1. Trang chủ
  2. » Giáo Dục - Đào Tạo

100 Inequality Problems

45 251 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 45
Dung lượng 299,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

• Address: Cao Minh Quang, Mathematics teacher, Nguyen Binh Khiem specialized High School, Vinh Long town, Vinh Long, Vietnam... The inequality is equivalent to... If a=b, the inequality

Trang 1

• Address: Cao Minh Quang, Mathematics teacher, Nguyen Binh Khiem specialized High School, Vinh Long town, Vinh Long, Vietnam

• Email: kt13quang@yahoo.com

Trang 5

(a 1 b 1− )( − ≥ ⇔) 0 ab 1 a b+ ≥ + ,

(ab 1 c 1− )( − ≥ ⇔) 0 abc 1 ab c+ ≥ + Adding these two inequalities, we obtain

abc 2+ ≥ + +a b c Thus,

We set a x , b= 3 =y , c z3 = and observe that ab3 + bc+ ca 1=

The inequality is equivalent to

Without loss of generality, we can assume that a≥ ≥b c, we set x= +b c, y= +c a, z a b= +

We observe that x≤ ≤ , therefore, y z

Trang 6

We set 1 x− i =a , i 1, 2, ., ni ( = ) and observe that 0 a≤ < , i 1 (i 1, 2, ., n= )

The inequality is equivalent to

Trang 7

If a=b, the inequality is true

If a≠b, the inequality is equivalent to

Trang 8

We set x= +a b, y= ab and observe that a2+b2 =x2−2y2

The inequality is equivalent to

( 2+ 2)−( + ) ( 2+ 2)≥ ⇔( − )3 ≥ ⇔ ≥ ⇔ + ≥

12 (x∈ ),

3 3sin x sin 2x sin 3x

Trang 9

( )( ) ( )( ) n

1 3 2 4 n 1 1 n 2

1 3 2 4 n 1 1 n 2

n n

Trang 10

Adding these four inequalities, we obtain

2n 1 2n 11

,2n

2n 1 2n 11

,2n

2n 1 2n 11

Trang 11

Adding these three inequalities, we obtain

Trang 13

⇔tg x sin x cot g x cos xn 2 + n 2 ≥cot g x sin x tg x cos xn 2 + n 2

1 2 2

Trang 14

Applying the AM – GM Inequality we get

3 6

Trang 15

=4096 cos x 256 256 2564 + + + ≥4 4096 cos x.2564 4 3 =2048 cos x ≥2048 cos x

Trang 18

The inequality is equivalent to

Trang 22

44 (α β γ ∈, , , sinα +sinβ +sinγ ≥2),

cosα+cosβ+cosγ ≤ 5

16 16

Trang 24

Since a, b, c 0> , thus there exist A, B, C ∈( )0,π such that

A B C+ + = π and a tan= A, tan1 = B, c tan= C

Trang 25

It is easy to show that ( ) 1

3 3

Trang 29

( + + )= +( + +) ( + )≥ ( )( + ) ⇒⎛⎜ ⎞⎟ ≥

3 2

Trang 31

Since a, b, c > 1, thus log c 0, log bb > c > 0

Applying the AM – GM Inequality we get

Without loss of generality, we can assume that x=max x, y{ }

Applying the AM – GM Inequality we get

{ } ( )2 ( ) 2 ( 2) ( )2 1( )( )3 1 3 3y 1 y 1 y 1 y 4 27

Trang 33

( ) ( ) ( )( )

≤ 2 a b a a b b( + ) ( + )= 2 a a b b( + ) Thus,

Trang 34

( ) ( )

2

4 4

5 4

2c a 3 3 3 31

53

Trang 35

13 3 10

Trang 37

3 4 16

Trang 38

.32

Trang 42

Applying the AM – GM Inequality we get

Trang 44

Let α >i 0,i 1, 2, ,5= Applying the AM – GM Inequality we get

2 2 1

sin7

π+

π

Therefore,

Trang 45

2 2 2 2 2 2 1

2 cos7

a27

Ngày đăng: 18/05/2015, 16:13

TỪ KHÓA LIÊN QUAN