CuQc thi Giei todn chdo m*ng 50 ndm Tqp chi TH&TT - DAi tuqng dq thi: Hqc sinh b?c THCS va THPT.. CuQc thi ViCt chuydn dO Todn chdo mwng 50 ndm Tap chi TH&TT - Doi twqng dq thi Gi6ro vi6
Trang 1xuf,r eiu rUrgo+
2014
rnp cxi Ra xAruc rHAruc - NAM rx05l
oArux cHo rRUNG xoc pHd rHOruc vA rRuruc Hoc co s6Tru s6: 1B7B Gi6ng Vo, Ha NOi.
DT Bi6n t6p: (04) 35121607: DT - Fax Ph6t hdnh Tristr (04)35121606 Email: toanhoctuoitrevietnam@gmail.com Website: http:l/www.nxbgd.vnitoanhoctuoitre
Trang 2Glliit[fl]t il0.G'll[, rudl ilt
xeww$@, ilP
\ff 6 chdro mllng 50 ndm thrinh lap Tap chi
Y Ed TH&TT (1s04-2014) vi h0 trE t6t hon cho
A.l phong trdo dqy vdr hec Toin & c;ic truong
b'n6 tf,Ong, trong ndm 2A#lrap chi sG t6 chuc hai
euOc thi:
1 CuQc thi Giei todn chdo m*ng 50 ndm Tqp
chi TH&TT
- DAi tuqng dq thi: Hqc sinh b?c THCS va THPT.
- Th6 te cuqc tt1i CuQc thi gOm 5 vong, d6 thi tu
Vong 1 d6n Vdng 5 l6n luot dwqc ding trdn TEp
chi TH&TT tu th6ng 2 tsb 44q d6n thang 6 (s6
44q De thi o m5i vong g0m 2 bdi toSn ddnh cho
hoc sinh THCS vir 2 biri to6n dinh cho hQc sinh
THPT" Hgc sinh THCS co th6 ldrm bdiTHPT nhung
hgc sinh TIIPT lirm bdri THCS s6 khOng duqc tinh
di6m D6p 5n ctia c:ic d6 thi sG lin luEt dwgc ddng
tu th6ng 6 ts6 444) d6n th6ng 10 (sO 44S) Kot
qud cuQc thi s6 duqc cong b6 tr6n Tqp chi TH&TT
thZrng 10 nhrn2014
- Thdi hqn gwi bdi dv fhl: MuOn nhit ta 2 thang kO
tu ngdy cu6i thang ra s6 tqp chI co dang drO thi
- Quy cAch bdidu fhl: M6i bai gidi c&a m6t biitodrn
phii viet tr6n mOt to,giSy (hoic mQt file) ri6ng Phia
tr6n m6i bii ph6i ghi 16: Ho t6n, dia chi truong,
lcrp, x5 {phuo'ng), huy6n (quan), tinh (thanh ph6),
i -,^ ., , i ,
s0 diQn thoai (n6u co) Tr0n phong bi hoic file ghi
16: 8di dtv thi GiAi todn chao mung 50 ndrn Tqp chi
TII&TT
2 CuQc thi ViCt chuydn dO Todn chdo mwng 50
ndm Tap chi TH&TT
- Doi twqng dq thi Gi6ro vi6n d6 hodc dang dqy &
THCS, THPT; gidng vi6n sinh vi6n cv cdc truong
DH, CD v;i ban dgc y6u thich To5n.
- NQi dunE bdi tltt ttti: LA c6c chuy6n de bOi du0ng
hqc sinh gidi Toin; cdc chuy6n dE on tQp, 6n thi
cuOl c6p; nhirng tlm toi, s6ng tEo tronE viQc dqy,
hoc To6n {bAc Ti{eS, THPT)
- ThA E cuQc tlti: M6i ngucri tham gia cuQc thi duEcg&i kh6ng qu5 3 bdi du thi kh6c nhau Cdrc biri dirthi co th6 liir c6c s6ng kien, kinh nghiem di ddng
ki, hoic doat gidi & Trucrng, Phong, Sd, nhungchua tirng duqc xuAt bdn thdrnh s6ch, biio vi c0ng
chua tham gia cu6c thi ndo khiic
K6t qud cuQc thi s6 duqc cOng b6 tren Tqp chiTH&TT thiing '11 ndm 2014 (s6 a+g) Cdrc bdri hay
co th6 duqc chen ding tren TEp chi, hoic in thirnh
s6ch, ciic tiic gi6 duqc hudng nhuin b*t theo quy
dinh c0a Tqp chi Bdri vi6t tham dur cuOc thi thuOc
l,
bdn quy6n cua Tap chi TH&TT
- Ttldi han gtri b;ii dtv thi: Trvoc ngdry 1 511012014.
- Quy cach bai dUr thi: Bdri du thi co the vi6t tr,On
giAy hoEc ddnh mdry vi tinh bdng chucrng trinhsoan th;io vin bdn word M6i bdi dLr thi phAi vi6ttren giSy (ho{c co file) ri6ng phia tr6n m6i nai pnal
ghi 16: Hq tOn, dta chi truong xd (phucrng), huyen(quan), tinh (thdnh pn61 so di6n thoai (neu co) B-ri dr=i thi kh6ng qudr 15 trang viet tay hodc 10 trang
d6rnh m6y Tr6n phong bi hodc file ghi 16' Bai dqthi Vi& cttuy\n dO Todn chdo mang 50 nam Tqp
chf TH&TT.
Cdch grhi biti dqr thi: B2ri dU thi c0a hai cuOc thi
tren gfri ve tap chi TH&TT bdng c6ch
+ Girifile word theo d!a chi email:
to a n h octu o itrev i etn a m @g m a i l -c o m
+ hoic g&i bai theo duro'ng bivu diOn Phong bi cod€rn tem, giri v6 dia chi:
Tap chi To6n hoc vi Tu6i tr6
1878 Giing V6, Di5ng Da, Hd NQi
.:
+ hodc d6n Toa soan Tap chi gtli truc ti6p
Alaf tnwdng; Gom gi6i c6 nh6n vd gi6itAp th6 cho
c6c trucrng vd dcvn vi co nhi6u cd nhAn tham gia" NhCrng c6r nhAn vdr tip th6 doat gidi cao s6 duoc
rncvi du vii trao gidi tronE L6 fi nienr 50 nim thdnhlQp Tap chiTH&TT t6 chuc vAo th6rng 1212A14.
Rdt mong cac bqn nhiQt tinh hu&ng ung hai cuQc thi tr6n !
Trang 3f} am mO giai todn ld ti6n Ae *ri6t yeu OC tqc
lJ tOt mon To6n Long dam mC sE giirp cho
ngucri lim to6n c6 dugc sU ki6n tri, ph6t huy
tffi s6ng tpo vd tr0 n€n linh hopt khi gi6i to6n
Qua bdi vi0t ndy, t6i mu6n ctng voi bpn clgc
nhan dien sU linh hopt trong gihitoinhinh hqc,
drcctry cao Af{ vd phcn giit"c BD Giti I |t'r
ram chrdng trdn ruoi ti\p tctm giec AliC biit
( tii 4 ali rhi frtitt Ot:,i, ri tan rhir 5i))
Ldi gidl Gqi O ld giao di6m cua AH vd BD,ta
c6 Co ld phAn giiic cia triE -Id0=6d0.
HaOK LAC (K e AC)
Trudng hW l Nriu K tdng voi D tbt ABC lit
-;.
tam gi6c dOu vi co O vira ld tnrc t6m rua 1d
tAm dudng trdn nQi ti6p, suy ,u 6tre = 60o.
Y6ry BAC = 60"
hodtc 6k = 90o.
HHinh ]b
NhQn xit Bdi toan ndy thwc chAt h kh6ngkh6, chi cdn ki€n th*c THCS Vi€c dung OKvu6ng goc voi AC cfrng xuAt phdt tb y nghi n€u
tam giac ABC diu thi 6Di = 45o, itdy chinh
ld "chia khoa" d€ tim ra loi gidi don gidn cho
bdi toan
fi Blri toan 2 Clto {am giac ABC t'ri phnn gidc
AD; O lL't ciienr btir l;i tren AD (O khac A vd D).Tia tlo c'ot ccuth AC tai E, tia co ciit canh ABtai F Chirns ntinh ,'ring tc,n giac AIIC t:dn tai
:IIII
.4ttatt-;-= + .
.]81 AE2 AC:2 AT;2
Ldi sini Qua O ke OM ll AB; ON ll AC (M e AC;
nQi titip L4HC
H
Hinh lan6n.I e OC vit, OHI = CHI = 45o Suy ra hai
tam gi6c vu6ng OHC vit OKC bing nhau
-5fu =dfu = 45o = 6fu =6Di = 45o
s OKDIldtit glitc nQi tiOp
=COD=CKI =45o
=90o = EZe =90o.
Trudng hW 3 N6u KthuQc clo4n DC,ldtirc D
(hinh lb) thi tuong tu nhu trrdng hqp 2, ta
cfrng c6 ODKIliLtT giitc nQi titip, suy ra
DOC = CKI = 45o > BAC :90o.
Tuy nhi6n, khi d6 Eic ,67d = 9oo
Trang 4',(pu uo.4 Euo.np
cgrE urel dgq
reoEu uo.4 8uo.np
():t!
)
r'i,J)\
ir i1 rilt1'
itltl tn!
,)ff
ilLli:)
;i;).:
! .-\rrt-'
-:)1')t
,', ti.) ':-
iltl(U II:f{
oa
gs
lbp Suop rcnp u?ot
!?q uztlu uttlu
Suiu ptpt
u?p
u?
(q ngc 'quts coq onc
coq qulq u?ot
7p13
Suoa ryqt
3uo,r7 ruoq qull Bupu
elq
pp
tt ttulp tpc Eunp
u?^
I
qrD)
'Lpry (, n?u rup ruq
Buo4 ,nnt1u
)?W
!?!3 Wry n?lqu
oc (o
nn3 yQx
ugt11r1
(o<z*,.,61 :te6:74
/
{r, ,)g i(i /
'y7 li.:l t,ili
Suonq
)o)
D.t
tpp ruoq quu
ug) ,uonb oqy
Bugqy
n7?
,tV,t nqu ntld Suenp
at Suanq
)?)
.Liy
:Cn
'(qV :gy) cg8
?uona
quoc doc )D)
hqd Bupnp
)D) or otlt
?p lq8u [ns Sugnq
:
gy',iy
:
gV u?u
pt (t)
+f
Trang 5MB AB MC /17
MC.NC : AC.FC - 9Y MC-NC = 12'!3= AC.FC el
Tt (1) ve (2) suy ra dpcm
NhAn xdt W MAB = NAC vd ddng thitc cdn
chyn7 minh c6 dqng ti s6 cila tici cdc doqn
thdng n€n ta vd th€m dadng trdn ngoqi tidp
tam gidc AMN Khi gidi todn hinh hoc, hoc
sinh cdn daqc luyQn tQp nhi€u cdch vd dudng
phu khdc nhau, qua d6 s€ tich lu! &tqc kinh
nghiQm trong gidi todn hinh h7c.
fi ga; tohn 5 {-'l:r., ri:tst 1litir: ,11}{" t:i 1;iiriil ,2i1i,
tt'()t g.lD i{S ,,, {id-1 7 r't't:.JI) 1lir !t,ti tli, t \t ti
tttt) tlt(t iiti t A r 1! tt,trt, qiii.r : 1r' \i.
(gla thret) suy raLABK aLAMC (c.g.c)
Trong t& gi6c nQi titipBKCN cingc6 BKN = BCNsuy ra
feM =6dfi (dpcm)
NhAn xdt Lni gidi o cdch 1
tsni tip t Duong trdn t6m l nQi ti6p tam gi(c
ABC ti€p xirc vfi c6c cpnh BC, AB, AC Mnluqt tai D, E, l.Qua E ke ducrng thing song
song voi BC cdt AD, DF lin lugt tai M vit N.Chtmg minh M ldtrung diiSm ci:r- NE
Bni t4p 2 Cho hinh thoi ABCD canh a Gqi4
vd r lin luqt ld b6n kinh rlucrng tron ngo4i ti6p
cdc tam gi6c ABD vd, ABC
Ggi Mldtrung.diOm cin BC Chrmg minh OM
di qua trung tliOm cinAD.
Dinh chinh Biri T3 1440 - TH&TT thilng 212014 c6 in thir5u mQt do4n Xin d'qc lai nhu sau:
Chung minh rang na -5n3 -2n2 -lOn+ 4kh6ng chia hi5t cho 49 voi m5i sO tu ottl6n n kh6ng c6
du 3 trong ph6p chia cho 7 vdr chia h6t cho 49 trong truong hcr-p cdn 14i.
Cdch2 (h.5b) Ve duong frdn ngoai ti6p LBNC,
cit ducnrg thirng AD tai K (k]16c N)
Tri gi6c n6i ti6p BKCN c(t Gfi = ffi, md
ABM = CBN Gin thi6t)
=d?fr =78il > LABM cn LAKC (g.s)
Trang 6nft nloutonn toP s
rixrr HArfrxn
NAvr rrQc zotz - 2ot3
Bii l a) Ap dung UiCn eOi
(o- b)t : a3 - b3 -3ab1a- b)tac6
b) Ta thAy I + x + l; * - x * | lu6n ducrng vd
x': 0 kh6ng h nghiQm cta phuong trinh dd cho'
Do d6 var t=x+L, phuong hinh de cho tr0
x
215
ft=2
Q (t -2)(5t+7)=0o1, L5 =_1 Ta tim tluo.c
nghiQm cua phuong hinh de cho ld x : 1.
nai Z a) Nhin cdhai v6 cira phucrng trinh thri
nhAt ctra hQ phuong trinh dA cho v6i 3 ta dugc
hai vd thu ggn ta tlugc *' i Yt : 3(*' - f)
e (x +y)( i' xy + f -3x + 3Y) : 0.
* V6i x-r !: 0 <> x: -!, thti vdo phuong
trinh thri nhAt ctra hQ ta tlu-o c Zi - +x + 3 : 0
e 2(x - l)' + 1 : 0, phu<rng trinh vO nghiQm
* V6i * - xy + f - 3x + 3y: 0, tni theo timg
vi5 voi phuong hinh thf nh6t cta hQ ta dugc ry
fx=3
-x-3y * 3 :0 <+ (x- 3Xy- 1): O oli=r.
Ta tim du-o c hai nghiQm (x; y) cila hQ phuong
Do a, b, c c6 vaitrd nhu nhau, kh6ng m6t tinh
t6ng qu6t ta giit thi}t a < b <c, suy ru a ) L;
) a+ b + c: (a-l)(b- 1X, -l)+2 (*)Ntlu (a - lxb - 1) > 4 thi voi a < b < c ta c6
3c> a + b + c > 3c > (a - l)(b- lXt - l) + 2
+ 3c> a@ - l) + 2 > 3c > 4c -2 + c 1 2,
tr6i voi di6u kiQn c > 3.
suyra b-t> 1,suy ra(a-l)(b- 1)chic6th6
nhQn gi5 frliLZ hoflc 3 Ta tim du-o c mQt b0 sd
(a: b; c) thod mdn ld (2; 3; 5).
Vqy c6c b0 sd tU nhi6n phdn bid1 @; b; c) thoitmln bdi to6n giim c6c ho6n vf ctra (2;3; 5)'Khi d6 P nhfln gi6 tri nguY6n ld 21
Bdi 3 Ycl a, b, c duong a + b * c: I ta c6
abc3abc3
o2(a*o*'{}-* I *l')=o v!\u,","/\b+c c+a a+b)
€ a: b: c e ABC li tam gi6c dOu.
Bii 4 Tu gii thli:t ta c6 AD ld trung tr.uc cria
BC vitla phdn gi6c ci.r 6k rt do ta cflng
nhQn thAy MNAP ld hinh vu6ng M[t kh6c do
fr@ *frFF =90" + 9oo = 18oo nan ANHP
ld tu gi6c nQi tiOp duong trdn ttucmg kinh NP'
, }
Suy ra ZruP =VNP = 45o (ctng chiln AP)
-m=1ED (:45o) > ABDH ld tu gi6c
noi ti6p >ZruA = ADB =90' hay AH L BH' C
Trang 7il m 0$ Hec $ilt oil mil T0Ar rOt I n HAr DumG
BAi 4 g,S aiAml O).ui? tam gi6c BEF c6 mQt hinh vu6ng BMKN
a) Cho a., b, c lirbasO tiru ti thod mdn abc : I nQi,tiep (K e EF, M e BEvdN e BF) sao cho
a b c az U cz ti s6 gifra canh hinh vudng vcri b6n kinh duong
vit *+-+ ,r=;*;+7 chtmg minh rdng
?ig rinh c6c
it ,jat io, ior* ba s6 a, b, c ritbinh phucrng trdn nQi ti6p tam gi6c BEF ld 2 ' - "-'
-*-:r:?.r:J.:e.l*J1 .9::.*:i.:*3.i".T.913:.!r_!:,.
C- b) Theo phAn a) thl M, N, A, P,ll cung thuQc Bni 5 Ta nhpn th6y
Suyra AHM =90o = AHB ) H,M,Bthdng ' -€+yrwy)-6*;yr*4-
€+;\lr+x)
-cdc gi|tri nguyOn criax di5 A c6 giltri nguy6n
Bdi 2 (2 die@ Gihicdcphucrng toinh
{ J? 4x+z+",8T: =Jx1+J? +2x-l;
b) (4x+DJx+8 =3x2 +7x+8.
Bni 3 (1,5 diAm)
a) Cho f (*) : (x3 +l2x -3llzotz .
Tinh f(a) vli a =il6 -8G * il6* 8".6
ldtugi6cnQi ti6p, suyra BHI =BAI =45o (2)
Tt (1) vd (2) suy ra EEi =m MIt kh6c,
do cSch dpg ta c6 N vd 1 ctng nim vO mQt
phia cua BH suy ra H, N,lthing hdng
b) Cho a, b, c ld ba s6 ducrng c6 t6ng bing 3.
Rrit gon A, tim Chrmg minhrlng in.#.iA.}
Bii 5 Q diAm) Cho tluong trdn (O; R) vd haiduong kith AB, CD sao cho ti6p tuy}n tqi Acta (O;R) c6t c6c duong thtng BC, BD tqihaidi6m hrcmg img ld E, F G1i P, Q ldn luqt ldtrung di6m oia cfuc doqn thing AE, AF
a) Chrmg minh rEng tr.uc tdm H oiua tarn gi6cBPQliltrung <li6m cria dopn thing OA
b) Hai dudng kitlhAB, CD thoilmdn diAu kiQn
gi thi tam gi6c BPQ c6 diQn tich nh6 nh6t
Ap dung bstdingthkc i +t.ry (d[ng thric
C xiry ru khi vd chi khi a: b) ta c6
Trang 8MQr sO pmudn{e_emAe qfu
(Trong nhimg ndm gdn d6y, m5i de thi t6t
'L rgttigp fftPf vd tuy0n sinh DH, CD
thunng co mQt ciu gi6i PT mf, hoic PT l6garit'
r.lfrirn"gitp
"a uai hqc sinh thi tot, bii vitit
ndy xin gioi tt i9,, mgt s0 phuong ph6p gi6i
thucrng gap de gidi hai loai PT tr6n
1 Phudng ph6p dda vG cung co s6
Cdch gidl Su dung c6c ph6p ti0n dOi tuong
duongv6i0<a+l,tac6
o qf(x) - os?) e f @): g(x).
logo f@)=1og,g(x)
^ {f t*l: B(x)
- i,r(rl > o (hoac g(x) > o)
*Thi dq l, Giai Tthucrng irinh
Cdch gidl D4t t-logof(1 Ddn d€n PT
mtz +nt+P =0, tim/suyra'r'
*Thi dv 4 Gioi phy-gj::L
2loga(-r2 -x) + :Jlogo1x - 1)2 - 2bga x = 4'
Trang 9Loigi,rti DK: x >-2.PT cl6chotuongduongvoi
2logalx(x -llt + :.,0 fogot, + - 2loga x - 4 = 0
e Zloga@- r; +:JZrogo1, - r; - 4 = 0.
Ddt t = Jrt"tu@ -n (r > o), ta duoc pr:
t2+3t-4=Oet=1 ho6c t=*4 (loai)
vcri r : I, ra c6 Jz togo(, - t) : t
I
<> loga(x -1) :, e x - 3 (tho6 mdn DK)
*Thi dr1 5 Gidi phtrrmg trinh
Iogrr_,*7(z$r2 + i?"r+9)r-log2"-:((rr: +23x+ 2i) = -{.
log.t@)g(x) vd logr(,) /(x) thi ta c6 di6u
d'1 Phutrttg tritth dung
m.a-f G) 1r.6-f lx) * p:0, voi a.b =l
Cdch gidl Gia su a > l, ta df;t
1 - of G) (r > o), khi d6 6.f G) =!.
*Thi rlg 7 Giai lthtto"ng trinlt
(i - vB)'+ tr,.(:-'/5)' = 2'*r.Ldi gi,fiLChia hai v6 cria PT cho 2*, ta dugc
Trang 103 Phudng phep l6garit hoa, m0 hoa
Ldi girti Do hai v6 cira PT.da cho d6u duong
n6n l0y lOgarit co sO 3 hai v6, ta du-o c
ld hdm d6ng bi€n MAt khec, ac6 f (O) = 2.
Do d6, PT f(t)=2 c6 nghiQm duy nhAt r = 0.
Suyra log2x =0=x=1 tr
4 Phfidng phdp dda vd phttong trinh tfch
Cdch gi,fiL Khi gap PT d4ng
Vfly PT tld cho c6 hai nghiQm x :l; x = 2 a
*Thi dr; 11 Gidi phaong trinh
zlog?ex = log: r.toer(J, + 1 - t).Ldi gi,rtiDK: ;r > 0 PT dd cho htong duong voi
log?3 x = zlolz *.tog.1Jii -t1
<> 1og3 ,[tog, * -zlogr(Jz* +t- 1)] =
a) Phwong trinh ilu'a itwqc vi phnorug trinhdqns f(u)= f(v).
Cdch gi,fii Str dpng tinh ch6t: Cho hdm s6
y = f (x) don diqu tr6n t4p D Khi d6.f (u) = f (r) o Lt = v, vcri moi u,v e D
*Thi dB 12 Gidi phuong trinh
nh f (t) ld hdm sO eOng bitin tr6n lR Tt (5),tac6 f(xz -x)= f@x-A e *2 -x=4x-6
B -clirdiU@
Trang 11b) Phu'ong trinh dgng logo f @) = lo96 g(x),
Ldi gi,rtL DK: x > 0 PT dd cho hrong duong
voi ro96 (J; * t/i) = )bgo *
<> rogu (G.t/i) = bgali.
D{t ro96 (J; * t/i) : bsali = t
ld hdm nghich bitin tr6n IR Lpi c6 /(1) = 1,
suy ra PT (6) co nghiQm duy nhAt t:1 Luc
do,ta c6 Jx = 4 (:) ir : 16 (thoi mdn DK) a
6 PhUdng phap danh gi6
Cdch gidi DOi khi dO giai PT mfl, l6garit dang
-f (x) = g(x), ta c6 th6 su bAt ding thric d6
d6nhgi6 f(x)<c<g(x),vcri ce IR.
MAtkh6c, tac6 2-(/ -02 <2,YxelR" Do d6
Trang 12Tinh the tich kh6i ch6p S.ABCD vd diQn tich
m{t cdu ngo4i titlp hinh ch6p S ABD,theo a.
Cflu 6 (l di€m) Tim gi6 d 16n nh6t vi gi6 fi
nh6 nh6t cim P = *(*' +g)+ zy(+y2 +z),trong d6 x,y lirc6c s6 thlrc thoa mdn
xa +l6ya +(2*y+l)2 =2.
PHAN RIE,NG(Thi sinh chi ilugc chgn mQt trong hai phdn A hoqc B)
Cdu 7a (l diem) Trong mpt phlng voi he-truc fim ioa il di6m A vir B tr6n A di5 tam gi6c
tqa ilO Oxy, cho hinh ch0 nh$t ABCD c6
a 1r;r; rrqog tarn .t
" t r" eii )aC niim trcn oAB c6 oo :
+ vd c6 canh oB c[tduongtluong thhngd 3x- y -2 =0 OiOm N(4;6) tron (e tqiM sao cho MA: MB (vot Old g6c
ldtrungdii5mcria canhCD.Timtgad0 dinhl tqa dO).
Cflu 8b Q diAfi Trong kh6ng gian vcri hQ
tnlc tga dQ Oxyz, cho c6c di6m ,a(1;-1;0);
m{t cdu tdm I di qua ba di€m A,4 C sao cho
dO dei do4n thing OI nghnnnat lvcri O ld g6ctqa d0)
Giei he phucmg trinh
=2y-x J*y*y+2+"Jy'+x+2:4y.
NGUYEN TUAN LAM
2) Gqi A, B ldhai tli6m phin biQt h€n (Q sao
cho hai ti6ptuy6n.tqi A viL B song song voi
nhau Hai titip tuyr5n @i A vila cit t4rc tung
Dn luqt tui C, D sao cho CD : 4 Tim toa
dQ hai di6mA, B
CAu 2 (I di4@ Gi6i phuong trinh
Zcos4x+ cos 2x = 1 + rE sin 2x
Cflu 3 Q dii$ Giii phucrng trinh
Cflu 8a Q dii@ Trong kh6ng gian v6i hQ
tryc tea dO O*yr, cho hai mat phing
(r) : x -2y -3 = 0 vi (Q):x+Zy+ z+t:0.
Vitit phuong trinh duong thdng d qua dii5m
tt(l;O;2),vu6ng g6c voi dudng thtng OM
vd cht (p) t?i A, cfit (Q) tai,B sao cho oA: oB
(voi O ld g6c tea dQ).
Cflu 9a Q diA@.Cho s6 ph?c zthoa mdn didu Cflu
kiQn lz-1+il:lzl.rims6phric *=(I-i)., =,
sao cho s6 phric w c6 m6dun nh6 nh6t
B Theo chucrng trinh Nflng cao
Cflu 7b Q diA@ Trong mflt phing voi hg tr.uc
tqa d0 Ory, cho tluong trdn (Q c6 phuong trinh
Trang 13Cflu 2 DK: cosx * 0; cos2x * 0.
PT dA cho tucrng ducrng vcri
4 s irrr s in2x co s2r c o s 3x : tary- .sin2-t co s 6x.
Tn he tr€n ta bitln tlOi ve d4ng sO phric nhu sau
(o' * b' +3b -3) + (2ab -3a +1)i = 0
o (a + br)2 -3i(a+ bi) + i - 3 = 0
Giai PT nity ta dugc z1= 1 + i; zz = -I + 2i
Tt BDT Cauchy ch.o 3 s5 duorrg (luu j'c6c
m[t cria tu diQn gin d6u ld c6c tam gi6c
(Xem ti€p trang 27)
".r *r,r-rorn, T?EilrHE5, rr
Trang 14TOI
!}Irong ki thi VMO ndm20l4, ngiy thf nh6t
I o mOt bdi hinh hgc hay, d€ bdi iluo c ph6t
bi6u lai cho pht t q'p ,& beivirit nhu sau
OBili tofn 1 Cho tam giac: nhpn ABC nqi tiip
trong' dudttg trr)n (O) Goi I ld di€m chinlt
giti'a c'r)u cunpl EC khing chil'a A TrOn ,4C
l,i1; ff;in K khac C sao cho lK : tC Dr.rcng
thiing Rl( cdt (O) tqi D khac B TrAn DI tot'
rtiirn M sao cho Cl',{ song sottg vrsi AD iludztg
thdng Kh,f c:dt.dwdng thang BC tqi N Dwttg
tt"dn ngaoi ti€p tam gidc BKN cat (O) tqi P
ktruc B" Clwng winh rdng PK ali qtta trung
lfr: r8o'- ifu:180" - lER:leD (r)
Do 1 ld di6m chinh gita cung fr nen DI liL
tia phdn giirc ctla BDC (2)
rt (1), (2) suy ,u fiD : dD.
Y$y LKID: LCID (c.g.c) suy ra DK : DC
do d6 DI li trung t4rc cira KC Tucrng W AI
ld trung trpc cira BrK.
GqiIJ ldtluongkinhctra (O) tac6 AJIIKD
vd JDll AK Tit d6 tu gi6c AJDK ld hinh
Hfffi sJAMr rfu rffi rx0c ?hm
hdng Thpt vQry IPK : IPB + BPK
:6n +6frR (tu gi6c BKNP nQi titlp)
: BAI +(NKC + NCK)
:6h *frr *6dR QD liLtrung truc cua KQ
: BAI + CAD + BCK (doCM ll AD)
:fu *ffi+fu (do tu gi6c ABCD nQi tiep)
: IAK + AKB (tinh chdt g6c ngodi)
:90" (do,BK L AI)
: IPJ (do IJ ld cluong kinh cta(O)).
Tnd6 suy rabadi6mP,K,J thinghang Tti c6c
nhfln x6t tr6n ta c6 di6u phii chimg minh n
Bii to6n tr6n li mQt ktit qu6 tle.p vd ch{t ch6.
Trong loi gi6i tr6n ta co th6 tom lugc lpi y
chinh nim trong bdi to6n sau
&tsei irdn 2 Cho t(tt1l giac ABC n$i ti€pdw,)ng trdn (O) vo'i clLrmtg plrun gidt trottg'
AD Grli ti td di€nt doi xi'ng cua B quo drdrgAD: BE cat (O) r.Ji F khac ts Goi k! ld die:ut
CLch gibibdi toin ndy nim trong phAn ddu cira
ph6p chimg minh tr6n Ddy ld mQt k6t quA kh6c6 y nghia Bdi to6n 2 cing co th6 dugc nhinduoi mQt chchldthc nhu sau
Ofai tor{n 3 Cho tam giac ABC cdn tai A: Plci mot diint thu6c dtrrrng thang BC Chimg
Trang 15DAy ld m6t ktit qui don gi6n li6n quan d6n tu
^ ,,4
gi6c nQi ti6p Tuy vfy n6u dC i ki c6c ban d€
thiy ld bdi to6n 3 thuc ch6t ctng li bdi to6n 2
6p dUng cho tam gi6c cdn ABE BiLi to6n c6
m6t mo rQng cho tam gi6c b6t ki nhu sau
OBAi tuin 4 Cho tam giitc ABC P ld m6t
di€m thay d6i tin dtrtng thiing BC Goi E,F
ti:n tryt lii cac di€m doi xtrng c{ra B,C qua
-.;
trung diem cua doatt thang AP
a) Chung minh riing furcrng trdn ngoai ti6p
tam gidc ACE,ABF ,dt nhou tgi mQt diem
Q nam tr€n BC
b) GOi AH ld dudng cao cua tam giac ABC
:
Cluiltg ntinh rang QP: HB + HC
Ldi gi,rtL (Ban dqc t.u vE hinh)
a)Tir gritc BCEF h hinh binh hdnh n6n
AQB:180" - AFB: AEC:t80" - AQC
suy ra tr@ *7& :180' n6n ethuQc BC.
b) Gqi R h di6m d6i xtmg yot Q qua trung
di6m 1 cua AF thi R thuQc EF vd tu gi6c
ARPQ ld hinh binh hanh ndn PQ: AR .
Tathdy fi gShc BREQ h hinh binh hanh, n0n
M[t kh6c AECQ H hinh thang n6i ti6p n6n
AECO h hinh thang cdn, do d6QC : QE (2)
Tt (1), (2) suy ra BR: AC, t0 gi6c ARCB lit
hinh thang cAn n6n R c6 dinh Tir d6
PO:,en lkhOrrg AOi) tvtit kh5c goi AH lit
duong cao cua tam gi6c ABC cing ld dudmg
cao ctra hinh thang cdn ARCB ta d6 chimg
minh AR: UA + ttC ftt d6 ta c6 di6u phdi
chimg minh o
N6u tam gi6c ABC cdn tqi A ta th.u dugc bdi
torin 3 Ntiu str dung c6ch ph6t bi6u dt5i ximg ta
c6 th6 d€ xuAt bdi to6n nhu sau tu bdi tohn2
SBdi tofn 5 Cho tam giac ABC n6i ti€p
dadng trdn (O) vd ngoai ti€p furnng trdn (I)
Duong trdn ngoai ti€p tam giac BIC cdt CA,
AB tdn luqlt tqi E, F khac B, C BE, CF lCtn
hrqt cat (O) tqi M, N khac B C Goi K L ldn
laqt ld trung di€m cua AM, AN Chmg ruinh.
riing EK vd l-L cdt nhau tr€n rludng trdn (O)
Qua bdi tofun 2, ta thdy EK,FL dAu di quadi6m chinh gita ctra .*g 6D chria l MQtc6ch tg nhi6n bdi toan 5 c6 th6 m0 rQng thdnh
bii to6n sau
OBlri tofn 6 Cho tunt giac ABC nQi tidpductng trdn (O) MQt dadng trdn (D) di qua B,
C cat CA, AB lin lwt tgi E, F khac B, C;
BE, CF lin luu ciit (O) tqi M, N khdc B, C.
Cac cti6m K, L ld:n fuqt thuQc AM, Al' sao cho
KLll EF; BE a CF : S; EK:FL=T.
Ch[mg ninlt rang ba di€m A, S,T thiing hdng
Bii to6n 5 cdn c6 mQt khai thic tl6ng chri j'
nhu sau
OBiri to6n 7 Cho tam giac ABC nQi ti€p
du'dug tron (O) r,d ngoai ti6p furong trdn (I).Dursng rt'ort ngoai ti6p mnt giac BIC cdt CA,
AB tan lmtt tai E, F khac B, C BE, CF ldnIrqt ccit tO) tqi M,I,,l khac B, C Goi K, L litt
Irot la tntng dietn ctia AM, AN
:a) Cltntg rtrirtlt rang EK vii FL cdt nhcnt tai
die:m T n'€n du'dng trdn (O)
b) Gia sti EK vd FL cat (O) tqi P, Q khac T;
PQ cot BC tc.ti .5 Ch{rng minh rangdtrong rhong AS ti6p ilc dadng tron (O).Bei toan 7 lqi cb mQt khai th6c kh6 t.u nhi€n
kh6c nhu sau
OBlri to:in 8, Cho tam gidc ABC nQi ti6p
du'ottg trdn (O) vd ngoai ti6p furdng trdn (I).Emntg tr"dn ngoai tidp nm giac BIC cdt CA,
AB lin ltrqt tgi E, F khdc B, C BE, CF tdnluqt cat (o) tqi M, N khdc B, C Goi K, L td:n
lr qt ld trung di€m cua AM, AN
Trang 16'dg1 uQ,tu1 IpQ
lgru nqu tugl
19f Sugnq 9c
ug4 ugol Ipg
'2V nnry
iuo"^
q
onb 3upt11
3aru13 un1 1.on1 tpt lDt (O) )?tpl 1.'S "g ')
9fi3 *u,o.ng uo-ri lioBu c1211 tary tnr| 1dg W
(e
'g')
)pW O'd tbt
t?q Ot)
'(i
ugrt 7L4utp
dgp lno8u
?,r
(.O) uo.4 StLo.np
cl?U
lgu
)gv
)?!3 utDt
oq) 0I
ugot IEgg
e]
oqc
re1
Eueu Eugc uga Eug:
ulpl 4
eq enb
Sugql ugot lpq
??x a|qN
f,J
'rluru Eu4qc
reqd nglp
gc
BI 'iy
e+c 7,y
feH '
8uo.np
tgrlc qup oeq;
tv
P^
gs
ugu 'quPq qqq qqq
pt
ggsy
cVtA qq 9c
'quu
Eu4qc
reqd nglp 9c
eI
.g enb
Ip d7
dgUr
pp 9p
(O) u+c
gupt
Buenp
pt
^SO op)
lgul
cQnqt H' g' d'
Suo.t quttu 3unt13
qg
(q
6)
tlt inu
g'I'd'g
}up,r
t1u1tu
SofU) 'H lnt
g,
ag
')i'tlun
u2"r1tt/,tttt1t t7t
d?4
l/u )gf/
)?!3 utDt
?l
'npp u?g
Trang 17offi ilu0to t t YIr milu rfrm 20$
r- so LUqc vE elAlrHudNo t-E vAtt rnlEut
Gi6o st"t LO Vdn Thi6m (1918 - 1991) la Chrj tich
ddu ti6n c0a HQiTodn hgc Viet Nam 6ng lir nhir
toSrn hgc n6i ti5ng, dd c6 nh0ng d6ng g6p ldn
trong nghi6n crJu vd rlng dr*rng to6n hgc Ong
cOng lir mQt trong nhfrng ngrtdi dqt n6n m6ng
cho n6n gi6o dr;c dai hgc 6 nudc ta, ld ngudi thAy
c0a nhi6u thd hC c6c nhir to6n hqc Viet Nam.
GS LA Vdn Thi6m lu6n giirnh sU quan tAm dic
bi6t d6n vigc giAng dqy to6n hgc 6 c6c trudng
pn6 tn6ng Ong lir mQt trong nhfng ngttdi sdng
lap H0 thSng phd thOng chuy6n todn vir b6o
To6n hgc vir Tudi tr6 Gi6o stJ L6 Vdn Thi6m dd
drjgc Nhe nudc t{ng HuAn chr-Idng Doc l4p hqng
NhAt va GiaithrJdng H6 ChiMinh Grril thudng LO
Vdn Thidm do HQi To6n hgc Vigt Nam dit ra
nhim g6p phdn ghi nhdn nhfng thirnh t(ch xudt
sic c0a nh0ng thAy gi6o vh hgc sinh ph6 th6ng
dd khic phr;c kh6 khdn d6 dqy toAn vd hgc to6n
gi6i, dOng vi6n hgc sinh di sdu vdo mdn hgc c6
vai trd dac biQt quan trgng trong sU ph6t tri6n lAu
diri cria ndn khoa hgc nudc nhd GiAi thudng LO
Vdn Thi1rn c0ng ld sU ghi nhQn c6ng lao cria
GS Le Vdn Thidm, mQt nhd to6n hgc l6n, mgt
ngrtdi thAy da h6t ldng vi sr; nghigp gi6o dqc.
u - crArrHUdNG lE vAN THICM 2013
Hoi To6n hgc Viet Nam quy6t dinh trao Gieithuang
L€ Vdn Thi€m ndm 2013 cho nh0ng thdy gi6o vit
hgc sinh sau ddy:
1 Thdy giAo Nguydn Vdn ThOng (THPT chuy6n
L6 Qu17 D6n, Dd NEng)
- Sinh nlm 1960.
- Tham gia dqy To6n hdn 30 ndm, trong d6 dqy
Chuy6n Todn 18 ndm.
- CUng vdi t6 todn c0a trudng, tham gia b6i
dttdng duqc nhi6u hgc sinh dat giAi cao, trong
d6 c6 hon 20 hqc sinh dat giAi cdp Qudc gia,
4 em dat huy chudng IMO Qu6c t6; nhi6u hqc
sinh dqt Huy chUdng Vdng 30/4.
- Nhi6u bdi vi6t chuy6n d6 trong HQi thAo gi6ng
dqy todn.
- 22 ndm lir gi6o vi6n dqy gi6i vir chi6n sT thi dua.
- DuOc phong danh hiQu Nhd gi6o uu t( ndm 2008.
HA HUY KHOAI (ViQn Todn hqc ViAt Nam)
2 Hoc sinh1) VO Anh DOc (THPT chuy6n Hd TInh), hiQnnay hgc t4i Khoa To6n - Tin, DHBK Ha NQi)
- Giai Nhi hec sinh gi6i Qu6c gia 2012
- Giai Nhi hqc sinh gi6i Qu6c gia 2013
- Huy chudng Vdng IMO 2013
2\ Phqm Tudn Huy (THPT chuy6n DHQG TP.
H6 Chi Minh)
- Giai Nhdt hgc sinh gi6i Qu6c gia 2013.
- Huy chudng Vdng IMO 20't3
3) Chu Th! Thu Hrdn (THPT chuy6n Long An)
Da vrjqt nhi6u kh6 khin, dat thdnh tich xudt sac
- Ldp 10: Huy chrtong B4c Olympic 30-4
- Ldp 11: Huy chLldng Virng Olympic 30-4, giAiNhi hqc sinh gi6i to6n tinh Long An; giAiKhuy6n khich hgc sinh gi6i Qu6c gia.
-Ldp 12: Giai Nhdt hgc sinh gi6i to6n t?nh Long
An; giAi Ba hgc sinh gi6i Qudc gia; Giai Nhi cuQc thi giAi b6o Toin hgc vir tu6i tr6.
4) LE Qu6c rnng (THPT chuyOn L6 Quf D6n, QuAng Tri)
- Ldp 10: Huy chudng Bqc m6n To6n D6ngbing B5c 89.
- Ldp 11: GiAi Ba m6n ToAn thi hqc sinh gi6i
Qu6c gia.
- Ldp 12: Giai Nhdt m6n To6n thi hgc sinh gi6i
Qudc gia.
L6 trao giAi d6 duqc t6 chrlc tqi cuQc G4p m{t
ddu xuAn c0a HQiTo6n hgc Viet Nam tai Hd NOi,ngiry 221212012 Ddn dg vd tham gia trao giAi c6
nhi6u nhir todn hgc, nhi6u thAy c6 gi6o, trong d6
c6 GS Ddo Trgng Thi, Ch() nhiQm 0y ban Vdn
h6a gi6o duc, thanh thi6u ni6n nhi d6ng c0a
Qu6c hOi, GS Irdn Vdn Nhung, T6ng thLI k( HQi d6ng Chrlc danh Gi6o su Nhd ntt6c, nguy6nThf trr.tdng BQ Gi6o dUc vd Ddo tao; c6c Gido stJ
Ch0 tich vir nguyOn Ch0 tich HQi To6n hqc Viet
Nam; D6 Long Vdn, Phqm Th6 Long, Ld Tudn
Hoa, Nguydn H1u DtJ.
Hai em Phqm Tudn Huy vit Chu Th! Thu Hi6n
kh6ng c6 di6u kiQn tham dU cuQc gap mat tai
TP Ha Nai s6 drJoc trao giai tai bu6i 16 ti6n hdnh
6 TP H6 Chi Minh.
T?[I#EE
rr
Trang 18- M6i sd c6 2 bdi todn cho THCS (ki hieu T*/THCS) vd 2 bdi todn cho THPT (ki hiQu T*/THPT).
- Thcti han nhQn bdi muQn nhiit ld 2 thdng, tinh ti cu6i thdng cria sii Tqp chi c6 ddng di thi.
- Mdi bdi gidi vi€t t€n mQt td gitiy ri)ng, ghi rd h9 vd tAn, tnron[, lop (cd thZ gtbi chung phong bi, b1n ngodi ghi rd: Bdi dqt thi Gidi todn ilgc biQt ki niQm 50 ndm Tap chi_TH&TT, c6 ddn tem.
- K€t qud cuQc thi duqc c6ng b6 tr€n s6 448 (10.2014) vd trao gidi tdo L€ bi niem 50 ndm TH&TT.
;tliririr, (Vi6n C6ng ngh€ Th6ng tin)
l ;, Bhi T4ITHPT
M, N theo tht t.u ld trung tli6m cira BC', CB'
MH cit dugng trdn ngoai tii5p tam gi6c CHB'
tqi I; NH c5t tlucrng trdn ngoai ti6p tam gi6c
BHC' tai J GiA su P ld trung di6m cira cpnh
BC, chimgminh ring,4 P L IJ
Cho tam giitc ABC, (O), (I) vd 1, theo thir ru ld
::{ tim <luong tron bdng ti6p tl6i di6n dinh I cira
!fr tam gi6c Goi D ld ti6p ditim cria (I) va BC;
- D6y c6c so thuc duong {o,}7=o thod min
.,rs**n o,+r = - -?- voi n : 1,21 3, Chung minh
The sequence of positive real numbers {o,}7=o
satisfies o,,, = -1 for n: 1.2,3,
an + cln_I
Prove that there exists a pair of real numbers s, ;l
/suchthat sla,.-lforall n:0,1,2, '$,
T4lSenior
In a triangle ABC (AC > AB), the altitudes BB'
and CC' intersects at point H.Let M, Nbe themidpoints of BC', CB' respectively MHmeetsthe circumcircle of triangle CHB' at I; NH
meets the circumcircle of triangle BHC' at
point./, If P is the midpoint of segment BC,
provethatAP LIJ.
Translated by LE MINH HA
tz