1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Báo cáo sinh học: " Hierarchical convergence of an implicit double-net algorithm for nonexpansive semigroups and variational inequality problems" ppt

20 275 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 212,67 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hierarchical convergence of an implicit double-net algorithm for nonexpansive semigroups and variational inequality problems Fixed Point Theory and Applications 2011, 2011:101 doi:10.118

Trang 1

This Provisional PDF corresponds to the article as it appeared upon acceptance Fully formatted

PDF and full text (HTML) versions will be made available soon.

Hierarchical convergence of an implicit double-net algorithm for nonexpansive

semigroups and variational inequality problems

Fixed Point Theory and Applications 2011, 2011:101 doi:10.1186/1687-1812-2011-101

Yonghong Yao (yaoyonghong@yahoo.cn) Yeol Je Cho (yjcho@gsnu.ac.kr) Yeong-Cheng Liou (simplex_liou@hotmail.com)

ISSN 1687-1812

Article type Research

Submission date 3 November 2010

Acceptance date 20 December 2011

Publication date 20 December 2011

Article URL http://www.fixedpointtheoryandapplications.com/content/2011/1/101

This peer-reviewed article was published immediately upon acceptance It can be downloaded,

printed and distributed freely for any purposes (see copyright notice below).

For information about publishing your research in Fixed Point Theory and Applications go to

http://www.fixedpointtheoryandapplications.com/authors/instructions/

For information about other SpringerOpen publications go to

http://www.springeropen.com

Fixed Point Theory and

Applications

Trang 2

Hierarchical convergence of an implicit

double-net algorithm for nonexpansive

semigroups and variational inequality problems

Yonghong Yao1, Yeol Je Cho∗2 and Yeong-Cheng Liou3

1Department of Mathematics, Tianjin Polytechnic University,

Tianjin 300160, People’s Republic of China

2Department of Mathematics Education and the RINS,

Gyeongsang National University, Chinju 660-701, Republic of Korea

3Department of Information Management, Cheng Shiu University,

Kaohsiung 833, Taiwan

Corresponding author: yjcho@gsnu.ac.kr

E-mail addresses:

YY:yaoyonghong@yahoo.cn Y-CL:simplex liou@hotmail.com

Abstract

In this paper, we show the hierarchical convergence of the following implicit

Trang 3

double-net algorithm:

x s,t = s[tf (x s,t ) + (1 − t)(x s,t − µAx s,t )] + (1 − s)1

λ s

Z λ s

0

T (ν)x s,t dν, ∀s, t ∈ (0, 1),

where f is a ρ-contraction on a real Hilbert space H, A : H → H is an α-inverse strongly monotone mapping and S = {T (s)} s≥0 : H → H is a nonexpansive

semi-group with the common fixed points set F ix(S) 6= ∅, where F ix(S) denotes the set

of fixed points of the mapping S, and, for each fixed t ∈ (0, 1), the net {x s,t }

con-verges in norm as s → 0 to a common fixed point x t ∈ F ix(S) of {T (s)} s≥0and, as

t → 0, the net {x t } converges in norm to the solution x ∗ of the following variational

inequality:

x ∗ ∈ F ix(S);

hAx ∗ , x − x ∗ i ≥ 0, ∀x ∈ F ix(S).

Keywords: fixed point; variational inequality; double-net algorithm; hierarchical convergence; Hilbert space.

MSC(2000): 49J40; 47J20; 47H09; 65J15.

In nonlinear analysis, a common approach to solving a problem with multiple solutions is

to replace it by a family of perturbed problems admitting a unique solution and to obtain

a particular solution as the limit of these perturbed solutions when the perturbation vanishes

In this paper, we introduce a more general approach which consists in finding a particular part of the solution set of a given fixed point problem, i.e., fixed points which

Trang 4

solve a variational inequality More precisely, the goal of this paper is to present a method

for finding hierarchically a fixed point of a nonexpansive semigroup S = {T (s)} s≥0 with

respect to another monotone operator A, namely,

Find x ∗ ∈ F ix(S) such that

This is an interesting topic due to the fact that it is closely related to convex

pro-This paper is devoted to solve the problem (1.1) For this purpose, we propose a

double-net algorithm which generates a net {x s,t } and prove that the net {x s,t }

hierar-chically converges to the solution of the problem (1.1), that is, for each fixed t ∈ (0, 1), the net {x s,t } converges in norm as s → 0 to a common fixed point x t ∈ F ix(S) of the

nonexpansive semigroup {T (s)} s≥0 and, as t → 0, the net {x t } converges in norm to the

unique solution x ∗ of the problem (1.1)

Let H be a real Hilbert space with inner product h·, ·i and norm k · k, respectively Recall

a mapping f : H → H is called a contraction if there exists ρ ∈ [0, 1) such that

kf (x) − f (y)k ≤ ρkx − yk, ∀x, y ∈ H.

A mapping T : C → C is said to be nonexpansive if

kT x − T yk ≤ kx − yk, ∀x, y ∈ H.

gramming problems For the related works, refer to [1–19]

Trang 5

Denote the set of fixed points of the mapping T by F ix(T ).

Recall also that a family S := {T (s)} s≥0 of mappings of H into itself is called a

nonexpansive semigroup if it satisfies the following conditions:

(S1) T (0)x = x for all x ∈ H;

(S2) T (s + t) = T (s)T (t) for all s, t ≥ 0;

(S3) kT (s)x − T (s)yk ≤ kx − yk for all x, y ∈ H and s ≥ 0;

(S4) for all x ∈ H, s → T (s)x is continuous.

We denote by F ix(T (s)) the set of fixed points of T (s) and by F ix(S) the set of all common fixed points of S, i.e., F ix(S) = Ts≥0 F ix(T (s)) It is known that F ix(S) is

closed and convex ([20], Lemma 1)

A mapping A of H into itself is said to be monotone if

hAu − Av, u − vi ≥ 0, ∀u, v ∈ H,

and A : C → H is said to be α-inverse strongly monotone if there exists a positive real number α such that

hAu − Av, u − vi ≥ αkAu − Avk2, ∀u, v ∈ H.

It is obvious that any α-inverse strongly monotone mapping A is monotone and

1

α-Lipschitz continuous

Now, we introduce some lemmas for our main results in this paper

Lemma 2.1 [21] Let H be a real Hilbert space Let the mapping A : H → H be α-inverse

Trang 6

strongly monotone and µ > 0 be a constant Then, we have

k(I − µA)x − (I − µA)yk2≤ kx − yk2+ µ(µ − 2α)kAx − Ayk2, ∀x, y ∈ H.

In particular, if 0 ≤ µ ≤ 2α, then I − µA is nonexpansive.

Lemma 2.2 [22] Let C be a nonempty bounded closed convex subset of a Hilbert space

H and {T (s)} s≥0 be a nonexpansive semigroup on C Then, for all h ≥ 0,

lim

t→∞sup

x∈C

°

°

°1

t

Z t

0

T (s)xds − T (h)1

t

Z t

0

T (s)xds

°

°

° = 0.

Lemma 2.3 [23] (Demiclosedness Principle for Nonexpansive Mappings) Let C be a

nonempty closed convex subset of a real Hilbert space H and T : C → C be a nonexpansive mapping with F ix(T ) 6= ∅ If {x n } is a sequence in C converging weakly to a point x ∈ C and {(I − T )x n } converges strongly to a point y ∈ C, then (I − T )x = y In particular,

if y = 0, then x ∈ F ix(T ).

Lemma 2.4 Let H be a real Hilbert space Let f : H → H be a ρ-contraction with

coefficient ρ ∈ [0, 1) and A : H → H be an α-inverse strongly monotone mapping Let

µ ∈ (0, 2α) and t ∈ (0, 1) Then, the variational inequality

x ∗ ∈ F ix(S);

htf (z) + (1 − t)(I − µA)z − z, x ∗ − zi ≥ 0, ∀z ∈ F ix(S),

(2.1)

is equivalent to its dual variational inequality

x ∗ ∈ F ix(S);

htf (x ∗ ) + (1 − t)(I − µA)x ∗ − x ∗ , x ∗ − zi ≥ 0, ∀z ∈ F ix(S).

(2.2)

Trang 7

Proof Assume that x ∗ ∈ F ix(S) solves the problem (2.1) For all y ∈ F ix(S), set

x = x ∗ + s(y − x ∗ ) ∈ F ix(S), ∀s ∈ (0, 1).

We note that

htf (x) + (1 − t)(I − µA)x − x, x ∗ − xi ≥ 0.

Hence, we have

htf (x ∗ + s(y − x ∗ )) + (1 − t)(I − µA)(x ∗ + s(y − x ∗ )) − x ∗ − s(y − x ∗ ), s(x ∗ − y)i ≥ 0,

which implies that

htf (x ∗ + s(y − x ∗ )) + (1 − t)(I − µA)(x ∗ + s(y − x ∗ )) − x ∗ − s(y − x ∗ ), x ∗ − yi ≥ 0.

Letting s → 0, we have

htf (x ∗ ) + (1 − t)(I − µA)(x ∗ ) − x ∗ , x ∗ − yi ≥ 0,

which implies the point x ∗ ∈ F ix(S) is a solution of the problem (2.2).

Conversely, assume that the point x ∗ ∈ F ix(S) solves the problem (2.2) Then, we

have

htf (x ∗ ) + (1 − t)(I − µA)x ∗ − x ∗ , x ∗ − zi ≥ 0.

Noting that I − f and A are monotone, we have

h(I − f )z − (I − f )x ∗ , z − x ∗ i ≥ 0

and

hAz − Ax ∗ , z − x ∗ i ≥ 0.

Trang 8

Thus, it follows that

th(I − f )z − (I − f )x ∗ , z − x ∗ i + (1 − t)µhAz − Ax ∗ , z − x ∗ i ≥ 0,

which implies that

htf (z) + (1 − t)(I − µA)z − z, x ∗ − zi

≥ htf (x ∗ ) + (1 − t)(I − µA)x ∗ − x ∗ , x ∗ − zi

≥ 0.

This implies that the point x ∗ ∈ F ix(S) solves the problem (2.1) This completes the

proof

In this section, we first introduce our double-net algorithm and then prove a strong convergence theorem for this algorithm

Throughout, we assume that

(C1) H is a real Hilbert space;

(C2) f : H → H is a ρ-contraction with coefficient ρ ∈ [0, 1), A : H → H is an

α-inverse strongly monotone mapping, and S = {T (s)} s≥0 : H → H is a nonexpansive semigroup with F ix(S) 6= ∅;

(C3) the solution set Ω of the problem (1.1) is nonempty;

(C4) µ ∈ (0, 2α) is a constant, and {λ s } 0<s<1 is a continuous net of positive real numbers satisfying lims→0 λ s = +∞.

Trang 9

For any s, t ∈ (0, 1), we define the following mapping

x 7→ W s,t x := s[tf (x) + (1 − t)(x − µAx)] + (1 − s) 1

λ s

Z λ s

0

T (ν)xdν.

We note that the mapping W s,t is a contraction In fact, we have

kW s,t x − W s,t yk =

°

°

°s[tf (x) + (1 − t)(x − µAx)] + (1 − s)1

λ s

Z λ s

0

T (ν)xdν

−s[tf (y) + (1 − t)(y − µAy)] − (1 − s) 1

λ s

Z λ s

0

T (ν)ydν

°

°

°

≤ st

°

°f (x) − f (y)k + s(1 − t)k(x − µAx) − (y − µAy)k

+(1 − s)k 1

λ s

Z λ s

0

(T (ν)x − T (ν)y)dν

°

°

≤ stρkx − yk + s(1 − t)kx − yk + (1 − s)kx − yk

= [1 − (1 − ρ)st]kx − yk,

which implies that W s,t is a contraction Hence, by Banach’s Contraction Principle, W s,t has a unique fixed point, which is denoted x s,t ∈ H, that is, x s,t is the unique solution

in H of the fixed point equation

x s,t = s[tf (x s,t ) + (1 − t)(x s,t − µAx s,t)]

+ (1 − s)1

λ s

Z λ s

0

T (ν)x s,t dν, ∀s, t ∈ (0, 1).

(3.1)

Now, we give some lemmas for our main result

Lemma 3.1 For each fixed t ∈ (0, 1), the net {x s,t } defined by (3.1) is bounded.

Proof Taking any z ∈ F ix(S), since I − µA is nonexpansive (by Lemma 2.1), it follows

Trang 10

from (3.1) that

kx s,t − zk

=

°

°s[tf (x s,t ) + (1 − t)(I − µA)x s,t ] + (1 − s) 1

λ s

Z λ s

0

T (ν)x s,t dν − z

°

°

≤ sktf (x s,t ) + (1 − t)(I − µA)x s,t − zk + (1 − s)

°

°

° 1

λ s

Z λ s

0

T (ν)x s,t dν − z

°

°

°

≤ s

h

tkf (x s,t ) − f (z)k + tkf (z) − zk + (1 − t)k(I − µA)x s,t − (I − µA)zk

+(1 − t)k(I − µA)z − zk

i

+ (1 − s)kx s,t − zk

≤ s[tρkx s,t − zk + tkf (z) − zk + (1 − t)kx s,t − zk + (1 − t)µkAzk]

+(1 − s)kx s,t − zk

= [1 − (1 − ρ)st]kx s,t − zk + stkf (z) − zk + s(1 − t)µkAzk.

This implies that

(1 − ρ)t (tkf (z) − zk + (1 − t)µkAzk)

(1 − ρ)t max{kf (z) − zk, µkAzk}.

Thus, it follows that, for each fixed t ∈ (0, 1), {x s,t } is bounded and so are the nets {f (x s,t )} and {(I − µA)x s,t } This completes the proof.

Lemma 3.2 x s,t → x t ∈ F ix(S) as s → 0.

Proof For each fixed t ∈ (0, 1), we set R t := 1

(1−ρ)t max{kf (z) − zk, µkAzk} It is clear that, for each fixed t ∈ (0, 1), {x s,t } ⊂ B(p, R t ), where B(p, R t) denotes a closed ball

with the center p and radius R t Notice that

°

° 1

λ s

Z λ s

0

T (ν)x s,t dν − p

°

° ≤ kx s,t − pk ≤ R t

Trang 11

Moreover, we observe that if x ∈ B(p, R t), then

kT (s)x − pk ≤ kT (s)x − T (s)pk ≤ kx − pk ≤ R t ,

that is, B(p, R t ) is T (s)-invariant for all s ∈ (0, 1) From (3.1), it follows that

kT (τ )x s,t − x s,t k ≤

°

°

°T (τ )x s,t − T (τ ) 1

λ s

Z λ s

0

T (ν)x s,t dν

°

°

° +

°

°T (τ )1

λ s

Z λ s

0

T (ν)x s,t dν − 1

λ s

Z λ s

0

T (ν)x s,t dν

°

° +

°

°

° 1

λ s

Z λ s

0

T (ν)x s,t dν − x s,t

°

°

°

°

°

°T (τ )1

λ s

Z λ s

0

T (ν)x s,t dν − 1

λ s

Z λ s

0

T (ν)x s,t dν

°

°

° +2

°

°x s,t − 1

λ s

Z λ s

0

T (ν)x s,t dν

°

°

≤ 2s

°

°

°tf (x s,t ) + (1 − t)(x s,t − µAx s,t ) − 1

λ s

Z λ s

0

T (ν)x s,t dν

°

°

° +

°

°

°T (τ )1

λ s

Z λ s

0

T (ν)x s,t dν − 1

λ s

Z λ s

0

T (ν)x s,t dν

°

°

°.

By Lemma 2.2, for all 0 ≤ τ < ∞ and fixed t ∈ (0, 1), we deduce

lim

Next, we show that, for each fixed t ∈ (0, 1), the net {x s,t } is relatively norm-compact

as s → 0 In fact, from Lemma 2.1, it follows that

kx s,t − µAx s,t − (z − µAz)k2 ≤ kx s,t − zk2+ µ(µ − 2α)kAx s,t − Azk2. (3.3)

Trang 12

By (3.1), we have

kx s,t − zk2

= sthf (x s,t ) − f (z), x s,t − zi + sthf (z) − z, x s,t − zi

+s(1 − t)h(I − µA)x s,t − (I − µA)z, x s,t − zi

+s(1 − t)h(I − µA)z − z, x s,t − zi

+(1 − s)D 1

λ s

Z λ s

0

T (ν)x s,t dν − z, x s,t − z

E

≤ stkf (x s,t ) − f (z)kkx s,t − zk + sthf (z) − z, x s,t − zi

+s(1 − t)k(I − µA)x s,t − (I − µA)zkkx s,t − zk − s(1 − t)µhAz, x s,t − zi

+(1 − s)

°

°

°1

λ s

Z λ s

0

T (ν)x s,t dν − zkkx s,t − z

°

°

°

≤ stρkx s,t − zk2+ sthf (z) − z, x s,t − zi − s(1 − t)µhAz, x s,t − zi

+s(1 − t)k(I − µA)x s,t − (I − µA)zkkx s,t − zk + (1 − s)kx s,t − zk2

≤ stρkx s,t − zk2+ sthf (z) − z, x s,t − zi − s(1 − t)µhAz, x s,t − zi

+s(1 − t)

2 (k(I − µA)x s,t − (I − µA)zk

2+ kx s,t − zk2) + (1 − s)kx s,t − zk2.

This together with (3.3) imply that

kx s,t − zk2

≤ stρkx s,t − zk2+ sthf (z) − z, x s,t − zi − s(1 − t)µhAz, x s,t − zi

+s(1 − t)

2 (kx s,t − zk

2+ µ(µ − 2α)kAx s,t − Azk2+ kx s,t − zk2) + (1 − s)kx s,t − zk2

≤ [1 − (1 − ρ)st]kx s,t − zk2+ sthf (z) − z, x s,t − zi

−s(1 − t)µhAz, x s,t − zi,

Trang 13

which implies that

kx s,t − zk2

(1 − ρ)t htf (z) + (1 − t)(I − µA)z − z, x s,t − zi, ∀z ∈ F ix(S).

(3.4)

Assume that {s n } ⊂ (0, 1) is such that s n → 0 as n → ∞ By (3.4), we obtain

immedi-ately that

kx s n ,t − zk2

(1 − ρ)t htf (z) + (1 − t)(I − µA)z − z, x s n ,t − zi, ∀z ∈ F ix(S).

(3.5)

Since {x s n ,t } is bounded, without loss of generality, we may assume that, as s n → 0, {x s n ,t } converges weakly to a point x t From (3.2) and Lemma 2.3, we get x t ∈ F ix(S).

Further, if we substitute x t for z in (3.5), then it follows that

kx s n ,t − x t k2 1

(1 − ρ)t htf (x t ) + (1 − t)(I − µA)x t − x t , x s n ,t − x t i.

Therefore, the weak convergence of {x s n ,t } to x t actually implies that x s n ,t → x tstrongly

This has proved the relative norm-compactness of the net {x s,t } as s → 0.

Now, if we take the limit as n → ∞ in (3.5), we have

kx t − zk2

(1 − ρ)t htf (z) + (1 − t)(I − µA)z − z, x t − zi, ∀z ∈ F ix(S).

In particular, x t solves the following variational inequality:

x t ∈ F ix(S);

htf (z) + (1 − t)(I − µA)z − z, x t − zi ≥ 0, ∀z ∈ F ix(S),

Trang 14

or the equivalent dual variational inequality (see Lemma 2.4):

x t ∈ F ix(S);

htf (x t ) + (1 − t)(I − µA)x t − x t , x t − zi ≥ 0, ∀z ∈ F ix(S).

(3.6)

Notice that (3.6) is equivalent to the fact that x t = P F ix(S) (tf + (1 − t)(I − µA))x t,

that is, x t is the unique element in F ix(S) of the contraction P F ix(S) (tf +(1−t)(I −µA)) Clearly, it is sufficient to conclude that the entire net {x s,t } converges in norm to x t ∈

F ix(S) as s → 0 This completes the proof.

Lemma 3.3 The net {x t } is bounded.

Proof In (3.6), if we take any y ∈ Ω, then we have

htf (x t ) + (1 − t)(I − µA)x t − x t , x t − yi ≥ 0. (3.7)

By virtue of the monotonicity of A and the fact that y ∈ Ω, we have

h(I − µA)x t − x t , x t − yi ≤ h(I − µA)y − y, x t − yi ≤ 0. (3.8) Thus, it follows from (3.7) and (3.8) that

and hence

kx t − yk2 ≤ hx t − y, x t − yi + hf (x t ) − x t , x t − yi

= hf (x t ) − f (y), x t − yi + hf (y) − y, x t − yi

≤ ρkx t − yk2+ hf (y) − y, x t − yi.

Trang 15

Therefore, we have

kx t − yk2 1

1 − ρ hf (y) − y, x t − yi, ∀y ∈ Ω. (3.10)

In particular,

kx t − yk ≤ 1

1 − ρ kf (y) − yk, ∀t ∈ (0, 1), which implies that {x t } is bounded This completes the proof.

Lemma 3.4 If the net {x t } converges in norm to a point x ∗ ∈ Ω, then the point solves the variational inequality

Proof First, we note that the solution of the variational inequality (3.11) is unique.

Next, we prove that ω w (x t ) ⊂ Ω, that is, if (t n ) is a null sequence in (0, 1) such that

x t n → x 0 weakly as n → ∞, then x 0 ∈ Ω To see this, we use (3.6) to get

hµAx t , z − x t i ≥ t

1 − t h(I − f )x t , x t − zi, ∀z ∈ F ix(S).

However, since A is monotone, we have

hAz, z − x t i ≥ hAx t , z − x t i.

Combining the last two relations yields that

hµAz, z − x t i ≥ t

1 − t h(I − f )x t , x t − zi, ∀z ∈ F ix(S). (3.12) Letting t = t n → 0 as n → ∞ in (3.12), we get

hAz, z − x 0 i ≥ 0, ∀z ∈ F ix(S),

Ngày đăng: 18/06/2014, 22:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN