Hierarchical convergence of an implicit double-net algorithm for nonexpansive semigroups and variational inequality problems Fixed Point Theory and Applications 2011, 2011:101 doi:10.118
Trang 1This Provisional PDF corresponds to the article as it appeared upon acceptance Fully formatted
PDF and full text (HTML) versions will be made available soon.
Hierarchical convergence of an implicit double-net algorithm for nonexpansive
semigroups and variational inequality problems
Fixed Point Theory and Applications 2011, 2011:101 doi:10.1186/1687-1812-2011-101
Yonghong Yao (yaoyonghong@yahoo.cn) Yeol Je Cho (yjcho@gsnu.ac.kr) Yeong-Cheng Liou (simplex_liou@hotmail.com)
ISSN 1687-1812
Article type Research
Submission date 3 November 2010
Acceptance date 20 December 2011
Publication date 20 December 2011
Article URL http://www.fixedpointtheoryandapplications.com/content/2011/1/101
This peer-reviewed article was published immediately upon acceptance It can be downloaded,
printed and distributed freely for any purposes (see copyright notice below).
For information about publishing your research in Fixed Point Theory and Applications go to
http://www.fixedpointtheoryandapplications.com/authors/instructions/
For information about other SpringerOpen publications go to
http://www.springeropen.com
Fixed Point Theory and
Applications
Trang 2Hierarchical convergence of an implicit
double-net algorithm for nonexpansive
semigroups and variational inequality problems
Yonghong Yao1, Yeol Je Cho∗2 and Yeong-Cheng Liou3
1Department of Mathematics, Tianjin Polytechnic University,
Tianjin 300160, People’s Republic of China
2Department of Mathematics Education and the RINS,
Gyeongsang National University, Chinju 660-701, Republic of Korea
3Department of Information Management, Cheng Shiu University,
Kaohsiung 833, Taiwan
∗Corresponding author: yjcho@gsnu.ac.kr
E-mail addresses:
YY:yaoyonghong@yahoo.cn Y-CL:simplex liou@hotmail.com
Abstract
In this paper, we show the hierarchical convergence of the following implicit
Trang 3double-net algorithm:
x s,t = s[tf (x s,t ) + (1 − t)(x s,t − µAx s,t )] + (1 − s)1
λ s
Z λ s
0
T (ν)x s,t dν, ∀s, t ∈ (0, 1),
where f is a ρ-contraction on a real Hilbert space H, A : H → H is an α-inverse strongly monotone mapping and S = {T (s)} s≥0 : H → H is a nonexpansive
semi-group with the common fixed points set F ix(S) 6= ∅, where F ix(S) denotes the set
of fixed points of the mapping S, and, for each fixed t ∈ (0, 1), the net {x s,t }
con-verges in norm as s → 0 to a common fixed point x t ∈ F ix(S) of {T (s)} s≥0and, as
t → 0, the net {x t } converges in norm to the solution x ∗ of the following variational
inequality:
x ∗ ∈ F ix(S);
hAx ∗ , x − x ∗ i ≥ 0, ∀x ∈ F ix(S).
Keywords: fixed point; variational inequality; double-net algorithm; hierarchical convergence; Hilbert space.
MSC(2000): 49J40; 47J20; 47H09; 65J15.
In nonlinear analysis, a common approach to solving a problem with multiple solutions is
to replace it by a family of perturbed problems admitting a unique solution and to obtain
a particular solution as the limit of these perturbed solutions when the perturbation vanishes
In this paper, we introduce a more general approach which consists in finding a particular part of the solution set of a given fixed point problem, i.e., fixed points which
Trang 4solve a variational inequality More precisely, the goal of this paper is to present a method
for finding hierarchically a fixed point of a nonexpansive semigroup S = {T (s)} s≥0 with
respect to another monotone operator A, namely,
Find x ∗ ∈ F ix(S) such that
This is an interesting topic due to the fact that it is closely related to convex
pro-This paper is devoted to solve the problem (1.1) For this purpose, we propose a
double-net algorithm which generates a net {x s,t } and prove that the net {x s,t }
hierar-chically converges to the solution of the problem (1.1), that is, for each fixed t ∈ (0, 1), the net {x s,t } converges in norm as s → 0 to a common fixed point x t ∈ F ix(S) of the
nonexpansive semigroup {T (s)} s≥0 and, as t → 0, the net {x t } converges in norm to the
unique solution x ∗ of the problem (1.1)
Let H be a real Hilbert space with inner product h·, ·i and norm k · k, respectively Recall
a mapping f : H → H is called a contraction if there exists ρ ∈ [0, 1) such that
kf (x) − f (y)k ≤ ρkx − yk, ∀x, y ∈ H.
A mapping T : C → C is said to be nonexpansive if
kT x − T yk ≤ kx − yk, ∀x, y ∈ H.
gramming problems For the related works, refer to [1–19]
Trang 5Denote the set of fixed points of the mapping T by F ix(T ).
Recall also that a family S := {T (s)} s≥0 of mappings of H into itself is called a
nonexpansive semigroup if it satisfies the following conditions:
(S1) T (0)x = x for all x ∈ H;
(S2) T (s + t) = T (s)T (t) for all s, t ≥ 0;
(S3) kT (s)x − T (s)yk ≤ kx − yk for all x, y ∈ H and s ≥ 0;
(S4) for all x ∈ H, s → T (s)x is continuous.
We denote by F ix(T (s)) the set of fixed points of T (s) and by F ix(S) the set of all common fixed points of S, i.e., F ix(S) = Ts≥0 F ix(T (s)) It is known that F ix(S) is
closed and convex ([20], Lemma 1)
A mapping A of H into itself is said to be monotone if
hAu − Av, u − vi ≥ 0, ∀u, v ∈ H,
and A : C → H is said to be α-inverse strongly monotone if there exists a positive real number α such that
hAu − Av, u − vi ≥ αkAu − Avk2, ∀u, v ∈ H.
It is obvious that any α-inverse strongly monotone mapping A is monotone and
1
α-Lipschitz continuous
Now, we introduce some lemmas for our main results in this paper
Lemma 2.1 [21] Let H be a real Hilbert space Let the mapping A : H → H be α-inverse
Trang 6strongly monotone and µ > 0 be a constant Then, we have
k(I − µA)x − (I − µA)yk2≤ kx − yk2+ µ(µ − 2α)kAx − Ayk2, ∀x, y ∈ H.
In particular, if 0 ≤ µ ≤ 2α, then I − µA is nonexpansive.
Lemma 2.2 [22] Let C be a nonempty bounded closed convex subset of a Hilbert space
H and {T (s)} s≥0 be a nonexpansive semigroup on C Then, for all h ≥ 0,
lim
t→∞sup
x∈C
°
°
°1
t
Z t
0
T (s)xds − T (h)1
t
Z t
0
T (s)xds
°
°
° = 0.
Lemma 2.3 [23] (Demiclosedness Principle for Nonexpansive Mappings) Let C be a
nonempty closed convex subset of a real Hilbert space H and T : C → C be a nonexpansive mapping with F ix(T ) 6= ∅ If {x n } is a sequence in C converging weakly to a point x ∈ C and {(I − T )x n } converges strongly to a point y ∈ C, then (I − T )x = y In particular,
if y = 0, then x ∈ F ix(T ).
Lemma 2.4 Let H be a real Hilbert space Let f : H → H be a ρ-contraction with
coefficient ρ ∈ [0, 1) and A : H → H be an α-inverse strongly monotone mapping Let
µ ∈ (0, 2α) and t ∈ (0, 1) Then, the variational inequality
x ∗ ∈ F ix(S);
htf (z) + (1 − t)(I − µA)z − z, x ∗ − zi ≥ 0, ∀z ∈ F ix(S),
(2.1)
is equivalent to its dual variational inequality
x ∗ ∈ F ix(S);
htf (x ∗ ) + (1 − t)(I − µA)x ∗ − x ∗ , x ∗ − zi ≥ 0, ∀z ∈ F ix(S).
(2.2)
Trang 7Proof Assume that x ∗ ∈ F ix(S) solves the problem (2.1) For all y ∈ F ix(S), set
x = x ∗ + s(y − x ∗ ) ∈ F ix(S), ∀s ∈ (0, 1).
We note that
htf (x) + (1 − t)(I − µA)x − x, x ∗ − xi ≥ 0.
Hence, we have
htf (x ∗ + s(y − x ∗ )) + (1 − t)(I − µA)(x ∗ + s(y − x ∗ )) − x ∗ − s(y − x ∗ ), s(x ∗ − y)i ≥ 0,
which implies that
htf (x ∗ + s(y − x ∗ )) + (1 − t)(I − µA)(x ∗ + s(y − x ∗ )) − x ∗ − s(y − x ∗ ), x ∗ − yi ≥ 0.
Letting s → 0, we have
htf (x ∗ ) + (1 − t)(I − µA)(x ∗ ) − x ∗ , x ∗ − yi ≥ 0,
which implies the point x ∗ ∈ F ix(S) is a solution of the problem (2.2).
Conversely, assume that the point x ∗ ∈ F ix(S) solves the problem (2.2) Then, we
have
htf (x ∗ ) + (1 − t)(I − µA)x ∗ − x ∗ , x ∗ − zi ≥ 0.
Noting that I − f and A are monotone, we have
h(I − f )z − (I − f )x ∗ , z − x ∗ i ≥ 0
and
hAz − Ax ∗ , z − x ∗ i ≥ 0.
Trang 8Thus, it follows that
th(I − f )z − (I − f )x ∗ , z − x ∗ i + (1 − t)µhAz − Ax ∗ , z − x ∗ i ≥ 0,
which implies that
htf (z) + (1 − t)(I − µA)z − z, x ∗ − zi
≥ htf (x ∗ ) + (1 − t)(I − µA)x ∗ − x ∗ , x ∗ − zi
≥ 0.
This implies that the point x ∗ ∈ F ix(S) solves the problem (2.1) This completes the
proof
In this section, we first introduce our double-net algorithm and then prove a strong convergence theorem for this algorithm
Throughout, we assume that
(C1) H is a real Hilbert space;
(C2) f : H → H is a ρ-contraction with coefficient ρ ∈ [0, 1), A : H → H is an
α-inverse strongly monotone mapping, and S = {T (s)} s≥0 : H → H is a nonexpansive semigroup with F ix(S) 6= ∅;
(C3) the solution set Ω of the problem (1.1) is nonempty;
(C4) µ ∈ (0, 2α) is a constant, and {λ s } 0<s<1 is a continuous net of positive real numbers satisfying lims→0 λ s = +∞.
Trang 9For any s, t ∈ (0, 1), we define the following mapping
x 7→ W s,t x := s[tf (x) + (1 − t)(x − µAx)] + (1 − s) 1
λ s
Z λ s
0
T (ν)xdν.
We note that the mapping W s,t is a contraction In fact, we have
kW s,t x − W s,t yk =
°
°
°s[tf (x) + (1 − t)(x − µAx)] + (1 − s)1
λ s
Z λ s
0
T (ν)xdν
−s[tf (y) + (1 − t)(y − µAy)] − (1 − s) 1
λ s
Z λ s
0
T (ν)ydν
°
°
°
≤ st
°
°f (x) − f (y)k + s(1 − t)k(x − µAx) − (y − µAy)k
+(1 − s)k 1
λ s
Z λ s
0
(T (ν)x − T (ν)y)dν
°
°
≤ stρkx − yk + s(1 − t)kx − yk + (1 − s)kx − yk
= [1 − (1 − ρ)st]kx − yk,
which implies that W s,t is a contraction Hence, by Banach’s Contraction Principle, W s,t has a unique fixed point, which is denoted x s,t ∈ H, that is, x s,t is the unique solution
in H of the fixed point equation
x s,t = s[tf (x s,t ) + (1 − t)(x s,t − µAx s,t)]
+ (1 − s)1
λ s
Z λ s
0
T (ν)x s,t dν, ∀s, t ∈ (0, 1).
(3.1)
Now, we give some lemmas for our main result
Lemma 3.1 For each fixed t ∈ (0, 1), the net {x s,t } defined by (3.1) is bounded.
Proof Taking any z ∈ F ix(S), since I − µA is nonexpansive (by Lemma 2.1), it follows
Trang 10from (3.1) that
kx s,t − zk
=
°
°s[tf (x s,t ) + (1 − t)(I − µA)x s,t ] + (1 − s) 1
λ s
Z λ s
0
T (ν)x s,t dν − z
°
°
≤ sktf (x s,t ) + (1 − t)(I − µA)x s,t − zk + (1 − s)
°
°
° 1
λ s
Z λ s
0
T (ν)x s,t dν − z
°
°
°
≤ s
h
tkf (x s,t ) − f (z)k + tkf (z) − zk + (1 − t)k(I − µA)x s,t − (I − µA)zk
+(1 − t)k(I − µA)z − zk
i
+ (1 − s)kx s,t − zk
≤ s[tρkx s,t − zk + tkf (z) − zk + (1 − t)kx s,t − zk + (1 − t)µkAzk]
+(1 − s)kx s,t − zk
= [1 − (1 − ρ)st]kx s,t − zk + stkf (z) − zk + s(1 − t)µkAzk.
This implies that
(1 − ρ)t (tkf (z) − zk + (1 − t)µkAzk)
(1 − ρ)t max{kf (z) − zk, µkAzk}.
Thus, it follows that, for each fixed t ∈ (0, 1), {x s,t } is bounded and so are the nets {f (x s,t )} and {(I − µA)x s,t } This completes the proof.
Lemma 3.2 x s,t → x t ∈ F ix(S) as s → 0.
Proof For each fixed t ∈ (0, 1), we set R t := 1
(1−ρ)t max{kf (z) − zk, µkAzk} It is clear that, for each fixed t ∈ (0, 1), {x s,t } ⊂ B(p, R t ), where B(p, R t) denotes a closed ball
with the center p and radius R t Notice that
°
° 1
λ s
Z λ s
0
T (ν)x s,t dν − p
°
° ≤ kx s,t − pk ≤ R t
Trang 11Moreover, we observe that if x ∈ B(p, R t), then
kT (s)x − pk ≤ kT (s)x − T (s)pk ≤ kx − pk ≤ R t ,
that is, B(p, R t ) is T (s)-invariant for all s ∈ (0, 1) From (3.1), it follows that
kT (τ )x s,t − x s,t k ≤
°
°
°T (τ )x s,t − T (τ ) 1
λ s
Z λ s
0
T (ν)x s,t dν
°
°
° +
°
°T (τ )1
λ s
Z λ s
0
T (ν)x s,t dν − 1
λ s
Z λ s
0
T (ν)x s,t dν
°
° +
°
°
° 1
λ s
Z λ s
0
T (ν)x s,t dν − x s,t
°
°
°
≤
°
°
°T (τ )1
λ s
Z λ s
0
T (ν)x s,t dν − 1
λ s
Z λ s
0
T (ν)x s,t dν
°
°
° +2
°
°x s,t − 1
λ s
Z λ s
0
T (ν)x s,t dν
°
°
≤ 2s
°
°
°tf (x s,t ) + (1 − t)(x s,t − µAx s,t ) − 1
λ s
Z λ s
0
T (ν)x s,t dν
°
°
° +
°
°
°T (τ )1
λ s
Z λ s
0
T (ν)x s,t dν − 1
λ s
Z λ s
0
T (ν)x s,t dν
°
°
°.
By Lemma 2.2, for all 0 ≤ τ < ∞ and fixed t ∈ (0, 1), we deduce
lim
Next, we show that, for each fixed t ∈ (0, 1), the net {x s,t } is relatively norm-compact
as s → 0 In fact, from Lemma 2.1, it follows that
kx s,t − µAx s,t − (z − µAz)k2 ≤ kx s,t − zk2+ µ(µ − 2α)kAx s,t − Azk2. (3.3)
Trang 12By (3.1), we have
kx s,t − zk2
= sthf (x s,t ) − f (z), x s,t − zi + sthf (z) − z, x s,t − zi
+s(1 − t)h(I − µA)x s,t − (I − µA)z, x s,t − zi
+s(1 − t)h(I − µA)z − z, x s,t − zi
+(1 − s)D 1
λ s
Z λ s
0
T (ν)x s,t dν − z, x s,t − z
E
≤ stkf (x s,t ) − f (z)kkx s,t − zk + sthf (z) − z, x s,t − zi
+s(1 − t)k(I − µA)x s,t − (I − µA)zkkx s,t − zk − s(1 − t)µhAz, x s,t − zi
+(1 − s)
°
°
°1
λ s
Z λ s
0
T (ν)x s,t dν − zkkx s,t − z
°
°
°
≤ stρkx s,t − zk2+ sthf (z) − z, x s,t − zi − s(1 − t)µhAz, x s,t − zi
+s(1 − t)k(I − µA)x s,t − (I − µA)zkkx s,t − zk + (1 − s)kx s,t − zk2
≤ stρkx s,t − zk2+ sthf (z) − z, x s,t − zi − s(1 − t)µhAz, x s,t − zi
+s(1 − t)
2 (k(I − µA)x s,t − (I − µA)zk
2+ kx s,t − zk2) + (1 − s)kx s,t − zk2.
This together with (3.3) imply that
kx s,t − zk2
≤ stρkx s,t − zk2+ sthf (z) − z, x s,t − zi − s(1 − t)µhAz, x s,t − zi
+s(1 − t)
2 (kx s,t − zk
2+ µ(µ − 2α)kAx s,t − Azk2+ kx s,t − zk2) + (1 − s)kx s,t − zk2
≤ [1 − (1 − ρ)st]kx s,t − zk2+ sthf (z) − z, x s,t − zi
−s(1 − t)µhAz, x s,t − zi,
Trang 13which implies that
kx s,t − zk2
(1 − ρ)t htf (z) + (1 − t)(I − µA)z − z, x s,t − zi, ∀z ∈ F ix(S).
(3.4)
Assume that {s n } ⊂ (0, 1) is such that s n → 0 as n → ∞ By (3.4), we obtain
immedi-ately that
kx s n ,t − zk2
(1 − ρ)t htf (z) + (1 − t)(I − µA)z − z, x s n ,t − zi, ∀z ∈ F ix(S).
(3.5)
Since {x s n ,t } is bounded, without loss of generality, we may assume that, as s n → 0, {x s n ,t } converges weakly to a point x t From (3.2) and Lemma 2.3, we get x t ∈ F ix(S).
Further, if we substitute x t for z in (3.5), then it follows that
kx s n ,t − x t k2 ≤ 1
(1 − ρ)t htf (x t ) + (1 − t)(I − µA)x t − x t , x s n ,t − x t i.
Therefore, the weak convergence of {x s n ,t } to x t actually implies that x s n ,t → x tstrongly
This has proved the relative norm-compactness of the net {x s,t } as s → 0.
Now, if we take the limit as n → ∞ in (3.5), we have
kx t − zk2
(1 − ρ)t htf (z) + (1 − t)(I − µA)z − z, x t − zi, ∀z ∈ F ix(S).
In particular, x t solves the following variational inequality:
x t ∈ F ix(S);
htf (z) + (1 − t)(I − µA)z − z, x t − zi ≥ 0, ∀z ∈ F ix(S),
Trang 14or the equivalent dual variational inequality (see Lemma 2.4):
x t ∈ F ix(S);
htf (x t ) + (1 − t)(I − µA)x t − x t , x t − zi ≥ 0, ∀z ∈ F ix(S).
(3.6)
Notice that (3.6) is equivalent to the fact that x t = P F ix(S) (tf + (1 − t)(I − µA))x t,
that is, x t is the unique element in F ix(S) of the contraction P F ix(S) (tf +(1−t)(I −µA)) Clearly, it is sufficient to conclude that the entire net {x s,t } converges in norm to x t ∈
F ix(S) as s → 0 This completes the proof.
Lemma 3.3 The net {x t } is bounded.
Proof In (3.6), if we take any y ∈ Ω, then we have
htf (x t ) + (1 − t)(I − µA)x t − x t , x t − yi ≥ 0. (3.7)
By virtue of the monotonicity of A and the fact that y ∈ Ω, we have
h(I − µA)x t − x t , x t − yi ≤ h(I − µA)y − y, x t − yi ≤ 0. (3.8) Thus, it follows from (3.7) and (3.8) that
and hence
kx t − yk2 ≤ hx t − y, x t − yi + hf (x t ) − x t , x t − yi
= hf (x t ) − f (y), x t − yi + hf (y) − y, x t − yi
≤ ρkx t − yk2+ hf (y) − y, x t − yi.
Trang 15Therefore, we have
kx t − yk2 ≤ 1
1 − ρ hf (y) − y, x t − yi, ∀y ∈ Ω. (3.10)
In particular,
kx t − yk ≤ 1
1 − ρ kf (y) − yk, ∀t ∈ (0, 1), which implies that {x t } is bounded This completes the proof.
Lemma 3.4 If the net {x t } converges in norm to a point x ∗ ∈ Ω, then the point solves the variational inequality
Proof First, we note that the solution of the variational inequality (3.11) is unique.
Next, we prove that ω w (x t ) ⊂ Ω, that is, if (t n ) is a null sequence in (0, 1) such that
x t n → x 0 weakly as n → ∞, then x 0 ∈ Ω To see this, we use (3.6) to get
hµAx t , z − x t i ≥ t
1 − t h(I − f )x t , x t − zi, ∀z ∈ F ix(S).
However, since A is monotone, we have
hAz, z − x t i ≥ hAx t , z − x t i.
Combining the last two relations yields that
hµAz, z − x t i ≥ t
1 − t h(I − f )x t , x t − zi, ∀z ∈ F ix(S). (3.12) Letting t = t n → 0 as n → ∞ in (3.12), we get
hAz, z − x 0 i ≥ 0, ∀z ∈ F ix(S),