Development of Modern Portfolio Theory Conventional wisdom around 1950 Diversification and Portfolio Risk 1952 Single-factor Asset Pricing Risk/Return Model CAPM 1964 Efficient Mark
Trang 1Nov, 2013
Wonil Lee, Ph.D & CFA
CAU
Portfolio Theory Review
Lecture 6
Wonil Lee, CFA & Ph.D
Trang 2Diversification and Portfolio
basket”
- Buying a large set of securities can
reduce risk
Trang 3Development of Modern Portfolio Theory
Conventional
wisdom around
(1950)
Diversification and Portfolio Risk (1952)
Single-factor Asset Pricing Risk/Return Model (CAPM) (1964)
Efficient Market Hypothesis (1966)
Option Pricing Model
(1972)
Database of Securities Prices (1977)
3-Factor Model (1992)
“Portfolio Selection”
•Correlation between risk
and return
•Efficient line
•Small [cap] minus Large
•High [book/price] minus low
•Rm-Rf
Technical and basic
analysis established •Value evaluation of securities
•Measurement of asset price
•Evaluation of performance
Development of derivative market
“informationally efficient market”
The EMH states that it is impossible to consistently outperform the market by using any information that
the market already knows
CRSP (The Center for Research
in Securities Prices)
Trang 4Modern Portfolio Theory
Objective: To obtain the highest return for a given level of risk, or the lowest risk for a target level of return
Return
Variance (volatility of individual securities)
Covariance (co-movement of asset prices)
Trang 5 Harry Markowitz – “Portfolio Selection”
- Markowitz proposed that investors focus on selecting portfolios based on their overall risk-reward
characteristics instead of merely compiling portfolios from securities that each individually have attractive risk-reward characteristics
- In brief, investors should select portfolios not individual securities
Derives the expected rate of return for a portfolio of assets and an expected risk measure
Markowitz demonstrated that the variance of the rate of return is a meaningful measure of portfolio risk under reasonable assumptions
The portfolio variance formula shows how to effectively choose a portfolio
Markowitz Portfolio Theory
Trang 6Assumptions of Markowitz Portfolio Theory
Investors consider each investment alternative as being presented by a probability distribution of expected returns over some holding period
Investors maximize one-period expected utility
Investors estimate the risk of the portfolio on the basis of the variance of expected returns
Investors base decisions solely on expected returns and risk, so their utility curves are a function of expected return and the expected standard deviation of returns
For a given level of risk, investors prefer higher returns to lower returns For a given level of expected returns, investors prefer less risk to more risk
Trang 7Risk and Expected Rates of Return
Definition of Risk
1 Uncertainty of future outcome
2 The probability of an adverse outcome
Beta is a measure of systematic risk
Expected Rates of Return
- Individual Risky Asset: Calculated by determining the possible returns ( Ri) for some investment in the future, and weighting each possible return by its own probability (Pi) E(R)= ∑PiRi
- Portfolio:
Weighted average of expected returns (Ri) for the individual investments in the portfolio Percentages invested in each asset (wi) serve as the weights
E(Rport) = ∑ WiRi
Trang 8Macroeconomic Factors Affecting Systematic Risk
Variability in growth of money supply
Interest rate volatility
Inflation
Fiscal and Monetary policy changes
War and political events
Trang 9 Correlation coefficient
- Values of the correlation coefficient (r) go from -1 to +1
- Standardized measure of the linear relationship between two variables
- Rij = Covij/σiσj
Covij = covariance of returns for securities i and j
σi = standard deviation of returns for securities i
σj = standard deviation of returns for securities j
Covariance
- Measures the extent to which two variables move together
- For two assets, I and j, the covariance of rates of return is defined as: Covij = E{[Ri,t – E(Ri)][Rj,t – E(Rj)]}
Variance & Standard Deviation of Returns
Trang 10 Σp =√ W2
A σ2
A + W2
B σ2
B + 2 WA WB σA σB r
If rAB = +1, then SDp = α
If rAB = 0, the SDp = β
If rAB = -1, SDp = γ
Portfolio Standard Deviation
Return
Risk
A
B
α
β
γ
Trang 11Portfolio Standard Deviation Calculation
The portfolio standard deviation is a function of the:
- Weights of the individual assets
- Variances of the individual assets
- Covariances between the assets
The larger the portfolio, the more the impact of covariance and the lower the impact of the individual security variance
Trang 12Implications for Portfolio Formation
Assets differ in terms of expected rates of return, standard deviations, and correlations with one
another
- Portfolio give average returns, but they give lower risk
- Diversification works
Even for assets that are positively correlated, the portfolio standard deviation tends to fall as assets are added to the portfolio
Combining assets together with low correlations reduces portfolio risk
- The lower the risk, the lower the portfolio average return
- Negative correlation greatly reduces portfolio risk
- Combining two assets with perfect negative correlation (correlation coefficient -1) can reduce the portfolio standard deviation to zero
- This is the main reason for international investment especially emerging market investment
Trang 13Portfolio Diversification
Total Risk
Company- specific risk Unsystematic risk Diversifiable risk
Market Risk Non diversifaiable or Systematic risk
Number of Stocks in Portfolio
Trang 14Estimation Issues
Results of portfolio analysis depend on accurate statistical inputs
Estimates of
- Expected returns
- Standard Deviation
- Correlation coefficients
Estimation risk refers to potential errors
Trang 15Beta of the Portfolio
Assuming that stock returns can be described by a single market model, the number of correlations required reduces to the number of assets
Single index market model:
Ri = ai + bi Rm + εi
bi = the slope coefficient that relates the returns for security I to the returns for the aggregate stock market
Rm = the returns for the aggregate stock market
Trang 16Modern Portfolio Investment Process (MPT)
Expected return model
Volatility and
correlation estimates
Constraints on
portfolio choice e.g
turnover constraints
PORTFOLIO OPTIMIZATION
Risk-Return Efficient Frontier
Choice of Portfolio
Trang 17Efficient Frontier for a Multi-security Portfolio
Efficient Frontier for alternative portfolios
Expected return
Standard deviation
Selecting an optimal risky portfolio
Expected return
Standard deviation
risk-averse investor
risk-seeking investor
The “Efficient Frontier” is the name given to the
line that joins all portfolios that have achieved a
maximum return for a given level of risk
The exceptions are the end-points, which are the
assets with the highest return and lowest risk,
respectively
The optimal portfolio is the point of tangency between an investor’s indifference curve and the efficient frontier
Trang 18There is No Free Lunch
Most invertors would like to boost returns
- through taking more risk (increase duration, raise
the allocation to equities and credit)?
- Reliable way to limit risk is through diversification –
adding imperfectly correlated assets to raise return
per unit of risk
Investors must move beyond simple diversification
across asset classes to a strategy which also
diversifies across types of trades and information
sources
- Enhancing returns through active position taking in
international markets is based less on an ability to
call the markets right (although this is necessary)
and more on an ability to diversify across types of
trades, approaches to trading and sources of
information
Efficient Frontier for alternative portfolios
Expected return
Risk
Smart but hard
Cash
Gov’ts
Credit
High Yield
Equities
Emerging markets