• Address: Cao Minh Quang, Mathematics teacher, Nguyen Binh Khiem specialized High School, Vinh Long town, Vinh Long, Vietnam... The inequality is equivalent to... If a=b, the inequality
Trang 1• Address: Cao Minh Quang, Mathematics teacher, Nguyen Binh Khiem specialized High School, Vinh Long town, Vinh Long, Vietnam
• Email: kt13quang@yahoo.com
Trang 5(a 1 b 1− )( − ≥ ⇔) 0 ab 1 a b+ ≥ + ,
(ab 1 c 1− )( − ≥ ⇔) 0 abc 1 ab c+ ≥ + Adding these two inequalities, we obtain
abc 2+ ≥ + +a b c Thus,
We set a x , b= 3 =y , c z3 = and observe that ab3 + bc+ ca 1=
The inequality is equivalent to
Without loss of generality, we can assume that a≥ ≥b c, we set x= +b c, y= +c a, z a b= +
We observe that x≤ ≤ , therefore, y z
Trang 6We set 1 x− i =a , i 1, 2, ., ni ( = ) and observe that 0 a≤ < , i 1 (i 1, 2, ., n= )
The inequality is equivalent to
Trang 7If a=b, the inequality is true
If a≠b, the inequality is equivalent to
Trang 8We set x= +a b, y= ab and observe that a2+b2 =x2−2y2
The inequality is equivalent to
( 2+ 2)−( + ) ( 2+ 2)≥ ⇔( − )3 ≥ ⇔ ≥ ⇔ + ≥
12 (x∈ ),
3 3sin x sin 2x sin 3x
Trang 9( )( ) ( )( ) n
1 3 2 4 n 1 1 n 2
1 3 2 4 n 1 1 n 2
n n
Trang 10Adding these four inequalities, we obtain
2n 1 2n 11
,2n
2n 1 2n 11
,2n
2n 1 2n 11
Trang 11Adding these three inequalities, we obtain
Trang 13⇔tg x sin x cot g x cos xn 2 + n 2 ≥cot g x sin x tg x cos xn 2 + n 2
1 2 2
Trang 14Applying the AM – GM Inequality we get
3 6
Trang 15=4096 cos x 256 256 2564 + + + ≥4 4096 cos x.2564 4 3 =2048 cos x ≥2048 cos x
Trang 18The inequality is equivalent to
Trang 2244 (α β γ ∈, , , sinα +sinβ +sinγ ≥2),
cosα+cosβ+cosγ ≤ 5
16 16
Trang 24Since a, b, c 0> , thus there exist A, B, C ∈( )0,π such that
A B C+ + = π and a tan= A, tan1 = B, c tan= C
Trang 25It is easy to show that ( ) 1
3 3
Trang 29( + + )= +( + +) ( + )≥ ( )( + ) ⇒⎛⎜ ⎞⎟ ≥
3 2
Trang 31Since a, b, c > 1, thus log c 0, log bb > c > 0
Applying the AM – GM Inequality we get
Without loss of generality, we can assume that x=max x, y{ }
Applying the AM – GM Inequality we get
{ } ( )2 ( ) 2 ( 2) ( )2 1( )( )3 1 3 3y 1 y 1 y 1 y 4 27
Trang 33( ) ( ) ( )( )
≤ 2 a b a a b b( + ) ( + )= 2 a a b b( + ) Thus,
Trang 34( ) ( )
2
4 4
5 4
2c a 3 3 3 31
53
Trang 3513 3 10
Trang 373 4 16
Trang 38.32
Trang 42Applying the AM – GM Inequality we get
Trang 44Let α >i 0,i 1, 2, ,5= Applying the AM – GM Inequality we get
2 2 1
sin7
π+
π
Therefore,
Trang 452 2 2 2 2 2 1
2 cos7
a27