Vidu V Cho tam giac ABC Dat a = AB, b = A C
a) Hay d i r n g cac diem M , N thcSa man: A M = - AB, C N = 2BC
3
b) Hay phan tich C M , A N , M N qua cac vec to a va b
c) Goi 1 la diem thoa: M I = C M C h u n g m i n h 1,A,N thcing hang
LOT^ifli (hinh 1.23)
1
a) V i A M = - A B suy ra M thuoc canh A B va
A M = ^ A B ; C N = 2BC, suy ra N thucV tia
Vi du 2: Cho tam giac A B C , tren canh BC lay M sao cho B M = 3 C M , tren
doan A M lay N sao cho 2 A N = 5 M N G la trong tam tam giac A B C a) Phan tich cac vecta A M , B N qua cac vec t o A B va A C
b) Phan tich cac vecto GC, M N qua cac vec to G A va GB
L a i ^ i d i (hinh 1.24)
3 _ 5 • a) Theo gia thiet ta c6: B M = - B C va A N = - A M
= - G A + - G B
2 7
V I du 3: Cho h i n h b i n h hanh A B C D Goi M , N Ian l u o t la hai d i e m n^m tren
hai canh A B va C D sao cho A B = 3 A M , C D = 2 C N v a G la t r p n g tamjtam giac M N B Phan tich cac vecto AN, MN, A G qua cac vec t o ^ A B j ^ a ^ C ^
Trang 19-;Suy ra A G = — A B + - A C
18 3
3 BAI TAP LUYgN TAP
Bai 1.41: Cho tam giac ABC Lay cac diem M , N , P sao cho M B = 3 M C ,
N A + 2 N C = 6 , PA + PB = d
a) Bieu dien cac vecto A P , A N , A M theo cac vecto A B va A C
b) Bieu dien cac vecto M P , M N theo cac vecto A B va A C
Chung m i n h rang ba diem M , N , P th^ng hang?
Huong dan gidi
a) A P = 1 AB, A N = - A C , A M = - A C - i AB
2 2 2 2
3 - - 1 b) M P = A B - - A C , M N = - A B - - A C
2 2 4
M P = 2 M N => M , N , P th5ng hang
Bai 1.42: Cho tam giac ABC.Goi I , J la hai diem xac d j n h boi
i A = 2IB, 3JA + 2JC = d a) Tinh IJ theo A B va A C
b) Chung m i n h d u o n g th^ng IJ di qua trong tam G ciia tam giac A B C
Hu&ng dan gidi
b) IG = - - A B + i A C = > 5 i j = 6IG suy ra IJ d i qua trong tam G cua tam giac ABC
Bai 1.43 Cho tam giac ABC c6 trong tam G Goi I la diem tren canh BC sao
cho 2CI = 3BI va J la diem tren BC keo dai sao cho 5JB = 2JC
a) Hay phan tich A I , AJ theo AB va A C
34
b) Hay phan tich A G theo A I va A J
Huang dan gidi
3 2 7
a) Ta C O • 2IC = -3IB<=> A I = - A B + - A C «
5 5
5 j ^ = 2JC « 5( A B - AJ) = 2( A C - AJ) « AJ = | A B -1 A C • b) Gpi M la trung diem BC, ta co:
A G = I A M = | | ( A B + AC) = 1( AB + AC) => A~G = ^ A I - : ! AJ
Bai 1.44: Cho hai vecto a, b khong ciing phuong T i m x sao cho ,M a
a) u = a + ( 2 x - l ) b va v = xa + b ciing phuong b) u = 3a + xb va u = ( l - x ) a - - b cung huong
Huong dan gidi
a) u cimg p h u o n g v o i v <» c6 so thuc k sao cho
DANG TOAN 5: CHUNG MINH HAI DIEM TRUNG NHAU,
HAI TAM GIAC CUNG TRONG TAM
1 PHUONG PHAPGIAI
• De chung m i n h hai diem A j va A 2 triing nhau, ta lya chpn mpt trong hai
each sau :
Cdch 1: Chung m i n h A 1 A 2 =0
Cdch 2: C h u n g m i n h O A i = O A j voi O la diem tuy y
De chung m i n h hai tam giac ABC va A ' B ' C cimg trong tam ta lam n h u sau:
Cdch 1: C h u n g m i n h G la trong tam AABC triing voi G ' la trong tam
A A ' B ' C
Cdch 2: Goi G la trong tam AABC (tuc ta c6 G A + GB + GC = 0 ) ta d i chung
m i n h G A ' + GB' + GC' = 0
Trang 20PJiaii loiii vc'i phutriig phiip ^it'ii IIluli hoc 10
2 CAC VI Dg *
Vt du 1: Chung minh rang AB = CD khi va chi khi trung diem cua hai doan
thang AD va BC trimg nhau
Goi I, J Ian lugt la trung diem cua AD va BC suy ra A I = ID, CJ = JB
Do do AB = CD » A I + IJ + JB = CJ + JI + ID
o i j = Jl o IJ = d hay I triing v6i J , , j, r
Vi du 2: Cho tam giac ABC, tren cac canh AB, BC, CA ta lay Ian lugt cac
NT O , A M BN CP „ , ,
diem M, N, P sao cho = = Chung mmh rang hai tam giac
AB BC CA ^ ^ ^ ABC va MNP c6 cung trgng tam ^ " ^ Lai gidi
A M
Gia su ^ = k suy ra A M = kAB ; BN = kBC ; CP = kCA
Cdch 1: Ggi G, G' Ian lugt la trgng tam AABC va AMNP
Ket hgp vai (*) ta dugc GG' = 0 j
Suy ra dieu phai chung minh
Cdch 2: Ggi G la trgng tam tam giac ABC suy ra G A + GB + GC = 6
Taco: GM + G N + GP = GA + A M + GB + BN + GC + C P
= A M + BN + CP = kAB + kBC + kCA = k( AB + BC + CA) = 0 Vay hai tam giac ABC va MNP c6 cung trgng tam
Vidu 3: Cho luc giac ABCDEF Ggi M , N , P, Q, R, S Ian lugt la trung diem
cua cac canh AB, BC, CD, DE, EF, FA Chung minh rang hai tam giac
MPR va NQS c6 cung trgng tam "'^ ^ '
Lai gidi (hinh 1.26)
Ggi G la trgng tam cua AMPR suy ra GM + GP + GR = 6 (*)
Suy ra G la trgng tam ciia ASNQ '^0^: •
Vay AMPR va ASNQ c6 cimg trgng tam
Vidu 4: Cho hai hinh binh hanh ABCD va AB'C'D' chung dinh A Chung
minh rang hai tam giac B C D va B'CD' cung trgng tam
Lm^ia; (hinh 1.27) Ggi G la trgng tam tam giac BC' D ' , #
Tu (1) va (2) ta CO GB" + GC + GD" = 0 hay G la trgng tam tam giac B' CD'
3 BAI TAP L U Y ^ N TAP
Bai 1.45 Cho cac tam giac ABC, A ' B ' C c6 G, G' Ian lugt la trgng tam Chung
minh rang: A A ' + BB'+ C C = 3GG' Tix do suy ra dieu ki^n can va dii de
hai tam giac c6 cimg trgng tam
Huang dan gidi
Bai 1.46 Cho tam giac ABC, ve cac hinh binh hanh ABIJ, BCPQ, CARS
Chung minh rang ARIP, AJQS c6 ciing trgng tam /
Trang 21Huang dan gidi
G la trong tam ARIP => GR + GI + GP = 6
Ta C O RJ + IQ + PS = (RA + JA) + (iB + BQ) + (PC + C S )
= RA + CS) + (fA + IB) + (PQ + PC) = 0 Suy ra GR + a + GP = Q + GQ + GS GJ + GQ + GS = d
Do do G la trong tam AJQS
Bai 1.47. Cho tu giac ABCD Goi M, N, P, Q Ian lugt la trung diem ciia AB, BC,
CD, DẠ Chung minh rang hai tam giac ANP va CMQ c6 cung trong tam
Huang dan gidi
G la trong tam AANP => GA + GN + GP = 6 ur,.)
1 -r^ 1 Taco AC + N M + PQ = A C - - A C - i A C = 0
Suy ra G A + G N + GP = GC + G M + G Q ^ G C + GM + GQ = d
Do do G la trpng tam ACMQ
Bai 1.48. Cho tam giac ABC Goi Á, B' ,C' la cac diem xac djnh boi
2011A7B + 2012ÁC = 0, ZOllB^C + 2012B' A = 0 , 2011C A + 2012CB = 0
Chung minh rang AABC va A A ' B ' C cung trong tam
Hucmg dan gidi
G la trong tam AABC =:> GA + GB + GC = 0
Taco 2 0 n A ^ + 2012A7c = 0
o 2 0 1 I ( A ' A + A B ) + 2012(A7^ + AC) = 0
c:>4023ÃA + 20nAB + 2012AC = 0 (1)
Tuong t u ta CO
4023B' B + 201IBC + 2012BA - 0 ; 4023C'(: + 20nCA + 2012CB = 6
Cpng ve vai vélai ta dugc
4023( A A ' + BB' + CC') + BA + AC + CB = O o A A ^ + BB' + C C ' = 0
Suy ra GA + GB + GC = GẤ + GB' + GC' => GAT' + GB' + GC"' = 0
Do do G la trong tam A A ' B ' C
Bai 1.49 Cho AABCva A A ' B ' C c 6 ciing trong tam G, ggi Gi,G2,G3la trong
tam cac tam giac BCÁ,CAB', A B C Chung minh rang AGiG2G3Cung c6
trpng tam G
Huang dan gidi
Vi AABC va A A ' B ' C CO ciing trong tam G suy ra AA" + BB' + C C = 0
Suy ra A G , + BG2 + CG3 =0 do do G la trong tam AG,G2G3
Bai 1.50 Cho t u giac ABCD c6 trong tam G Goi G], G2, G3, G4 Ian lugt la
trgng tam cac tam giac AABC, ABCD, ACDA, ADAB Chung minh r^ng G
cung la trgng tam t u giac G,G2G3G4
Huang dan gidi
tam giac ABC va A,B,C, c6 ciing trgng tam
Huang dan gidi
Ggi D , E, F tuong ung la giao diem ciia M A , , MB,, M C , voi cac canh BC,
CA, AB O la trgng tam deu AABC
Ta C O MA," + MB,' + MC, = 2 ( M D + ME + M F '
r r ; ; 3;
Mat khac theo bai tap 6 (dang 2) thi wb + ME + MF = ^ M O
Suy ra M A , + MB, + MC, = 3MO do do O la trgng tam tam giac A,B,C,
Bai 1.52. Cho tam giac ABC, diem O nam trong tam giac Ggi A , , B i , C , Ian
lugt la hinh chieu ciia O len BC, CA, AB Lay cac diem A2,B2,C2 Ian lugt thugc cac tia O A , , OB,, OC, sao cho OA2 =a, OB2 = b, OC2 = c Chung minh O la trgng tam tam giac A2B2C2
Huang dan gidi
Ta CO OA2 + OB2 +OC2 = ^ O B , OC,
= + b ? ? ^ + = 0 (Theo djnh ly con nhim)
OA, OBi O C , - +
c-Do do O la trgng tam tam giac A2B2C2
39
Trang 22DANG TOAN 6: T/M TAP HOP DIEM THOA MAN DIEU
KIEN VECTO CHO TRUOC
1 PHLfONG PHAPGlAl
De tim tap hap diem M thoa man man dieu ki?n vecto ta quy ve mot trong
cac dang sau:
- Ne'u M A = MB voi A, B phan biet cho tnroc thi M thuoc duong trung true
aia doan AB
voi A, B, C phan biet cho triroc thi M thuoc duong tron
- Neu MC =k A B
tarn C, ban kinh bang k AB
- Ne'u M A = kBC voi A, B, C phan bi^t va k la so' thuc thay doi thi ^
+ M thuoc duong thang qua A song song voi BC voi k e R
+ M thuoc nira duong thang qua A song song voi BC va ciing huong BC
voi k > 0
+ M thuoc nua duong th^ng qua A song song voi BC va ngu-oc huong BC
vol k < 0
'•i Ne'u M A = kBC, B^C voi A, B, C thang hang va k thay doi thi tap hop
diem M la duong thang BC
2 CAC Vl DU
Vidu 1: Cho tam giac ABC
a) Chung minh rSng ton tai duy nha't diem I thoa man : 2iA + 3IB + 4iC = 0
b) Tim quy tich diem M thoa man : |2MA + 3MB + 4MC| = |MB - M A
Liri gidi
a) Taco: 2IA + SIB + 4iC = 0<=>2iA + 3(IA + i^) + 4(iA + AC) = 6
o 9IA = -SAB - 4AC <^ lA 3AB + 4ACI > I ton tai va duy nha't
b) Voi I la diem duoc xac djnh 6 cau a, ta c6:
2MA + 3MB + 4MC = 9Mi + (2IA + 3IB + 4IC) = 9MI va MB - M A = AB nen
12MA + 3MB + 4MCIHMB - M A l o l 9Mi W AB i o M I = ^
Vay quy tich ciia M !a duong tron tarn I ban kinh A B
Vidu 2: Cho tam giac ABC Tim tap hop cac diem M thoa man dieu kien sau:
a) | M A + MB| = | M A + MCl
b) M A + MB = k ( M A + 2MB - 3MC) voi k la so thuc thay doi
40
Lai gidi (hinh 1.28)
a) Goi E, F Ian luot la trung diem ciia AB, AC suy ra SJA + MB = 2ME va MA + MC = 2MF
Khi do I M A + M B = M A + M C
| 2 M F | < » M E = M F 2ME
Vay tap hop cac diem M la duong trung true ctia EF
Vi du 3: Cho tu giac ABCD Voi so k tuy y, lay cac diem M va N sao cho
AM = kAB, D N = kDC Tim tap hop cac trung diem I cua doan thing
MN khi k thay doi
LOT^ifli (hinh 1.29) Goi O, O' Ian lugt la trung diem ciia AD va BC, ta c6
AB = Ad + OO" + O'B va DC = DO + OO' + O C Suy ra A B + DC = 2 0 0 '
Tuong tu vi O, I Ian luot la trung diem ciia AD
va M N nen A M + D N = 20i
Dodo Oi = i ( k A B + kDC) = kOO' 1 Hinh 1.29
Vay khi k thay doi, tap hop diem I la duong thang OO'
3 BAI TAP LUYlN TAP
Bai 1.53 Cho 2 diem co djnh A , B Tim tap hop cac diem M sao cho:
a) I M A + M B I = I M A - M B I b) |2MA + MB| - | M A + 2MB|
Huang dan gidi
3) Tap hop diem M la duong tron tam I ban kinh voi I la trung diem cua
Trang 23Ta c6: 2 M A + M B MB + 2MC « MK M L
Tap hop diem M la duang trung true cua doan thang KL
Bai 1.54 Cho AABC Tim tap hop cac diem M sao cho:
a) M A + kMB = kMC voi k la so thuc thay doi
b) V = MA + MB + 2MC cung phirong vol vec to BC
c) I M A + BCl = | M A - MB| ( H D : dung hinh binh hanh ABCD)
Huong dan gidi
Huang dan gidi
a) Goi K la diem thoa man: 2KA + 3KB = 0
L la diem thoa man: 3LB - 2LC = 0
Ta c6:
2 M A - M B - M C
2MA + 3MB = 3MB + 2M(: o MK = ML
=> Tap hop diem M la duong trung true cua doan thSng KL
b) Voi I la trung diem ciia BC Goi J la diem thoa man: 4JA + JB + JC = 6
Ta c6: 4MA + MB + MC 2 M A - M B - M C
6MJ 2 M A - 2 M I 6MJ 2IA; <^MJ = - I A 1
3 Vay tap hop diem M la duong tron tarn J ban kinh R = - lA
3
Bai 1.56: Cho iu giac ABCD
a) Xac dinh diem O sao cho : OB + 40C = 20D ,
b) Tim tap hop diem M thoa man he thuc I M B + 4MC - 2Mi3 = 3MA
Huang dan gidi
a) OB + 40C = 20D <r> OB = - C I vol I la trung diem BD
3
b) M B + 4 M C - 2 M D = 3 M A | I M O = M A Vay tap hop diem M la duong trung true ciia doan O A Bai 1-57: Cho luc giac deu A B C D E F Tim tap hop cac diem M sao cho :
M A + M B + M C + M D + M E + M F nhan gia tri nho nha't
Huang dan gidi
Ggi P la trong tarn ciia A A B C , Q la trong tam cua A D E F
.Ml":
MA + MB + MC MD + ME + MF = 3 M P + 3 M Q = 3 ( M P + M Q ) > 3 Q P
Dau " = " xay ra khi va chi khi M thuoc doan P Q Vay tap hop cac diem M can tim la moi diem thuoc doan P Q Bai 1.58: Tren hai tia Ox va Oy ciia goc xOy lay hai diem M , N sao cho
OM + O N = a voi a la so' thuc cho truoc tim tap hop trung diem I ciia doan thang M N
Huang dan gidi
Goi hai diem M„, N „ Ian lugt thuoc tia Ox va Oy sao cho OMQ = ON(, = - Gia sir O M = k, 0 < k < a khi do ta c6 M I = ^ ^ M o N ( , '
2 a
Do do tap hop diem I la doan MQNQ
DANG TOAN 7: XAC DINH TINH CHAT CUA HINH KHI
BIETMOTDANG THUC VECTO
1 PHLTONG P H A P G I A I
Phan tich dugc djnh tinh xua't phat tir cac dSng thirc vecto ciia gia thiet, luu
y toi nhirng he thuc da bie't ve trung diem ciia doan thang, trong tam ciia tam giac va ket qua " ma + nb = 0 <=> m = n = 0 voi a, b la hai vecto khong
2 CAC VI DU
Vi du 1: Goi M , N Ian lugt la trung diem cua cac canh AD va DC ciia tir giac
ABCD Cac doan th^ng A N va BM ck nhau tai P Bie't ?U = ^BM;
Trang 24= SAP - 4 A M = 2AN - 2AD
= 2(AD + DN) - 2Al3
= 2DN = DC =i> ABCD la hinh binh hanh
Vi du 2: Cho tam giac ABC c6 cac canh bang a, b, c va trong tarn G thoa
man:a^GA + b^GB + c^GC = O.Chung minh rang ABC la tarn giac deu
Vi du 3: Cho tam giac ABC c6 trung tuyen AA' va B' , C la cac diem thay
doi tren CA, AB thoa man XK' + BB' + CC' = 0 Chung minh BB', CC la
cac trung tuyen cua tam giac ABC
Led gidi
Gia six AB' = mAC, AC' = nAB
Suy ra BB' = AB' - AB = mAC - AB
va CC" = AC' - AC = nAB - AC
Mat khac A' la trung diem ciia BC nen A A ' = ^ ( A B + Ac)
Dodo A A ' + BB' + C C = d <::>-(AB +AC) + m A C - A B + n A B - A C = 0
f 1^ n — AB + m — AC = 0 f 1^
I 2) I 2)
Vi AB, AC khong cung phuong suy ra m = n = - do do B', C Ian lugt la
trung diem ciia CA, AB
Vay BB', CC la cac trung tuyen ciia tam giac ABC
3 BAI T A P L U Y ^ N TAP
Bai 1.59: Cho t u giac ABCD c6 hai duong cheo cat nhau tai O thoa man
OA + OB + OC + OD = 0 Chung minh tu giac ABCD la hinh binh hanh
Cty TNHH MTV DWH Kliang Viet
Huang dan gidi
Dat OA = xAC, OC = yAC, OB = zBD, OD = tBD Suy ra 6A + OB + OC + OD = 0 » ( x + y)AC + (z + t)BD = 0
Do do X = - y ; z = - t => OA = OC, OB = OD nen tu giac ABCD la hinh binh hanh
Bai 1.60: Cho ABC c6 BB', CC la cac trung tuyen A' la diem tren BC thoa man
A A + B B ' + O C = 0 Chung minh AA' cung la trung tuyen ciia tam giac ABC
Huang dan gidi
Huong dan gidi
Gia su A'B = kA'C, B ^ = mB^A, C A = nC'B
A ^ = kA~C <^ AB - A A ' = k(AC - A A ' ) A A ' = Tuang tu ta c6
AD + BC = 2 f i Chung minh J la trung diem ciia CD ^^^^
Huang dan gidi
AD + BC = 2ij<:^ID + IC = 2IJ Goi K la trung diem DC suy ra 10 + 10 = 2 ^ do do K = J hay J la trung diem ciia CD
Trang 25Bai 1.63: Cho ti> giac A B C D Gia sit ton tai diem O sao cho OA = OB = OC = OD
va O A + OB + OC + O D = d Chii-ng m i n h rang A B C D la hinh c h u nhat
Huang dan gidi Goi M , N, P, Q la trung diem cua AB, BC, CD, D A A
Tit p h u o n g trinh t h u hai ta duoc:
<=> N , Q , 0 thang hang va O la trung diem N Q
Ta CO A O A D can tai O nen N Q 1 A D , AOBC can tai O
nen N Q 1 BC suy ra A D / /BC
T u a n g t u A B / / D C suy ra A B C D la hinh binh hanh
M a N , Q la trung diem ciia BC, A D nen A B / /NQ => A B 1 BC
Suy ra A B C D la hinh chu nhat
Bai 1.64: Cho tam giac ABC noi tiep d u a n g tron tam O, goi G la trong tam tam
giac ABC A', B', C la cac diem thoa man:
O A = 3 0 A ' , OB = B O B O C = 3 0 C '
C h u n g m i n h rang G la true tam tam giac A ' B ' C
Huang dan gidi
G la trong tam tam giac ABC nen 3 0 G = O A + OB + O C
Do do OG = O A ' + OB' + 6C'
Suy ra G la true tam tam giac A ' B ' C
Bai 1.65: Cho tam giac ABC noi tiep d u a n g tron tam O, goi H la true tam tam
giac A', B', C la cac diem thoa man: O A ' = 3 0 A , OB' = 3 0 B , OC"' = SOC
C h u n g m i n h rang H la trong tam tam giac A ' B ' C
Huang dan gidi
H la true tam tam giac ABC suy ra O H = O A + OB + OC
Do do 3 0 H = O A ' + OB' + O C hay H la trong tam tam giac A ' B ' C
Bai 1.66: Cho tam giac ABC va diem M nam trong tam giac D u a n g th^ng A M
cat BC tai D, B M cSt C A tai E va C M c3t AB tai F C h u n g m i n h rling neu
A D + BE + CF = 0 thi M la trong tam tam giac A B C
Huang dan gidi
Truoc tien ta chung m i n h bo de sau
Cho ba vec to a; b;c doi mot khong cung p h u o n g va thoa man dieu kien:
ma + nb + pc = 0 ( ^ , ^ , ^ 0 )
m'a + n ' b + p ' c = 0 ft,
Chung m i n h rSng • = A = • That vay :
p i thay m , m ' * 0 thi suy ra ngay n, n', p, p' cung phai khac khong
Tro lai bai toan
— _ A n • RF • CF • Taco A D + BE + CF = O o i l i i M A + — M B + — ^ M C = 0 Mat khac
1 1 1
S - S S - S , S-Sb
Ap d u n g bo de suy ra ' = —
trong tam tam giac ABC
^ e> Sg = Sb - S^ hay M trung
II
.Pi
DANG TOAN 8: CHUNG MINH BAT DANG THUC VA TIM
cue TBI LIEN QUAN DEN DO DAI VECTO
• P H U O N G PHAP
Su d u n g bat d§ng thuc ca ban:
Voi m o i vecto a, b ta luon c6:
+ +
a + b
a - b
+ , dau bSng xay ra khi a, b cijng h u o n g
, dau bang xay ra khi a, b nguoc h u o n g
47
Trang 26fnan loai va phuarng phap giai Hinh hoc 10
• Dua bai toan ban dau ve bai toan tim cue tri cua M I voi M thay doi
+ Neu M la diem thay doi tren duang thang A khi do M I dat gia tri nho
nha't khi va chi khi M la hinh chieu ciia M len A
+ Neu M la diem thay doi tren duang tron (O) khi do M I dat gia trj nho
M I nhat khi va chi khi M la giao diem ciia tia OI vai duang tron;
Ian nha't khi va chi khi M la giao diem ciia tia lO vai duang tron
2 CAC VI Dg
dat gia trj
Vt du 1 Cho tam giac ABC va duong thSng d Tim diem M thuoc duong
thang d de bieu thuc sau dat gia trj nho nhat T = M A + M B - M C
Lai giai:
Gpi I la dinh thu tu ciia hinh binh hanh ACBI thi lA + IB - IC = 0
Khi do : T = ( M I + I A ) + ( M I + IB) - (M I + I C )
M i + IA + I B - i C M l Vay T dat gia trj nho nha't khi va chi khi M la hinh chieu ciia I len duang
thang d
Vidu 2: Cho tam giac ABC va A ' B ' C la cac tam giac thay doi, c6 trong tam
G va G' co'djnh Tim gia trj nho nha't ciia tong T = AA'+ BB'+ C C
Dling thuc xay ra khi va chi khi cac vecta Ah', BB", C C ciing huang
Vay gia trj nho nha't T la 3GG'
3 B A I T A P L U Y ^ N T A P
Bai 1.67: Cho tam giac ABC, duang thang d va ba s6'a,p,y sao cho
a + p + y ^ 0
Tim diem M thuoc duang thSng d de bieu thuc T = a M A + PMB + yMC dat
gia trj nho nha't
Huang dan giai
po a + P + y O nen ton tai duy nhat diem I sao cho alA + piB + ylC = 0
Ta C O a M A + pMB + yMC = a(MI + IA) + P(Mi + IB) + y(MI + IC)
= (a + P + y)MI + aIA + pIB + yIC =(a + p + y)MI
Do do T = a + p + Y -MI Suy ra T nho nha't khi va chi khi M la hinh chieu ciia I len duong thing d
Bai 1.68: Cho tam giac ABC Tim diem M tren duong tron (C) ngoai tie'p tam
giac ABC sao cho | M A + MB + MC
b) Dat gia trj nho nhalt '
Huang dan giai
"' i M G
a) Dat gia tri Ion nha't
G la trong tam tam giac ABC ta c6 MA + MB + MC = 3 a) M la giao diem ciia tia GO vai (C)
b) M la giao diem ciia tia OG vai (C)
Bai 1.69: Cho tam giac ABC M, N, P Ian lugt la cac diem tren cac canh BC,
CA, AB sao cho BM = kBC, CN = kCA, AP = kAB Chung minh rang cac doan thing AM, BN, CP la ba canh ciia mot tam giac nao do
Huong dan giai
Taco A M + B N + CP = 0
Suy ra A M = - ( B N + CP): A M B N + CP B N CP
Vi BN va CP khong cung phuong nen khong the xay ra dau bang do do
A M < BN + CP Tuang tu ta c6 BN < A M + CP, CP < A M + BN
Bai 1.70: Cho tam giac ABC Chung minh rang voi mpi diem M thuQC c^nh AB
va khong triing vai cac dinh ta c6: MCAB < MA.BC + MB.AC ^
Huang dan giai
C M : ' ^ - C A M A c B : , M C < M ^ C A M A C B
AB
AB AB ' AB Hay M C A B < MA.BC + MB.AC
Bai 1.71: Cho tu giac ABCD, M la diem thuoc doan CD Goi p, pi, P2 la" ^^^t
la chu vi ciia cac tam giac AMB, ACB, ADB Chung minh rang p < max (pi; P2} •
Trang 27Huang dan gidi
Bai 1.72: Tren duong tron tam O ban ki'nh bang 1 lay 2n + l diem
Pj, i = l,2, ,2n + l ( n e N) a cung phia vol doi voi duong kinh nao do
1 - - •
Chung minh rang |2n+l
i=l > 1
Huang dan gidi
Ta chung minh bang quy nap
+ Voi n = 0 : hien nhien
+ Gia su BDT diing vol n = k ta di chung minh dung voi n = k +1 hay
§4 TRUC TOA DO VA HE TRUC TOA DO
^ TOM TAT LY THUYET , j 4
I T R V C T O A D Q :
I Dinh nghia: True toa do (True , hay true so ) la mot duong thSng tren do ta
da xac dinh mot diem O va mot vecto don vi i (tue la i = 1)
Hinh 1.30
Diem O dugc goi la goc toa do, vec to f dugc gpi la vecta dan vi cua true toa
dp. Ki hieu (O ; i ) hay x'Ox hoae don gian la Ox ;
2 Tpa dp cua vecto va cua diem tren true:
+ Cho vec to u nam tren true (O ; f ) thi c6 so thuc a sao cho u = a l voi
a e R So a nhu the dupe goi la toa dp eiia vecto u" doi voi true (O ; i')
+ Cho diem M nam tren ( O ; i ) thi eo so m sao cho O M = m i So'm nhu the dupe goi la toa dp cua diem M doi voi true ( O ; i )
Nhu vay tpa dp diem M la tpa dp vecto O M
3 Dp dai dai so ciia vec to tren true:
Cho hai diem A, B nam tren true Ox thi tpa dp cua vecto AB ki hi|u la AB
va gpi la dp dai dai so cua vecto AB tren trye Ox , Nhu vay AB = AB.i'
Tinhchat: ' * + A B = - B A
+ AB = C D » A B = CD + V A ; B ; C e ( 0 ; T ) : AB + BC = AC
Mat khae theo gia thiet quy nap ta eo O B '2k+2 ZOP,
I , ] Diem O gpi la goc toa do, Ox gpi la true
hoanh va Oy gpi la true tung
P A + O B O B >1 Kihieu Oxy hay ( 0 ; i , j ) Hinh 1.3
2- Tpa dp diem, tpa dp vec to , Trong he true tpa dp (0;T,]) neu u = xT + yj thi cap so (x;y) dupe gpi la tpa
dp eiia vecto u , kihieu la u = (x;y) hay u ( x ; y ) I f-\ ' •
S I
Trang 28X dirgrc goi la hoanh do, y duQC gpi la tung dp ciia vecto u
+ Trong true tpa dp (0;i,j), tpa dp cua vecto OM gpi la tpa dp cua diem
M, ki hi?u la M = (x;y) hay M(x;y) x dupe gpi la hoanh dp, y dupe gpi la
tung dp cua diem M * #i>i,'^%t ' "
Nhqn xet: (hinh 1.31) Gpi H, K Ian lupt la hinh chieu eiia M len Ox va Oy
thi M(x;y)<:>OM = xr+y] = 6 H + OK % C
Nhu vay O H = xi, OK = y] hay x = OH, y = OK
3 Tpa dp trung diem cua doan thang Toa dp trpng tarn tam giac
+ Cho M^A'VA)' ^ X B ' Y B ) va M la trung diem AB Tpa dp trung diem
YM =
2 ' 2
+ Cho tam giac ABC c6 A(xy^;y;i^), B(xB;yB), C ( x ( ; ; y c ) Tpa dp trpng tam
G ( x c ; y G ) c u a t a m g i a e A B C I a x c = ^ ^ ^ ^ ^ ^ va y c = ^ ^ ^ ^ ^ ^
4 Bieu thurc tpa dp cua cac phep toan vecto
Cho u =(x;y) ; u ' = (x';y') va so thuc k Khi do ta c6 :
fS'-_ fS'-_ fx = x'
1) u = u'<=>^
l y = y 2) u ± v = ( x ± x ' ; y ± y ' )
3) k.ii = (kx;ky) ^
4) u* Cling phuong u (u 7t 6) khi va chi khi c6 so k sao cho I ,
y - k y
5) Cho A(xA;yA), ^^BiYs) A B = ( X B - X A ; y B - Y A )
DANG TOAN 1: T/M TOA DO CUA MOT DIEM; TOA DO
VECTO; DO DAI DAI SO CUA VECTO VA CHUNG MINH
HE THUC UEN QUAN TREN TRUC (0; 1)
1 P H U O N G P H A P GlAl
Sir dung cac kien thuc ca ban sau:
• Diem M c6 tpa dp a o OM = a.f '*
• Vecto AB codpdaidaisola m = AB<=> AB = mT
^ Neu a, b Ian lupt la tpa dp ciia A, B thi AB = b - ^
, Cac tinh chat + A B = - B A A, m
a
Vidu 2: Tren true tpa dp (O; i ) cho 4 diem A, B, C, D bat ky
Chung minh AB.CD + AC.DB + AD.BC = 0
Cach 2: AB.CD + AC.DB + AD.BC =
A B ( A D - A C ) + A C ( 7 ^ - A D ) + A D ( A C - A B )
= AB.AD - A B A C + A C A B - A C A D + A D A C - AD.AB
= 0 ^
3 BAI T A P L U Y ^ N T A P ( V
Bai 1.73.Tren true tpa dp (O; f ) Cho 2 diem A va B c6 tpa dp Ian lupt a va b
a) Tim tpa dp diem M sao cho MA = kMB (k ^ 1) ' b) Tim tpa dp trung diem I ciia AB ' ^ \ c) Tim tpa dp diem N sao cho 2NA = -5NB ' ' • ^
k b - a a + b ^ 5b + 2a ?
Trang 29-Bai 1.74 Tren true toa do (O ; i ' ) cho 4 diem A , B, C, D c6 toa do Ian Ixxqt la
a, h, c, d va thoa man h$ thu'c2(ab + cd) = (a + b)(c + d )
DANG TOAN 2: TIM TOA DO DIEM, TOA DO VECTO
TREN MAT PHANG Oxy
1 P H L T O N G P H A P
• De t i m tpa do cua vecto a ta lam n h u sau
D i m g vecto O M = a Gpi H , K Ian lugt la hinh chie'u vuong goc cua M len
Ox, O y K h i do a ( a i ; a2) voi a 1 = O H , a2 = OK ,
• De tim toa do diem A ta di tim toa do vecto O A
• Neu biet toa do hai diem A ( x A ; y A ) , B(xB;yB) suy ra toa dp A B dupe xac
d j n h theo cong thuc AB = (xg - x ^ ; yB - YA )
Chii y: O H = O H neu H nam tren tia Ox (hoac O y ) va O H = - O H neu H
nam tren tia doi tia Ox (hoac O y )
2 CAC Vl DU:
Vidu 1: Trong mat phSng tpa dp O x y
T i m tpa dp cua cac diem M2*
a) M l doi xung voi M qua true hoanh /
b) M 2 doi xung voi M qua true tung / 0 X
c) M3 doi xung vai M qua goc tpa dp / Hinh 1.32
; V LOT ^/at (hinh 1.32)
a) M l doi xung voi M qua true hoanh suy ra M i (x;-y)
]Vl2 doi xung vol M qua true tung suy ra ( - x ; y ) M3 doi xung voi M qua goc tpa dp suy ra M3 ( - x ; - y )
yi^u 2: Trong he true tpa dp (O; i ; j ), cho hinh vuong A B C D tarn I va eo
A(l;3) Biet diem B thupc true (O; i ) va BC cung huong voi f T i m tpa
dp cac vecto A B , BC va A C ''
Lai gidi (hinh 1.33)
T u gia thie't ta xac djnh dupe hinh vuong tren mat phang tpa dp (hinh ben)
Vi diem A ( l ; 3) suy ra A B = 3, OB = 1
D o d o B(1;0),C(4;0),D(4;3) Vay AB(0; -3), BC(3; 0) va AC(3; -3)
0\
Hinh 1.33
Vi du 3: Trong mat phSng tpa dp Oxy Cho hinh thoi A B C D canh a va
6 ^ = 60" Biet A triang v o i goc tpa dp O, C thupc true Ox va
XB ^ 0,yB ^ 0 T i m tpa dp cac dinh eiia hinh thoi ABCD
Lai gidi (hinh 1.34)
Tir gia thie't ta xac dinh dupe hinh thoi tren mat phSng tpa dp Oxy Gpi I la tarn hinh thoi ta c6
BI = A B s i n B A I = asin30" =
-A I = N/-AB^^^B? = Suy ra
A ( 0 ; 0 ) , B [ ^ ; | ] , C ( a V 3 ; 0 ) , D faVs D
Hinh 1.34
3.BAITAPLUYeNTAP ^ ^ i f - v L
Bai 1.75: Cho hinh binh hanh A B C D c6 A D = 4 va chieu cao ihig v o i canh
A D = 3, B A D = 60° Chpn h? tryc tpa d p (A;T,]) sao cho I va A D ciing
huong, yB > 0 T i m tpa dp cac vecto AB, B C , CD va A C
Huang dan gidi
Ke B H 1 A D => B H = 3; AB = 2V3; A H = Vs
5 5
Trang 30A(0;0) ;B(73;3) C(4 + V3;3) D(4;0)
AB = {73;3) BC=(4;0)CD = (-73;-3)
AC = (4 + V3;3)
Bai 1.76: Cho luc giac deu ABCDEF Chgn he true toa do (O; i ; j ), trong do
O la tarn luc giac deu , i ciing huong voi O D , j cung huong EC Tinh tga
dp cac dinh luc giac deu , biet canh ciia luc giac la 6
Huang dan gidi
A(-6;0),D(6;0), B(-3;3V3),
:(3;3V3), F(-3;-373), E(3;-3V3
DANG TOAN 3: XAC DINH TOA D O DIEM, VECTO LIEN
QUAN DEN BIEU THUC DANG u + v,u-v, ku
1 P H U O N G P H A P
Dung cong thuc tinh toa dp ciia vectau + v, u - v, k u
Voi u = ( x ; y ) ; u ' = (x';y') va so thuc k, khi do u ± v = (x ± x';y ± y') va
a) Taco A B ( 4 ; 3 ) , AC(6;1) suy ra u = ( 2 ; 5 )
b) Gpi M ( x ; y ) , taco M A ( - 4 - x ; - y ) , M B ( - X ; 3 - y), M C ( 2 - x;l - y) Suyra M A + 2 M B + 3 M C = (-6x + 2;-6y + 9 )
-4
^3'2,
3 BAI T A P LUYfiN T A P Bai 1.77.Cho cac vecto a = (2;0), bT =
a) u = 2a' - 4b + 5c | b) a - 2b + 2u = c
' Huang dan gidi
a) u =:(28;-28) b ) u = ( 0 ; | ) ;
Bai 1.78 Cho ba diem A ( - 4 ; 0 ) , B(-5;0) va C(3;-3)^
a) Tim tpa dp vecto u = AB - 2BC + 3CA Tim diem M sao cho M A + MB + MC = 0 '^^ '
Huang dan gidi
, c = ( 4 ; 6 ) Tim tpa dp vecto u biet
57
Trang 31DANG TOAN 4: XAC DINH TOA DO CAC DIEM CUA MOT HINH
1 PHUONG PHAP
Dya vao tinh chat cua hinh va sit dung cong thuc
+ M la trung diem doan thang A B suy ra x YM = - Z A + Y B
+ G trong tarn tarn giac ABC suy ra x^ = ^ A + X B + X C ^ ^ y A + y B + Yc
(0:i ) f\ fid t:>f{3 ;E HII
Vidu 1: Cho tarn giac ABC c6 A(2;l), B { - l ; - 2 ) , C ( - 3 ; 2 )
a) Tim toa do trung diem M sao cho C la trung diem cua doan MB
b) Xac dinh trong tam tam giac ABC
c) Tim diem D sao cho ABCD la hinh binh hanh
Vidu 2; Trong mat phang toa do Oxy cho A ( 3 ; - 1 ) , B ( - 1 ; 2 ) va l ( l ; - l ) Xac
dinh toa do cac diem C, D sao cho tu giac A B C D la hinh binh hanh biet I
la trong tam tam giac A B C Tim toa tam O cua hinh binh hanh A B C D
3 BAI TAP L U Y S N TAP
Bai 1.79: Cho ba diem A(3;4), B(2;l), C ( - l ; - 2 ) a) Tim toa do trung diem canh BC va toa do trong tam cua tam giac ABC b) Tim toa do diem D sao cho ABCD la hinh binh hanh
Huang dan gidi
[y = 1 ^ ' Bai 1.80: Trong mat phang toa do Oxy cho A ( 3 ; 4 ) , B ( - 1 ; 2 ) , I ( 4 ; 1 ) Xac djnh toa do cac diem C, D sao cho tu giac A B C D la hinh binh hanh va I la trung diem canh C D Tim toa tam O ciia hinh binh hanh A B C D
Huang dan gidi
Do I ( 4 ; - 1 ) la trung diem ciia C D nen dat I
C ( 4 - x ; - l - y ) , D ( 4 + x ; - l + y ) ^ C D ( 2 x ; 2 y )
Vay C ( 2 ; - 2 ) , D ( 6 ; 0 ) , O "
Tu giac ABCD la hinh binh hanh <=> CD = B A <=> •
59
Trang 32Bai 1 8 1 : Cho tam giac A B C c6 A ( 3 ; 1 ) , B ( 1 ; - 3 ) , d i n h C nam tren Oy va tron^
tam G nam tren true O x T i m toa dp d i n h C
\ dan gidi •/
T u g i a thiet ta CO C ( 0 ; y ) , G ( x ; 0 )
G la trong tam tam giac nen x^ + X B + X C = 3 x c
I,;: nnfcTi 'ria
Bai 1.82: Cho tam giac ABC c6 M , N, P Ian luot la trung diem cua BC, C A , AR
, Biet M ( l ; l ) , N ( - 2 ; 3 ) , P ( 2 ; - 1 ) T i m toa do cac d i n h cua tam giac A B C
Huang dan gidi
T a c o M N ( - 3 ; - 4 ) , P A ( X ^ -2;y^ + l ) , M N = PA ^ A ( - 1 ; - 5 )
N la t r u n g diem A C suy ra C ( - 3 ; - l )
M la t r u n g d i e m BC suy ra B ( 5 ; 3 )
Bai 1.83: Cho tam giac ABC c6 A ( 3 ; 4 ) , B ( - 1 ; 2 ) , C ( 4 ; 1 ) A ' la d i e m doi xung
ciia A qua B, B' la diem doi xung ciia B qua C, C la diem d o i x u n g ciia C
qua A
a) T i m toa do cac diem A " , B", C
b) C h u n g m i n h cac tam giac ABC va A ' B ' C c6 cung trong tam
Huang dan gidi
a) A ' la diem d o i x u n g ciia A qua B suy ra B la trung diem cua A A ' do do
va chi k h i c6 so' k sao cho
Chii y: Neu xy 0 ta c6 u ' cung phuong u o — = y
pg- phan tich c ( c , ; C 2 ) qua hai vecto a ( a , ; a 2 ) , b ( b , ; b 2 ) khong cung
phu-ong, ta gia su c = xa + y b K h i do ta quy ve giai he p h u o n g trinh
aiX + b i y = c,
a2X + b 2 y = C2
2 cAC V I D\}
Vtdu 1: Cho a = (1;2), b = ( - 3 ; 0 ) ; c = (-1;3) a) Chung m i n h hai vecto a ; b khong ciing phuomg b) Phan tich vecto c qua a ; b
Lai gidi
a) Taco ^ ^ ^ = > a va b khong cung p h u o n g b) Gia su c = xa + y b Ta c6 xa + y b = (x - 3y;2x)
2 Suy ra • X - 3 y =
2x = 3
X = —
3 ^ c
5 ^ = 9
V I d H 3 ; T r o n g mat phang toa do O x y , cho ba d i e m A { 6 ; 3 ) , B { - 3 ; 6 ) , C(l; 2)
a) Chirng m i n h A, B, C la ba d i n h mot tam giac ^ b) Xac d j n h diem D tren true hoanh sao cho ba diem A , B, D thang hiing
c) Xac d j n h diem E tren canh BC sao cho BE = 2EC jdpCac d j n h giao diem hai ducmg thang DE va A C
6 1
Trang 33Lai gidi
a) Ta CO A B ( - 9 ; 3 ) , A C ( - 5 ; - 5 ) V i — s u y ra ABva A C khong cung
phuang ^
Hay A, B, C la ba dinh mot tarn giac
b) D tren true hoanh => D(x;0)
Ba diem A, B, D thang hang suy ra AB va A D cimg phuong |y
Mat khac AD(x - 6; -3) do do — = — x = 15 "
3 BAI TAP LUYgN TAP
pai l - ^ - Trong mat phang toa do Oxy cho 4 diem A ( 1 ; - 2 ) , B(0;3), C(-3;4)
v a D ( - l ; 8 ) a) Bo ba trong 4 diem tren bo nao thang hang ^ ^ b) Chung minh AB va AC khong ciing phuang i '
Huang dan gidi
D (O; 3) Tim giao diem ciia 2 duong thang AC va BD
Huang dan gidi
Goi l(x;y) la giao diem AC va BD suy ra A I ;AC cimg phuong va B I ; BD
cimg phuong Mat khac: A I = ( x ; y - l ) , AC = (2;6) suy ra - = 6 x - 2 y = - 2 (1)
2 6
BI = ( x l ; y 3), BD = (1;0) suy ra y 3 the'vao (1) ta c6 x =
-Vay I la diem can tim
(MS Bai 1.86 Cho a = (3;2), b = (-3;1)
a) Chirng minh a va b khong cimg phuong
b ) Dat u = (2 - x)a + (3 + y)b Tim x, y sao cho u ciing phuang voi xa + b va
Trang 34V a y c o h a i d i e m t h o a m a n M , ( l ; 0 ) , M 2 ( 3 ; 2 ) ^
Bai 1.88 Cho ba d i e m A ( - l ; - l ) , B(0;1), C(3;0)
a) C h u n g m i n h ba diem A , B, C tao thanh mot tam giac
b) Xac d j n h toa do diem D biet D thuoc doan thMng BC va 2BD = 5DC
c) Xac d j n h toa do giao diem ciia A D va BG trong do G la trong tam tam
cimg p h u o n g suy ra ton tai k : BI = k B G y = 1
a i 1 8 9 T i m tren true hoanh diem P sao cho tong khoang each t u P toi hai
diem A va B la nho nha't, biet:
b) A ( 1 ; 2 ) va B ( 3 ; 4 ) a) A ( 1 ; 1 ) va B ( 2 ; - 4 )
Huong dan gidi
a) D i thay d i e m A, B nkm 6 hai phia v o l true hoanh
Ta C O PA + PB > A B D a u bang xay ra <=> A P ciing p h u o n g v o i A B Suy ra ^ = l z l = X p = ^ = > P
3 - 1 " 4 + 2 X p = - = ^ P
Bai 1.90: Cho h i n h b i n h hanh ABCD c6 A ( - 2 ; 3 ) va tam l ( l ; l ) Biet diem
K ( - 1 ; 2 ) n a m tren d u o n g thang AB va diem D c6 hoanh do gap doi hjng
dp T i m cac d i n h con lai ciia hinh binh hanh
Huong dan gidi
I la t r u n g d i e m A C nen C ( 4 ; - l ) Gpi D ( 2 a ; a ) ^ B ( 2 - 2 a ; 2 - a )
Trang 35Chuyen del: l ^ N G D V N G V E C T O DE G I A I T O A N H I N H H Q C
Phmmg phap chung
De giai mot bai toan tong hop bang phuong phap vecto ta thuong thyc
hien theo cac buoc sau \
Bitac 1: Chuyen gia thiet va ket luan ciia bai toan sang ngon ngi> cua
vecto, chuyen bai toan tong hgrp ve bai toan vecto
Bie&c 2: Su dung cac kien thuc vecto de giai quyet bai toan do
Bu&c 3: Chuyen ket qua bai toan vecto sang ket qua bai toan tong hop
Sau day la mot so dang toan thuang gap
I C H l f N G M I N H BA DIEM T H A N G HANG, Dl/ONG T H A N G D I QUA
D I E M CO D I N H V A DIEM THUQC DlTONG T H A N G CO D I N H
1 PHUONG PHAP GlAl ^"
• E)e chung minh ba diem A,B,C thang hang ta chung minh hai vec to AB va
AC cung phuong, tuc la ton tai so'thuc k sao cho: AB = kAC
• E)e chung minh ducmg thang AB di qua diem c6' djnh ta di chung minh ba
diem A, B, H thang hang voi H la mot diem co'djnh
2 CAC Vi
DU-Vi du 1: Cho hai diem phan biet A, B Chumg minh rang M thuoc duomg
thang AB khi va chi khi c6 hai so' thuc a , p c6 tong bang 1 sao cho:
• Neu O M = aOA + pOB voi a + p = l=>p = l - a
=> ^ = aOA + (1 - a)OB => O M - OB = a(OA - OB) => BM = aBA
Suy ra M , A, B thSng hang
Vidu 2: Cho goc xOy Cac diem A, B thay doi Ian luot nam tren Ox, Oy sao
cho OA + 20B = 3 Chung minh rang trung diem I cua AB thuoc mot
duomg thang co dinh
D i n h httomg: Ta c6 h? thuc vecto xac djnh diem I l a OI = |oA + ^OB (*)
Tir vi du 1 ta can xac dinh hai diem co djnh A', B' sao cho OI = aOA" + pOB"
3 3 diem A'va B'sao cho O A ' = O B ' = -
i rnfjrt) f i i
Lot gtat
3 3 Tren Ox, Oy Ian lugrt lay hai diem A", B' sao cho OA' = - , OB' = -
Do do diem I thuQC duong thang A'B' co djnh
Vidu 3: Cho hinh binh hanh ABCD, I la trung diem ciia canh BC va E la
AE 2
diem thuoc doan AC thoa man — = T • Chung minh ba diem D, E, I
thing hang
Djnh huong: De chung minh D, E, I thMng hang ta di tim so k sao cho
DE = k D I , muon vay ta se phan tich cac vecto DE, DI qua hai vecto khong
Cling phuong AB va AD va su dung nhan xet " ma + nb = 0 <» m = n = 0 voi a, b la hai vecto khong ciing phuong" tu do tim dugc k = -
Lai giai (hinh 1.35) Taco D I = DC + a = DC + icB = A B - i A D (1)
Trang 36Vi du 4: Hai diem M, N chuyen dpng tren hai do^n th^ng co'dinh BC va BD
Do cac diem B, H co'dinh, nen diem I co djnh.(xac djnh bai he thuc (3))
Vi du 5: Cho ba day cung song song AAj,BBi,CCi cua duong tron (O)
Chung minh rMng true tam ciia ba tam giac ABCpBCApCABj nam tren
mgt duong thgng
GQI H J , H 2 , H 3 Ian lugt la true tam aia cac tam giac ABC,, BCAj,CABj
Ta co: OH, = OA + OB + OCj, OHj = OB + OC + OA,
va OH3 =OC + OA + OBj
Suy ra H^Hj = OH2 - O H , = O C - O C , + OA7 - O A = C,C + A A ^
\3 = OH3 - OH, = OC - OC,' + OB, - OB = CjC + BBj
Vi cac day cung A A,, BBj, CC, song song voi nhau
Nen ba vecto AA,,BBi,CC,^ co cimg phuong
Do do hai vecto HjHj va HjHg cung phuong hay ba diem Hi ,H2,H3
thang hang
3 B A I T A P L U Y ^ N T A P
, j i^gi: Cho tam giac ABC Gpi M la diem thupc canh AB, N la diem thupc
1 3 c?nh AC sao cho AM = - AB, AN = - AC Gpi O la giao diem cua CM va
— >>•> !m»h BUD iij
BN Tren duong thang BC lay E Dat BE = xBC { li ) fjni X de A, O, E thing hang
Huang dan gidi
Xaco: AO = ^ A B + ^ A C ; AE = (1 - x)A^ + xAC
A, E, O thMng hang <=> AE = kAO , ^ p
o ( l - x ) A B + xAC = - A B + - A C » k = — ; x = —
Vay x = — la gia trj can tim ^ orlD :dQ
1.3 Bai 1.92: Cho AABC lay cac diem I , J thoa man IA = 2IB, 3JA + 2JC = 0
Chung minh rang IJ di qua trpng tam G ciia AABC v • •'—^
-Huang dan gidi ,.;
iA = 2 i B « i A - 2 i B = 6
3JA + 2JC = 0 o 3rA + 2ic = Sij
Suy ra 2(1 A + IB + IC) = SIJ <» 610 = SIJ I, J, G thMng hang "" '
Bai 1.93: Cho tam giac ABC Hai diem M, N di dpng thoa man
M N = MA + MB + MC a) Chung minh rang MN di qua diem codjnh
b) P la trung diem cua AM Chung minh rang MP di qua diem co'dinh
Huang dan gidi
3) Gpi G la trpng tam tam giac ABC suy ra
MN = MA + MB + M C ^ M N = GA + GB + ( X + 3 M ^ Suy ra M , N , G th^ng hang hay MN di qua diem co djnh G
b) P la trung diem A M =^ MP = ^ ( M A + M N ) = i ( 2 M A + MB + MC' Gpi I la trung diem BC, J la trung diem AI suy ra 2JA + JB + JC = 0
Do do MP = 2MJ suy ra MP di qua diem co djnh J
^ai 1.94: Cho hai diem M, P la hai diem di dpng thoa man |
MP = aMA + bMB + cMC
Chung minh rSng MP di qua diem co djnh
69
Trang 37Huong dan gidi
GQI I la tam duong tron npi tiep tarn giac ABC suy ra alA + bIB + cIC = 0
Do do MP = aMA + bMB + cMC <=> MP = (a + b + c)Mi ,,, ,,,
Vay MP di qua diem CO djnh I i •
Bai 1.95 Cho hinh binh hanh ABCD Goi E la diem dol xung cua D qua die'm
A, F la diem do'i xung cua tam O cua hinh binh hanh qua diem C va K la
trung diem ciia doan OB Chung minh ba diem E, K, F thang hang va K la
trung diem cua EF
Huang dan gidi * *
— s — ' 3 — — s — — HnfciilO 3
Taco: EF = - A D + - A B , EK = - A D + - A B
_ 2 4 4
r^EF = 2EK Vi vay K la trung diem EF. V' ,
Bai 1.96: Cho hai tam giac ABC va A j B j C j ; A 2 , B 2 , C 2 Ian luot la trong tam
cac tam giac BCAj, CABj, ABCj Goi C G p G j Ian lugt la trong tam cac
tam giac ABC, A j B j C j , A j B j C j ^
G G i Chung minh rang C G p G j thang hang va tinh
G G j ;
Huang dan gidi
• Vi G, Gj la trong tam tam giac ABC, AjB^Cj suy ra
Mat khac A A 2 ' + BB^ + C q = AA^ + BB^ + C q
Ma A 2 , B 2 , C 2 Ian lugt la trong tam cac tam giac BCAj, CABj, ABCj
pai 1 97- ^^"^ 8'^*^ • diem M, N, P Ian lirot nam tren duong thSng
B C C A , A B sac cho MB = aMC, NC = PNA, PA = yPB
Tim dieu kien cua a, p, y de M, N, P th^ng hang
Huang dan gidi
Huang dan gidi
Gpi P, Q, R, S Ian lugt la cac tiep diem ciia cac doan thang AB,BC,CD,DA doi v6i duong tron tam O
(b + d)(OA + OC) + (a + c)(OB + O D ) = 0 J
o (b + d)OM + (a + c)ON = 6
Suy ra O, M, N thMng hang (dpcm) Bai 1,99: Cho luc giac ABCDEF noi tiep duomg tron tam O thoa man
AB = CD = E F Ve phia ngoai luc giac dung cac tam giac AMB, BNC, CPD, DQE, ERF, FSA dong dang va can tai M, N, P, Q, R, S Goi O , , O j Ian lugt
la trong tam tam giac MPR va NQS Chung minh rang ba dieim O, O j , O 2 thang hang
71
Trang 38Huang dan gidi
GQ'I M I , N J , P J , Q , , R I , S , Ian lug-t la hinh chieu ciia M , N , P , Q , R , S len
A B , B C , C D , D E , E F , F A Suy ra M j , N j , P j , Q j , R j , S j Ian lugt la trung diem
cua A B , B C , C D , D E , E F , F A
T a c o MS + R Q + P N = ( M M ^ + M^A + AS^ + S ^ ) + •
+ (RR^ + R j E + EQ 7 + Q i Q : ' = 2 (M M ^ + PPI
• De chung minh duong thSng A B song song voi C D ta di chung minh
A B = k C D va diem A khong thuoc duong thang C D
• De chung minh ba duong thang dong quy ta c6 the chung minh theo hai
huang sau:
+ Chung minh moi duong thang cung di qua mot diem co'djnh
+ Chung minh mot duong thang di qua giao diem ciia hai duong thang
con lai
2. CAC vl og
Vi du 1: Cho ngu giac A B C D E Goi M, N, P, Q Ian lugt la trung diem ciia
cac canh AB, B C , C D , D E Goi I, J Ian luot la trung diem ciia cac doan MP
va NQ Chung minh rkng IJ song song voi A E
Suy ra IJ song song voi A E
yf4u2: Cho tam giac ABC.Cac diem M, N, P thupc cac duong thSng BC,
CA, AB thoaman a + p + y ^ O , + yMC = y N C + a N A = a P A + pP'B = 0 thi A M , B N , C P dong quy tai O, voi O la diem dugc xac dinh boi
a O A + pOB + yOC = 6 ^^^^
Lcngidi ^ iJJ SAl
Ta CO pMB + yMC = 6 c> p (MO + OB ) + y (MO + O C ) = 0 , |., „,,, a O A + pOB + y O C + (p + y) M O = a O A ' ^-^
^ <=>(p + y ) M d = a O A ' • Suy ra M , O, A thang hang hay A M di qua diem co djnh O Tuong tu ta c6 B N , C P di qua O , '
Vay ba duong thang A M , BN, C P dong quy
Vi du 3: Cho sau diem trong do khong c6 ba diem nao thang hang Goi A la
mot tam giac c6 ba dinh lay trong sau diem do va A' la tam giac c6 ba dinh con lai Chung minh rang voi cac each chon A khac nhau cac duong thang noi trong tam hai tam giac A va A' dong quy
Dinh huang Gia su sau diem do la A, B, C, D, E, F ,,,,, V> ; '
Ta can chung minh ton tai mot diem H co dinh sao cho voi cac each chon A khac nhau thi H thuoc cac duong thang noi trong tam hai tam giac A va A' Neu A la tam giac ABC thi A' la tam giac DEF Goi G va G Ian luot la trong tam cua tam giac ABC va tam giac DEF
H thuoc duong thang G G ' khi co so thuc k sao cho H G = k H G
Vi vai tro cua cac diem A, B, C, D, E, F trong bai toan binh dSng nen chpn k
sao cho — = - o k = -1 khi do H A + H B + H C + H D + H E + H F = 0
73
Trang 39(*) « 3HG + GA + GB + GC = 3HG' + G D + G'E + G T
« H G = H G '
i Do do GG' di qua diem c6' djnh H do do cac duong thang nol trong tam hnj
tam giac A va A ' dong quy
3 B A I T A P L U Y ^ N T A P
Bai 1.100: Cho t u giac ABCD, goi K, L Ian luot la trong tam cua cac tam gia^
ABC va tam giac BCD Chung minh rang hai duong thing KL va A D song
song vai nhau
tuong ung song song voi cac canh ciia tam giac ABC
Huang dan gidi
^
k ^ - k + l
( k l ) ^ A C , v i k ^ - k + l > 0 va A j i ^ A C nen A j C j Z / A C
Tuong tu ta c6 B2C2 / /BC va A j B j / /AB
Bai 1.102: Tren duong tron cho nam diem trong do khong c6 ba diem nao
thang hang Qua trong tam ciia ba trong nam diem do ke duong thing
vuong goc voi du-ong thang di qua hai diem con lai Chung minh rang muoi
duong thang nhan duoc cat nhau tai mot diem
Huang dan gidi
Gia su nam diem do la A j , A j , A 3 , A 4 , A5 nlim tren duong tron (O) Ta
can chung minh ton tai diem H thuoc muoi duong thing do
Goi G la trong tam ciia tam giac A J A 2 A 3 ; P la trung diem ciia doan thing
A4A5 Vi OP 1A4A5 (do OA4 =OA5) nen diem H thupc duong thing di
qua G va vuong goc vol duong thSng A4A5 khi c6 so' thuc k sao cho
J5G = kOP Ma OG = -(OA^ + 6A2 + O A 3 j (vi G la trong tam cua tam giac
chon k sao cho — = - <» k = — \ / ,x
Khi do OH = - ( O A ^ + OA^ + OA^ + OA4+OA^)
ilP' ^ ^v-./' • b "n^i fiii','
Hay OH = - OG (G la trong tam cua h? diem [ A J , A 2 , A 3 , A 4 , A 5 } )
3 Bai 1.103 Cho tu giac ABCD noi tiep duong tron (O) Goi M , N , P, Q Ian luot
la trung diem ciia cac canh AB, BC, CD, DA Ke MM', N N ' , PF, QQ' Ian luot vuong goc voi CD, DA, AB, BC Chung to rang bon duong thang MM', NN', PP', QQ' dong quy tai mot diem Nhan xet ve diem dong quy va hai diem I ,
O (I la giao diem ciia MP va NQ)
Huong dan gtat ^
Ta can chiing minh ton tai diem H thuoc duong thang M M ' , NN', PP', QQ'
Vi OP 1 CD (do OC = OD) nen diem H thupc duong thing M M ' khi c6 so thuc it sao cho H M = kOP O :*';
Ma M va P Ian luot la trung diem ciia AB va CD nen :).u> i
Hay 2 0 H = 401 (De thay / la trong tam ciia tu giac ABCD) <=> OH = 20I
Vay H la diem doi xung ciia O qua /
75
Trang 40Bai 1.104: Cho n a m diem trong do khong c6 ba diem nao thang hang Goi A la
mot tam giac c6 ba d i n h lay trong nam diem do, hai diem con lai xac dinh
mot doan thang 0 C h i i n g m i n h rang v o i cac each chon A khac nhau cae
d u a n g t h i n g no! trong tam tam giac A va trung diem doan th^ng 9 luon di
qua mot diem co djnh
Huang dan gidi
f Goi A , B, C la ba d i n h ciia tam giac A va DE la doan thSng 0 G o i G la
trong tam tam giac A va M la trung diem ciia DE thi v o i diem O tuy y ta c6
O A + OB + OC + O D + OE = 3 0 G + 2 I M , t
Do do G M luon d i qua diem co d j n h O la trong tam he diem A , B, C, D , E
Bai 1.105: Cho tam giac ABC Ba d u o n g thSng x, y, z Ian lugt d i qua A , B, C va
chiing chia doi chu v i tam giac ABC
C h u n g m i n h rang x, y, z dong quy ' ' '>f>i^ 'A fign
Huang dan gidi
Bai 1.106: Cho tam giac ABC, cac d u a n g tron bang tie'p goc A , B, C tuang u n g
tie'p xuc v o i cac canh BC, CA, A B tai M , N , P.Chung m i n h A M , B N , CP ciing
d i qua m o t diem, xac d j n h diem do
Huang dan gidi
Gia su d u o n g tron bang tie'p goc A tie'p xiic BC tai M
Goi B',C' la tie'p diem ciia canh AB, A C voi d u a n g tron bang tie'p goc A
Cty TNHH MTV DWH Khang Vtet
J,) Ggi A p B | , C ^ , D , Ian l u a t la trong tam cac tam giac BCD, C D A, D A B , ABC
Chiing m i n h rang cac d u o n g thang A A p BB,, C C p D D j dong quy tai diem G '
Huong dan gidi «st h /
N Taco: G A + GB + GC + G D = 2 G M + M A + MB + 2OT
= 2 ( G M + GP) + ( M A + MB) + (PC + PD) = 0
4^-"Omv
3 A A i = A B + A C + A D ; 4 A G = A B + A C + A D => A A j = - A G ^ ^ ^
=> A A j ; A G Cling p h u a n g hay A A i d i qua G ' ••'•'47}
T u a n g t u ta co BBi d i qua G; CCi d i qua G; D D i d i qua G '"^ ;
V a y t a c o A A , , B B j , C C i , D D , d o n g q u y t a i G tia ; T : > ,af' Bai 1.108: Cho t a m giac A B C co trong tam G, M la m o t diem t u y y Go!
A i , B j , C j Ian lugt la cac diem doi x i i n g v a i M qua cac trung diem I , J, K ciia cac canh BC, CA, AB C h u n g m i n h rang i K " ' a) Cac d u o n g thang A A ^ , BB^CCj dong quy tai trung diem O ciia m o i d u o n g
b) M , G, O thing hang va ^ = ^ ^ " ' ' ' '
M G 2 Jii <:r (, •
Huang dan gidi
a) Goi O la trung diem CCi f , j
A A j = A M + M A i = A M + M B + M C = A C + M B - !
2 A O = A C + A C j = A C + M B ( v i A C j B M h i n h b i n h hanh)
A A J = 2 A O hay O la trung diem A A i
T u a n g t u ta co BB^ = 2BO hay O la trung diem BBi Vay A A p BBj, C C j dong quy tai trung diem O ciia m o i d u a n g )I 6 b
2 M d = M A + M A 7 = M A + M B + J^^^
=> M , G, O t h i n g hang va ^ = | Sai 1.109: Cho tam giac ABC Goi M , N , P la cac tie'p diem ciia d u a n g tron noi
tie'p tam giac A B C v a i cac canh BC, C A , A B Goi A^ la d u ^ n g thSng di qua t r u n g diem P N va vuong goc v a i BC, Aj, la d u a n g t h i n g d i qua trung diem P M va v u o n g goc v a i AC, A^ la d u a n g thang d i qua trung diem M N
va vuong goc v a i AB Chung m i n h rang A^, Aj, va A^ dong quy