1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Nonlinear vibration of a pendulum with a support in harmonic motion

9 339 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 2,78 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The first equation of 35 gives the phase displacement.. We consider now the stability of stationary solution a , and determined by formulae 33.

Trang 1

HỘI Cơ HỌC VIỆT NAM ■ VIỆN KHOA HỌC VIỆT NAM« i « I I I

BÒ GIÁO DỤC VÀ ĐÀO TẠŨ • BỘ KHOA HỌC CÒNG NGHỆ VÀ MỒI TRƯỜNG• I I I I I

TUYỂN TẬP

CÔNG TRÌNH KHOA HOC

P R O C E E D I N G S O F T H E F I F T H

N A T I O N A L C O N F E R E N C E O N M E C H A N I C S

( H à N ộ i 3 - 5 / X I I / 1 9 9 2 )

C O HOC DAI CƯƠNG V À ỨNG DUNG

G E N E RA L A N D A P P L I E D M E C H AN I C S

Trang 2

P roceed in g s of th e F ifth National Conference on M ech anics, Vol I (38 - 45), 1993

N O N L I N E A R V I B R A T I O N O F A P E N D U L U M

W I T H A S U P P O R T IN H A R M O N I C M O T I O N

D a o đ ộ n g p h i t u y ế n của con lắc có đ i ề m treo di đ ộ n g t h i n g đ i ề u hòa t ù y ý

T h e n o n lin e a r v ib r a tio n of a pen d u lu m w hose su p p o rt u n d erg o e s arbitrary rectilinear harm onic

m o tio n is stu d ie d T he m a in atten tio n is paid to th e resonant c a ses and th e sta tio n a ry vib ration s

T h e r e so n a n t co n d itio n s are explained T he am p litu d e - freq u en cy curves are p lo tted for various

v a lu e s of p a ra m eter s and the sta b ility of v ib ra tio n is in v e stig a te d , '"he r otatin g m otion of the

p e n d u lu m an d its sta b ility ,a r e also considered.

Let us con sid er the v ib ration of a pen d u lu m co n sistin g of a n egligible w eigh t rod AM of length

i an d a lo a d Af of m ass m T he pe id u lu " ‘Tipport u n d e rg o es rectilinear harm onic m o tio n by

m e a n s of a m e c h a n ism sh ow n in Fig 1 w hen the '•rank O N o f len gth R ro ta tes around o w ith a

c o n s ta n t a n g u la r v e lo c ity n and tran slates slo tte d bar BA of len g th L alon g slides 1.1 We shall

ta k e the o r ig in of the y axis vertically up T he p o sitio n of th e p en d u lu m w ill be specified by angle

(p th a t A M m ak es w ith vertical axis (F ig l ) T he k in etic and p o te n tia l energies of the p en d u lu m ,

T and V r e sp e c tiv e ly are:

T = — [t 2 {P 2 + Jỉ2n 2 sin 2 fit — 2Rftt<p sin H í sin(6 + V?)]» J J

y = rng[(L + R c o sH t) COS 6 - t costp].

U sin g L a g r a n g e ’s e q u a tio n , taking into account th e d a m p in g force, the eq u ation of m o tio n of vhe

p e n d u lu m is o b ta in e d as

w h ere a>2 = g Ị I, h is th e dam p in g coefficien t.

We a ssu m e th a t R / t and h are sm all and w e sh a ll co n sid e r sm all vib ra tio n s o f th e pendulum

a b o u t th e v e r tic a l a x is, so th a t sin V? ~ <p — ị<p 3 / ô ) , cosy? ~ 1 — (<p 2 / 2). T h e sm allness of th e m en­ tio n e d q u a n titie s can be taken in to co n sid eration by in tr o d u c in g a sm all d im en sion less param eter

e , w h ich w ill be set eq u al to u n ity in the final re su lts T h u s, w e are led to consider th e follow ing

e q u a tio n o f m otion :

N G U Y Ễ N V Ă N Đ Ạ O

Viện Cơ hoc, Viện K t ì V N

S I E Q U A T IO N O F M O T IO N

(2)

( 3 )

Trang 3

r SB wty c = -7 sin ỏ, D = -7 COS Í, " 1 — — , 7 = —

and a prim e denotes the derivative w ith respect to the dimensionlcsa tim e r.

(4 )

In th e following sections two resonant cases which cause intensive growth of the am plitude of

v ib r a tio n o f the pendulum w ill be studied.

§2 P R I N C I P A L R E S O N A N C E

We consider the case when 7 differs a little from unity We are interested in finding out what happ en s close to resonance, th a t is to say when - 1 is sm all, namely:

-7 = 1 + 2

where A is a detuning parameter.

Let us introduce in equation (3) th e variables a and rj aa follows

ip = a c o s 0, <p* = - c n a i n f l , 0 = Tff + ff (6)

here th e condition

a! cos 6 — a r / sin 0 = 0

is im p o se d T he e q u a tio n s for new v ariab les w ill be

V = •¥>+/) «in0,

w hich is a set of equations in standard form with

(7)

(8)

Trang 4

f k ị a*)f sin f - o s cos3 9 + c j 1 COS 7 r + D 7 aa COS 0 • COS Tff.

In the first approxim ation the right-hand sides of (8) may be replaced by th c ừ mean values, regarding a and TJ as constants (l|:

7 o' = - ^ ( h n a + C V sin r ỹ ),

W - - j ( § « + j « ’ + C i a ««•>>)•

(1 0)

T h e s ta tio n a r y a m p litu d e a 0 and phase rjo are d eterm in ed by

hi~ia 0 + C~I 2 sin rjo = 0,

~ a 0 + ~ a ị + C~ 12 cos r?o = 0

A sim p le c a lc u la tio n elim in a tin g T) leads to the resp on se curve equation:

W ( a o t ^ ) = 0,

w = a ị ị h h * + ( S - I + ị a i y } - c ' l ' .

(11)

(1 2)

(1 3 )

T h is relation is p lo tte d in Fig 2 for the param eters:

R = 2 cm , i = IGOcm, ố = o.l&rad, g = 98 0 c m / s c c 2t h = 2.47 • /li, w = \/<7/ i = 2 4 7 , CƯ2 = 6 1 2 5 , c = 8 8 1CT3 1 hi = IQ-2 aiid ? h i = 4 l < r a.

Ft? £

L et U3 n o w discu ss th e stability of th e possible stationary regimes To do th is we stu d y the

eig e n v a lu e s of th e m atrix of coefficients o f variational equations of (10):

Trang 5

I _ t C 2

~ 2 ~ I c 0 i *7o

c / A 3 , \ t C

■ j ( 5 + i ay 1 1 , l n , °

T h e equation defining these eigenvalues is

<V73A3 + * i 2a 0h x H J ~ = 0 (14)

8 d a Q

fro m w h ich w e ob ta in th e co n d itio n for a s y m p to tic s ta b ility

o a n

It is n o ted th a t fu n ctio n IV (a 0 »K2 ) is p o s itiv e (n e g a tiv e ) o u tsid e (inside) o f reson an t cu rv e and

e q u a l to te r o on it So, c o n d itio n (15) sh o w s th a t th e up p er branches of reso n a n t curves (h e a v y lin e s ) in Fig 2 correspond to sta b le s ta tio n a r y reg im e s and th e broken lines to u n stab le o n e s.

§3 P A R A M E T R I C R E S O N A N C E

It is su p p o sed th a t 7 18 a p p ro x im a tely eq u al to 2, nam ely

(I6)

T h e s o lu tio n of eq u ation (3) in th is cases is fou n d to be

= i c o s ( Ị f + a ) , !f>' = - ^ 7 sin { y + a ) (1 7 )

In th e first ap p roxim ation eq u a tio n (3) c a n be rep la ced by th e averaged ones:

* ị V = - i b * ị ( h i + D i sin 2 a ) ,

(18)

It is clear that 6 = 0 is a solution of eq u a tio n s (1 8 ), b u t aj we shall show later, it may h a p p e n

th a t th is solution is unstable and th a t th e sy stem b eg in s to vibrate spontaneously T he s ta tio n a r y

am p litu d e bo if determ ined from equation V =r a* = 0 b y elim ination a:

T h e response curvet are p lo tted in F i g i f o r D = 8 8 1 0 “ 3 and 1) h \ = 1.65 10~a, 2) h \ =» 1 7 1 0 " 3

T h i stu d y show s that only th e p ositive sign before th e rad ical (19) corresponds to th e u y m p t o t ic a l sta b ility o f nontrivial station ary vibration; and th a t th e solu tio n b =* 0 i< stable ou tside the re so n a n t curve and unstable inside it Thus, only th e h eavy lin es (F ig 3) of th« resonant curve correspond

t o s ta b ility o f vibration.

Trang 6

3 6 3 8 * y 2

Ft</ ^

§4 R O T A TIN G M O T IO N OF T H E P E N D U L U M

Assuming t h a t h a n d R / Í a r e s m a l l w c c o n s i d e r t h e r o t a t i n g m o t i o n o f t h e p e n d u l a m g o v e r n e d

b y e q u a r i o n :

w h e r e

f (<p, <p, i ) = — - Y n 2 c o s O f s i n ((5 + V?) ( 2 1 )

I t i s supposed t h a t t h e e n e r g y o f t h e s y s t e m c o n s i d e r e d i s h i g h s o t h a t w h e n e = 0 t h e p e n d u l u m

w i l l b e r o t a t i n g ( e q u a t i o n ( 2 0 ) )

W e i n t r o d u c e t h e v a r i a b l e a a n d yịỉ (2]:

<p = u( a) + a i / ( a ) COS

e = nt + ự>, v(a) = l/y/ã, ị = i/(a) (23)

an d V? is the so lu tio n of the d egen erate eq u a tio n £ = 0 if a and 0 are con stan ts; 80 th at

- a i /2( a ) s i n £ 4* Ui2 s i n V? s 0 ( 2 4 )

E q u a t i o n ( 2 2 ) i m p l y t h a t

£( 1 + a COS £) + à si n £ - ix(a) (1 + a COS ( ) =3 0 (25)

T h e secon d eq u a tio n for ( and à is o b ta in e d by s u b s titu tin g eq u ation (22) in to equation (20):

- a i / ị s in £ + + a COS £) + V COS f ] â + w3 sin V? = e f(v ? , í) (2 6 )

42

Trang 7

here th e su b scrip t ua” or ( )a d en otes the d eriv a tiv e w ith resp ect to the am p litu d e a FYom th e se

e q u a tio n s we get:

à = - i - F ( < p , <p,t)[ 1 + a COS 0

V- = i/(a) - n + ^ F ( v , <fi, t) Bin t ,

w here

- A = a v s in 3 { + (1 + a COS ( ) [i/flU + a C08 0 + v cos (]•

S u b s titu tin g here ỉ/ = l / y / ã w e have

— = 2a y / a + 0 ( \ / a • a 3) (28)

We shall con sid er the p rincipal reson an t case w h en th e am plitude a takes valu es close to aQ

d e te r m in e d by

n £ 2 i / ( a 0 ) = ~ =

V a o

(2 9 ) and use th e Jacob ie exp an sion s of trigon om etric fu n c tio n s in B essel functions [3]:

oo

s i l l ( a s i n 0 = 2 ^ 2 n - i ( a ) s i n ( 2 n — 1 ) £ ,

n—i

oo

c o s ( a s in £ ) = */o(a) -f 2 E ^2rv(a) COS 2n £,

n = 1

Jm (a) = ^ ib!(m + fc)! ( f ) ’ m = 0 - 1- 2

ksz 0 '

L im itin g b y considering the v ib ration w ith sm a ll a m p litu d e a we have in the first a p p ro x im a tio n averaged eq u a tio n s of the form:

(30)

à = ^ hi / (a) ^ 1 + - " ( 1 2( a i cos \p + a 2 sin v>)

ff /Ĩ

rị) = i / ( a — n + • y n 2 ( a3 COS + c*4 sin v^),

L a V

(3 1 )

here

a 3 =

a 4 =

(3 2 )

ữ l = \ 2 ^ ° * ^ ~ 4 ^ 1 + 8*n ^’

<*2 = [2 ( ^ 0 “ ^2 ) + + *^3 )] c o s ^>

( i i + J3) COS 6,

(J 3 - 3 J i ) sin 6 ,

* - , - ( ! ) *

S ta tio n a r y regim es of reson an t v ib ra tio n s a* and are d eterm in ed by eq u ation s ả = = 0:

7 y n 2 (a Ị cos 0 + a j s i n v>.) * /1 ( 1 + ^ ) , v/ 0 7 y n 2 (aJ COS + a j sin ự>.) * /1 ^ 1 -f * y j

(33)

Trang 8

Q* = Q i ( a = a ) , a 7*^0, n = ~~7=- — cons t

T h e so lu tio n s of th ese eq u ation s are found in the series:

a = a„ + £Oj + 0( e2),

( 3 4 )

rl>. = i>o + + °(ff ).

where a 0 satisfies relation (29) Substituting equations (34) into equations (33) we have:

ỰÕT 0 ^ n 2 ( a l0 COS V>o'+ a 2o sin V>o) = /1 ( 1 +

a = a „ + e a i = a Q + 4 s a ^ n2 ^ ( a 3o COS \ị>o + c u o s in \ị>„),

here a , 0 = Q,(a = ac) The first equation of (35) gives the phase displacement Then, the correction e ai to the stationary amplitude a n will be found.

We consider now the stability of stationary solution a , and determined by formulae (33) For this purpose we w r i t e the variational equations for system (31) Let

a = a , 4- S a , \p = + brị).

By putting these expressions into (31) and linearizing relative to 5a and 6\p we obtain:

d tfa- '{(f )„ - f n1( a ) / 01'*-+ (a).

€ R

- s i n t/>* - f a2 COS rp.)ỏ\p>

= {L „ + ^ n 2 [ ( ^ ) u C c s ự + ( ^ ) n S m V > ] } ía +

£ i ỉ + A £ ^ 2( “ ữ 3 s*n + Q4 C0S i M i

0-w h e r e

The characteristic equation of this system is of the form

where

* ~ 7 n M [ ( 2 ) - ( ? ) ] ‘ - * - * [ ( 5 ) * ( ? ) W } - ( ! )

G = — s i n yp* + Q 2 COS ự>.) + 0 ( f 2 ),

an d a prim e d e n o te s a d erivative to a T he stab ility c o n d itio n s w ill be

(39)

A s an e x a m p le le t us con sid er the case 6 = 0 T hen

1 / a 2 \ a

Oj = «4 = 0, =

Trang 9

^ n ’ v / a ; ( l - sin ĩị>o ** 2A ( l + ,

« = <i» + j i | n o J t M i a ° ~ n ã

Lt form:

ã~o (1 - ^ r ) 8Ìn ỳ o *» 2A í 1 + 2 * ),

aná eq u a tio n s (35) ar« o f th f form:

(4 1 )

Because a if sm all, the first equation of (41) show s th a t there ir e two values of rpo lying on th f first and second quadrants corresponding to two values o f cot ĩpo w ith opposite signs Therefore the one

o f s t a t i o n a r y a m p l i t u d e c o r r e s p o n d i n g t o CO* > O i i l a r g e t h a n a 0 a n d t h e o t h e r c o r r e s p o n d i n g

t o CO% $o < 0 is s m a l l e r t h a n a n T h e e x p r e s s i o n s ( 3 9 ) n o w z s t :

K = fc + 0 (a 2),

Ơ = - e ^ n 2 COS ự>o + 0 ( e 2 ) ^ ^

and the stability condition gives:

For the caat 6 = * / 2 we have

a 2 - a 3 = 0 , ữ i = - + 0 ( a ) , a 4 = - Y + o ( a ) ,

a = a „ + c a i = « „ - ^ e y n 2 a j s i n V ' o , J 4 4 j

K = eh + 0 ( a 2 ),

G = J ị R f t 2 sin 'Po + 0 ( ff2) I

a n d t h e s t a b i l i t y c o n d i t i o n is

So, in b oth cases (6 = 0 and s = ff/2 ) the sta tio n a r y v ib r a tio n w ith sm a ll am plitude is s ta b le

and that with large amplitude is unstable (see equations (41) and equations (43), (44) and (45)).

C O N C L U S I O N

1 T h e sta tio n a r y nonlinear v ib ra tio n s of th e p e n d u lu m and its sta b ility have been co n sid ered

2 T o avoid reson an ce of th e p en d u lu m , th e p a r a m eter s o f th e sy ste m considered sh o u ld be

chosen so th a t (Jj7 difers from n 3 and J f l2,or

3 T h e r o ta tin g m o tio n of the p e n d u lu m m ay o ccu r U sin g th e averaging m ethod o f n o n lin ea r

m e ch a n ics an d th« Jacob ie ex p a n sio n s, th e sm a ll “v ib ra tio n " o f th e p en d u lu m around the s ta tio n a r y

rotation and its stab ility have been studied.

R E F E R E N C E

1 B o g o liu b o v N N , M itropolBkii Y u A A s y m p to tic m e th o d s in n on lin ear v ib ration s, M oscow

1974 (in R ussian).

2 M o ise ev N N A sy m p to tic m e th o d s of n o n lin ea r m e c h a n ic s, M oscow 1981 (in R u ssia n ).

3 S m ừ n o v V I C ourse o f high m a th e m a tic s, to m 3, p a r i 2, M oscow 1956 (in R u ssia n ).

Ngày đăng: 08/04/2015, 15:30

TỪ KHÓA LIÊN QUAN

w