1. Trang chủ
  2. » Giáo Dục - Đào Tạo

nguyên hàm tích phân 13 dạng

10 236 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 1,01 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

2 TRẦN QUANG - 01674718379 Genius is one percent inspiration and ninety-nine percent perspiration111... 5 TRẦN QUANG - 01674718379 Genius is one percent inspiration and ninety-nine perce

Trang 1

1 TRẦN QUANG - 01674718379 Genius is one percent inspiration and ninety-nine percent perspiration

§1 CÔNG THỨC NGUYÊN

HÀM

x x

2  ( x2 x x 3x dx )

x

2 3

1

2

dx x

5   x5 2 x dx

x

7

1

3

7  5 x3 4 x3 2 x3 dx

3 4 5

3

9  ( x  1 )( x4 3 x dx )

10  ( 3  x )( 2 x  1 )2dx

11   x  24 x  xx dx

12 x

dx

x

13  x

dx x

2

1

14   x3 2dx

15  x

dx x

2

2

2

4

dx x

17 x x x x

dx x

 2

x

dx x

2 2 3

20   x  5dx

21    x 2014dx

3 4

22   x  6dx

23 dx

x

 1

24 dx

x

25 dx

x

26

  dx x

5 3

27 dx

x

28

dx x

1 3

29  5 x  3 dx

30   x2 2  xdx

31  x 1  x dx2

32   x2 3xdx

33 x

dx x

 1 2

34   x4 7x dx3

3

35 x

dx x

 2 34 5

36 x

dx

x

 32 1

37 x

dx

x

 3 23

38  x2 5  x dx3

39  x3 4 5  x dx4

40  2 x2 1 3  x dx3

41 x

dx x

 1 56

42

  x xdx

2 3

43

  x xdx

4

2 3

44

x x ( dx 1)

45

 2 4

dx x

46

 ( 1)(2 x dx x 3)

 22

1 1

x

48

 2 7 10

dx

49

dx

50

 ( 1)(2 1) x dx

51

 2 2 3 2

52

 

 2 33 2

3x3 2x x22 x dx1

dx x

 4 32 4 12 1

dx x

 

56 sin

sin

x

1 3

57  ( 1  cos 2 x dx )

58 sin  x   dx

59  sin x  sin xdx

 2

3

60 cos  x   dx

5

61  sin x  cos x dx

3

62

sin x cosx dx

     

63  cos xdx2

64  cos xdx4

65  sin xdx5

66  cos5x sin xdx

67 cos sin

x dx x

68  5

sin cos x dx x

69  cos3x sin2xdx

70  cos sin x 3xdx

71 5sin cos x xdx

72  sin2x cos2xdx

73  sin2x cos4xdx

74

cos (x ) sin ( x ) dx

75

sin cos ( )

x dx x

  

3 2

76  sin cos2 2

dx

77  2sin2

2

x dx

cos2 sin cos

x dx

79  2 sin 3 x cos 2 xdx

80  sin 2 x cos xdx

81  cos 5 x cos 3 xdx

82  sin 2 x cos x dx

2

83

cos x  sin x dx

84 cos xsin x dx

5

85  sin dx x ,  cos dx x

86  tan xdx

87  tan xdx2

88  2

tan cos

xdx x

89  3

cot sin

xdx x

90

 tan

sin

2

x dx

x

91 cos x

dx x

92  x2sin( 2 x3 1 ) dx

93  x cos( 3 x2 2 ) dx

94

x

dx

x

 2 34 2

95

dx

96 sin

cos

x dx x

 1 5

97

x dx x

2

2 3

98 sin

cos

x dx

x

99 tan cos

x dx x

100 tan cos

x dx x

2

101  e2 1xdx

102  e3 4xdx

103

x

dx

e

104

x

x

e dx e

 13 3

105

x x

e dx e

 1 25 5 2

106  x x

e   dx

 3 21

107  x x

dx

  

 53 1 4

108 cos  x

x edx

 

109

cos

x

x

110

x

x dx

 2 5

Trang 2

2 TRẦN QUANG - 01674718379 Genius is one percent inspiration and ninety-nine percent perspiration

111 ln x

dx

x

112

ln

dx

113

( ln )

dx

114 ln

ln

xdx

115  tan ln(cos ) x x dx

116

x

e

dx

x

 3

117

tan

cos

x

e

dx

x

118  ecosxsin xdx

119  xe1x2dx

120

ln x

e

dx

x

121

cot

sin

x

e

dx

x

122  cos 2 x e sin cosx xdx

§2 PP TÍCH PHÂN

TỪNG PHẦN

123  x sin xdx

124  ( x2 5)sin xdx

125  x cos xdx

126  x cos2 xdx

127  x sin2 xdx

128  ( x2 2 x  3)cos xdx

129  x2cos2 xdx

130  x2cos2xdx

131   x2  5 x 6  cos 2 xdx

132   x2 4 x  3  cos xdx

133   x  2cos xdx

134   x2  5 x 6  sin 3 xdx

135  sin x dx

136  sin xdx3

137  cos x dx

138  x sin x dx

139  x e dx x

140   4 3  x e  3xdx

xe dx

x e dx

143   x/

xe dx

144  x e dx3 x2

145  ln xdx

146  x xdx ln

147  ln xdx2

148  ln( x2 1) dx

149  x tan2xdx

150  2

ln(cos ) cos x dx x

151  cos x dx2

x

 2

sin

x dx x

153  x ln(1  x dx2)

154  x dx 2x

155  x log xdx

156  ln xdx x

157  e dxx

158  ln(ln ) x dx

x

159  sin(ln ) x dx

160  cos(ln ) x dx

161  ex.cos xdx

162 e x(1 tan xtan )2x dx

163  ex.sin2 xdx

 ln(1 )2 x dx x

165  

ln x dx2

x

166

 3 2

1

x dx x

167    

 ln 2 2 1

1

x

168  ln x   1  x2 dx

169  x ln2 x  1  dx

170  x ln  x2 1  dx

171 x ln x dx

x

  

172 x ln  x x

dx x

 

2

2

1 1

173 x ln  x x

dx

 

 

2

2

1 1

174

x x ln  xdx

1

175

 ln( x x  ) dx

1

176

ln( x )

dx x

1 3

177

ln x ln x dx

178  x sin cos x 2xdx

§3 TÍCH PHÂN

HÀM VÔ TỈ

179 xdx

dx

x

180  x3 x2 2 dx

181 x

dx x

 12

182 ln x ln x

dx x

183

x

dx

e

184

x

x

e

dx

e

1

185 dx

x x

186 dx

x x

x

188 xdx

x

189 x

dx x

34 3 2

dx x

 4 3 1

191 x

dx

x

x

193  x2 x  1 dx

194 x dx

x

3 32 6

195 dx

x x

x x

197

x

x

e dx e

198

dx

xx

199 dx

x

200  1  x dx2

201 x dx

x

 32 2

202  x2 2  x dx2

203 dx

x

 2 1

204  x2  2 x 5 dx

205 x dx

x

 22 2

206 dx

x

x x

x   x

xx

210  2 x2 1 dx

dx x

1

212 dx

x

213 x dx

x

 42 2

214

dx x

215

 (1 2 3)

dx x

216

 1 1 1 dx x

Trang 3

3 TRẦN QUANG - 01674718379 Genius is one percent inspiration and ninety-nine percent perspiration

x 1 2 dx

x x

218

 1 31 1 dx

x

219

 14 dx

220

x dx3

221

 ( 1) x dx

x x

222

 1 1 x dx x x

31

1

x dx

x x

225

3 2

dx

226

 2

dx

dx

 

1

228 x x

dx

 2 2

2

dx

 

 22

1

dx

dx

 

 22

2

dx

x x

 

2 2

dx x

4

234

x   dx x   x

235

dx

xx   x

236

x   dx x   x

 2 3 2 3 1

dx

 

1

238

dx

xx   x

239

dx

xx   x

240

dx

xx   x

x xx

2

2

249

xdx  x  

x   x

x   x

x   x

x   x

x   x

x   x

x   x

x   x

259 x dx

x x

x   x

§4 TÍCH PHÂN HÀM

HỬU TỶ

262 x

dx x

 2 3 1

263 x x

dx x

 

 33 5 2 1

dx x

  

 4 3 22 3

265 x x x

dx x

  

6 3 33 21 2

x   x

2

dx

 2

269 x x

dx x

 

1

dx

x x

5

3 2

dx

 2

dx

dx

 

dx

x x

5 4

3 2

dx

 

dx

1 5

x   x

 2

2

xx

xx

dx

dx

 2 2

dx

 

1 5

xx

xx

xx

dx

 

dx

dx

 

2

289 x

dx

 

 2

1

dx

 

 2

2

291 x x

dx

 

 

 22

1

dx

 

 

 22

xxx

 3 2 2 9 18

294

dx

x x

 

 2 2

1

295

x x x

dx

x x x

  

 

 4 22

2

296

dx

x x

297

x  x xdx

1

298

dx

 

 22

299

dx

x x

300

x

dx

301

dx

x x x

 

 

 22

1 1

x    x x

Trang 4

4 TRẦN QUANG - 01674718379 Genius is one percent inspiration and ninety-nine percent perspiration

xxx

 3 6 2 11 6

 3 2 4 4

305  

x x

 2

1

1

306 xdx

3

 

308 ( x ) dx

x dx

4

310 xdx

  

5

311  

x dx

x

2

2

x

x x dx

x

314

x x dx  

2

 

x

1

1

316

x xdx

4

1

317 x

dx

x

 3

1

318 x

dx

x

 3

2

1

319

 22

1

3

dx

  

2

dx

x x x

 3 22

4 3

6 3 2 1

322 xdx

x

 4 1

323 x

dx x

 24

1 1

324 x

dx x

 24

1 1

325 x

dx

x

 421

326 dx

x

 4 1

327 x dx

x

 44 1

x   x

x   x

xx

331  xdx

1

332 xdx

1

333 x

dx

x

 6 21

334 x

dx

x

 6 21

335 x

dx

x

336 x

dx

x

 6 31

337 x

dx

x

 6 41

338 x

dx x

 46

1 1

339 x

dx x

 46

1 1

340 dx

x

 6 1

341 x x

dx x

 26 1

342  

x

dx x

 1012

5 2

 

x

dx x

1

x

dx x

 10199

345

x    dx x  

346

x    dx x  

347

x    dx x  

348

dx

x xxx

349

dx

x xxx

xx

 4 10 2 9

xx

352

dx

353

xxxdx

354

x  x xdx

355 dx

xx

 5 20

356 dx

xx

 9 7 5

357 dx

xx

 7 13

358 dx

xx

359

dx

xxx

360 dx

x

 4 1

xx

 3 100 5

362

x x

363

x dxx

 19 10 2 2

364 x dx

x

 44 1

 20102010

1 1

§5 TÍCH PHÂN HÀM

LƯỢNG GIÁC

366  sin22 xdx

367  cos2x sin4xdx

368  sin 3 x cos xdx

369

sin sin

dx

xx

370  sin cos x 2 x cos 5 xdx

371 sin cos tan cot

dx

372 sin sin sin sin

xdx

3 4 36 3 2

373  cos3x cos 3 xdx

374  cos2x cos 2 xdx

375  sin 4x cos 4xsin 6x cos 6x dx

376  sin cos x 2 xdx

377  sin 3 x cos xdx

378 2 sin 2x sin cosx x cos 2x dx

379  sin3 x dx

2

380 cos

x dx

xx

381 sin cos

x dx x

382

dx

xx

383

cos

dx x

384

sin cos

dx

385 sin

cos

x dx x

 1 4 3

386 sin cos

x dx

x

387

cos sin

dx

388 sin2 2x sin2x dx

389 sin

cos

x dx

x

 2 4 4 1

390 cos sin

x dx x

391

sin cos

dx

392 sin

cos

x dx x

393 sin cos

cos

dx x

394 sin

cos

x dx x

395 cos

cos

x dx x

396  cos 4 x cos2xdx

397  1 cos3x.sin cosx 5xdx

398 sin cosx x  cosx dx2

1

399 cos

cos sin

x dx

x x

 1 2

400 cos 2xsin 4x cos 4x dx

401 sin

cos

x dx x

402  cos3xsin3x dx

403 sin sin

sin

dx x

Trang 5

5 TRẦN QUANG - 01674718379 Genius is one percent inspiration and ninety-nine percent perspiration

404 sin 4x sin 2x cos 2x 3dx

405 tan

cos

x

dx x

406

dx

407 sin cos

dx

408 sin cos

cos

dx x

409  tanx e 2 sinxcosxdx

410  esinxcosxcosxdx

411 sin xcosx  cosx dx2

412 sin

cos

x

dx x

 1 3 2

413 cos4xsin6xcos6x dx

414 cos

sin

x

dx

x

415 sin cos

cos

dx x

416 sin

cos

x

dx x

 1 4 34

417 sin sin

cos

dx x

418

tan tanx x sinxdx

 1

2

419  cos3x1cos2xdx

420 cos sin cos

sin

dx x

 2

421 sin sin

cos

dx x

 1 3 33

422  tan32 xdx

423   tan x  tan3x dx

424

cos

dx

x

425

cos sin

dx

426

sin cos

dx

3 5

427

sin sin cos cos

dx

2 2 5 3 2

428

cos sin 

dx

3

429  cot xdx4

430  tan ln cos xx dx

tan cos

x dx x

1 1

432 cos sin

x dx x

433

sin

dx x

434 cos sin sin cos

dx

435 cos

sin

x dx x

 1 2 2

436

sincoscos 

x dx

xx

2

437 sin cos cos sin

dx

438 sin cos

x dx

x

439

cos x sin x dx

1

440

 sin cos 

dx

2

441

dx

442

dx

443

dx

444   cot3x  cot x dx

445 cos sin

dx

 2 2 3 3 1

446

sin

dx

x

447 sin cos sin

x dx

2 4

sin cos cos

x

dx

2

sin cos

x dx

450

 sin sin cos 

x dx

xx

4

451 sin cos cos sin

dx

452 sin cos sin cos

dx

453 sin

sin cos

x dx

xx

2 3

454

cos cos sin

x dx

xx

4

455

 sin 

tan cos sin

x

dx

4

456

sin sin

dx

xx  

4

457

cos sin

dx

xx  

6

458

sin sin

dx

xx  

6

459

dx

     

460

sin cos

dx

xx

461

sin cos

dx

xx

462

sin cos

dx

xx

463

sin cos

dx

xx

464 sin cos cos sin

dx

465

 cossin sincos 

dx

466 cos sin cos sin

dx

467 cos sin cos sin

dx

468

cossin sincos 

dx

469 sin sin cos

x

dx

 2 5 2 1

470 sin cos

dx

 2 3 2 2

471

 coscos sinsin 

dx

 

472 sin sin cos

x dx

xx

473 cos

x dx

474 sin cos

dx

§6 NGUYÊN HÀM

PHỤ

475

 sin sin cos x dx

476

 sin cos cos x dx

477

 sin sin cos x dx

478

 sin cos cos x dx

479

 sin4sin4cos x 4 dx

480

 sin4cos4cos x 4 dx

481 2sin sin22x xdx

482  2cos sin22x xdx

483

xex xdx

e e

484

xe x xdx

e e

485

xex xdx

e e

486

xe x xdx

e e

Trang 6

6 TRẦN QUANG – 01674718379 Reading without reflecting is like eating without digesting

§7: CÔNG THỨC

TÍNH TÍCH PHÂN

1 ( x x x x dx )

 

2 3 2

1

2

x

 

5 3 5

3

3

1

x

 

2

5

4

0 2

1

2

4 x dx 2

x

dx x

2

3 3 2

2

2

3

1

e

0

( x 1)(x x 1)dx

1

( xx xx dx )

9 4 x 3x 4x dx

3

7 2

3

5

2

x x x dx

x

11

2

1

x

 

3

3 2 1

2 x 3 3 x dx

13

2

1

1

x dx

14

5

2

dx

x 2   x  2

15 02

2

1 xdx dx

x

16

2

2

3

1

x dx

x

17 04x x2 9 dx

18 1  0

19 ) 1

x

19 1 

0

3 2 3 ) 1

x

20 1 

0 2 5

1 dx

x x

21 1 

0 2x 1

xdx

22

1

2 0

1

xx dx

23

1

0

1

xx dx

24 23 

5 x x2 4

dx

25 3  

3 5 1

2

dx x

x x

26 2 

1

0 1 x2

dx

27 1 

2

4 x

dx x

28 2  1

2

2 4 x dx

29 3 

0 2 3

x dx

0

2 2

) 2 )(

1

dx

31 1  

0

2 4

1

x x xdx

32

0 2

dx

  

33 2 

1 3

2 1

dx x x

34

1

0 1 x2 5

dx

35

2/ 3

2

dx

x x

36

2 2 2

2

x dx x

37

2

2 0

2

x x x dx

38

1 0

dx

39

2 2 1

( 1).

ln

40

2 1 0

4 2

x x

e

41 0ln2

1

x

xe dx

e

42 12ex(1 e x) dx

x

43 01

2

x x

e dx

44 0/2 cose xsin xdx

45   

0

) 6 2 sin( x dx

/2

/3

(2sinx 3cosx x dx)

47 /6  

0

sin3 x cos2 x dx

48 /4 2

0

tan cos

x dx x

49 /3 2

/4

3tan x dx

/6

(2cot x 5) dx

51

/2

0 1 sin

dx x

/2

0

1 cos

1 cos x dx

x

0

sin cos x xdx

54

/6

(tan x cot ) x dx

55

/2

/2

sin( ) 4 sin( 4 )

x dx x

56 /4 4

0

cos x dx

57 14

x

e dx x

58 1e 1 ln x dx

x

59 1eln x dx

x

60 01xe dxx2

61

1 0

1

1  exdx

62

ln2

0 1

x x

e dx e

63

 

ln3

3

x

x

e dx

e

64 ex x dx

ln 2

x

x x

1

ln ln 3 1

2

0

2 4

x dx

67

/

cos sin sin

2

0 1

dx x

sin cos

6

0

2 2

x dx

§8: PP TÍCH PHÂN

TỪNG PHẦN

69

/

sin

4

0

2

70

/ ( sin ) cos

2

2 0

71

/4

0 (1 sin2 )

72

/ cos

3 2 0

73

/

/ ( x  )sin xdx

4

6

74

/2

2 0

(2 1)cos

75

/2

0 ( 1)sin2

0

x cos xdx

77

1 0

cos x dx

78

1 0

sin x dx

79 2/2

0

sin

Trang 7

7 TRẦN QUANG – 01674718379 Reading without reflecting is like eating without digesting

80 2/2

0

cos

x x dx

81 

2/4

0

cos

82

2

0

sin

83 /3

2

0

1 sin

cos

x

84 /4 2

0

tan

85

/4

0 1 cos2

x

86 /3 2

/4

tan

87 1 

0

2

)

2

( x e xdx

88 xexdx

2

ln

0

89 x x dx

e

1

ln

90

2

1

( x  2)ln xdx

1

ln

e

92

2

3

1

ln x

dx

x

93 3 

2

2

)

ln( x x dx

94

/2

3

0

sin5

x

95

/2

cos

0

sin 2

x

96 e xdx

1

3

ln

e

1

2

3

ln

1/

ln

e

e

x dx x

99  22 1

ln e

x dx x

4ln( )

1

9 x dx x

101

3

2 1

3 ln ( 1)

x dx x

102

1

3

2 ln

e

x

103

2

1

1 ln

e

x

xdx x

104 /3 2

/6

ln(sin ) cos x dx x

105

2 1

cos(ln ) x dx

106

3

2 1

1 ln( x 1)

dx x

107 x ( e x x 1 ) dx

0

1

3 2

1 3 0

x

x e dx

109

4 x 1

110

/4 3 0

sin 4

x

111

/ cos sin 2

0

2

x

112 1

2

2

x

113 / tan ln(cos )

cos 4

0

dx x

114

/

sin

2

0

x

115 2

0

2

dx

xe x

116 1  0

dx

xe x

117 /2( cos ) cos

0

x

118 /2 2 1 0

sin2 x e x dx

1

1 ln

e

xdx x

120 e2ln ln(ln )

e

x

121   

e

dx x x

x x

1

2

ln 1 ln ln

122

3

2

ln(ln )

e

e

x dx x

123

1 0

ln( 1) 1

x dx x

1

ln 1 ln

dx x

1

( 1)ln

ln

e

dx

x x x

126 2

2 1

ln

127 2 1

ln

x

x e ex

x

 

1

1 3 2ln ln

1 2 ln

dx

129 /

ln(sin cos ) cos

4

2 0

dx x

1

( 1)ln

ln 1

e

dx

x x

1

3

x x

dx x

132

0 sin x

e xdx

133 /2

0

2cos cos 2

x x e dx

134 /2 2

0

sin cos

x

1 2 0

ln(1 ) 1

x dx x

 

1

137    2  

1

0 (2 x x 1) ex x dx

§9: TÍCH PHÂN

CÓ DẤU TRỊ TUYỆT ĐỐI

138 3 xdx

1

 

5 2 1

2

1 2 3 2

141 2 2

0

1

142

 

2 3 1

2

143 5 3 2  2

144 5 3 2  2

145

2 2

1 3

x

4 2 0

3

x

147

  

4 2

( x 1 x 3) dx

148

 

2 1

( x 2 x dx )

149

  

 1 2

(2x 3 3x 4)dx

150 1   

0

( x 5 x 6 ) dx

151

4 2 1

xxdx

0

2 3

4

4 x x dx x

153

1 1

4 x dx

154 3 /2

0

sin x dx

155 2 /3

0

cos x dx

156 /2

0

cos2x dx

0

sin 2

3

158

0

1 sin2 x dx

159 2  0

2 cos

160 3 /4 

0

sin x cos x dx

161 

0

cos x sin xdx

162 1 sin xdx

Trang 8

8 TRẦN QUANG – 01674718379 Reading without reflecting is like eating without digesting

163

0

1 cos2xdx

164  

0

1 cos xdx

165  

0

1 sin xdx

/6 tan x cot x 2dx

167

/2

cos cosx x cos xdx

168

3

0

2x 4 dx

169 2  

0

3x x 4 dx

170 3  

1

3x 4x 5x dx

1

ln 1

e

x dx

172 2  

0

ln x x 1 dx

§10: TÍCH PHÂN

CÓ CẬN ĐẶC

BIỆT

173

   

/4 7 5 43

/4

1 cos

x x x x dx

x

174

 

/2

cos ln(x x 1 x dx)

175

  

  

 

1/2 1/2

1 cos ln

1

x

x

2 1

 

177

1

x dx

  

178 1 42 1

sin 1

x

179

/2 5

/2

sin

1 cos x dx

x

180

/2  2

/24 sin

xdx x

181



/2 2

/2

cos

4 sin

x

182

12 1xx dx

 

183

1

1

1 2 x dxx

184

1

2

dx

185

2

sin

3 1x xdx

 

186 

 

 3

3

2 2 1

1

dx

x

x

187

1

2

1(4 1)(x 1)

dx x

188

/2

sin sin3 cos5

x x x dx e

189

/2

6 1x

190

/2 2 2

/2

sin

1 2x

191

/2

0

cos cos sin

n

x dx

192

0

sin sin cos

x dx

193

/2

0

sin

x dx

194

/2 2009 2009 2009 0

sin sin cos

x dx

195 

0

cos cos sin

x dx

196 

/2 4 4 4

0

sin

x dx

0

.sin

4 cos

x x dx x

0

cos

4 sin

x

  

/2

0

1 sin ln

1 cos x dx x

200 /4 

0

ln(1 tan ) x dx

201

2

3 0

.cos



0

.sin

203

01 sin

x dx x

204

0

sin

2 cos

x x dx x

0

sin

1 cos

x x dx x

0

sin4 ln(1 tan )x x dx

0

sin

9 4cos

x

0

sin cos

209

/2

0

sin sin cos

x dx

210

/2

0

cos sin cos

x dx

211

/2

0

sin sin cos

x dx

212

/2

0

cos sin cos

x dx

213

0

sin

x dx

214

0

cos

x dx

215

0

sin

x dx

216

0

cos

x dx

217 /2 2 0

2sin sin2 x xdx

218 /2 2 0

2cos sin2 x xdx

219

1 1

x

e e

 

220

1 1

x

 

221

1 1

x

e e

 

222

1 1

x

 

§11 TÍCH PHÂN

HÀM HỬU TỈ

223 3 

1 3

x x dx

224 1  

0 2

6

5x

x dx

225

2

x dx

xx

226

2

1

dx

xx

227

 

1

3

xdx

x

228

4

3 4

x x ( dx )

229

x x

x dx

3 7 7 1

1 1

231

xx

232 3  

0 2 3 1

2x

x

dx x

233

1 

0

3 2

x

234

 

3 

2

9 2

1 x

dx x

235 4 

1

2( 1 x )

x dx

236

dx

x x

4 2

0 2

6 5

11 4

x x

dx x

238 1 3 0

1 1

x

 

Trang 9

9 TRẦN QUANG – 01674718379 Reading without reflecting is like eating without digesting

239 0 3 2

2

1

x x

  

 

240

3

2

241

3

0(3 1)

x

3

0

2

2

1

2

3

dx x

x

243 2   

0

2

2

3

4

9 4 2

dx x

x x

x

244 1

0

1

( x  2) ( x  3) dx

245 1 3 2

0

1 1

x

 

246

1

4

01 x dx

x

247

2

4

1

1

(1 ) dx

xx

2014

1

1

249

x

250

2

2

0

1

4  x dx

251

4

1

1

1 x dx

x

252

2

0

2

1 x dx

x

253 

4

1

1

1 x dx

x

254 

3

1

1 x dx

x x

255 

6

0

1

1 x dx

x

256

4

x

x   x

1 4 2

258

x    dx x  

259 1     0

6

4 5 6

1

2

dx x

x x x

260 3    

2 3 2

2 3

3 3 3

dx x

x

x x

261 1 5 /2 2

4 2 1

1 1

x

dx

x x

 

262 1

0

1

dx (x  4x  3)

§12 TÍCH PHÂN

HÀM LƯỢNG GIÁC

263

/

sin cos

4

0

2x xdx

264

/

tan

4

0

xdx

265

/

sin cos

2

0 1 3

x dx x

266

/

sin

2 3 0

xdx

267  x dx

0

2 sin

268 

0

2 3 cos x

0

1 2sin

1 sin2

x dx x

0

sin cos x xdx

271

/

sin cos

2

0

0

sin cos x xdx

273 /2 3  3

0

(sin x cos ) x dx

274

/2 3

0

cos cos x dx 1

x

275

/

sin cos cos

2

0

2 1

dx x

276 /4 3 0

tan xdx

277 /3 4

/4

tan xdx

278

/3 3

/4sin cos

dx

279

/2 3 2

0

sin

1 cos x dx

x

280

/2 3

0

cos

1 cos x dx

x

281

/3 4 /6sin cos

dx

282 /

/

sin cos 2

6

dx

283 /

/

tan

3

2

x dx

0

cos2 (sinx x cos )x dx

(tan cos )

4 0

x

286 

/4 2 32 5 0

sin (tan 1) cos

287 

/3 2  2 /3

1 sin x 9cos x dx

288 /2

/3

1 sin x dx

289

/2

0 2 cos

dx x

290

/2

0

1

2 sin x dx

291

/2

0

cos

1 cos x dx

x

292

/2

0

cos

2 cos x dx

x

293

/2

0

sin

2 sin x dx x

294

/2

0

1 sin x cos x 1 dx

295

/2

/2

sin cos 1 sin 2cos 3

x x dx

296

/4

4

dx

0

(1 sin )cos (1 sin )(2 cos )

298

/3

/4sin cos( )

4

dx

299

/3

/6sin sin( )

6

dx

300

/2

0

cos

7 cos2

xdx x

0

sin cosx x cos xdx

302

/2 2

0

cos

2 cos

xdx x

/26 3 5 0

1 cos sin cosx x xdx

/2

0

sin2 sin

1 3cos

x x dx x

Trang 10

10 TRẦN QUANG – 01674718379 Reading without reflecting is like eating without digesting

305

/3

0

cos

2 cos2

xdx

x

306

/2 2

0

cos

1 cos

xdx

x

307 

/3  2

/4

tan

cos 1 cos

308

2

0

sin2 cos

1 cos

dx x

309 4

0

sin ( 1)cos

sin cos

dx

 

0

cos x 1 cos xdx

311 4

0

sin

4 sin2 2(1 sin cos )

x dx

   

312 /6 4

0

tan

cos2

x

dx

x

sin cos

2

0

2

4

x

dx

sin cos

2

0

2

x

dx

§13 TÍCH PHÂN

HÀM VÔ TỈ

315 22  0

2 1dx

x x

316 1  

3

1 dx

x x x

317 1  

dx

318 2  

11 x 1 dx

319

6

dx

x   x

320 2 

0 5

4

1 dx

x x

321

10

dx

xx

0

2 3

1dx

x x

323 1   

3 4

dx x x

324 3  

7

0

33 1

1

dx x x

325

2 3

2

dx

x x

326

2

x x dx x

327

2 2 0

1

1 xdx x

328

2 3 2

dx

x x

329

2 3

dx

x x

330

1

0

1

xx dx

331

1

1 1

x x

332

1

2 3

dx x

333 2 2

1

2014

334

3

0

10

xx dx

335

1

2 0

1 x dx

336

1

2

dx

   

337

2 2

dx x

338

2

x dx

xx

339

2 2

2 3

dx x

340

2 2 2

2

x dx x

341

5

1

12 x  4 x  8 dx

342

ln3

dx

e

343

ln2 2

x x

e dx

e

344

1

1 3ln ln

e

x x dx x

345

ln2

ln

ln x dx 1

x x

1

x e x dx

 

347

ln2

3

x x

e dx

e

348 ln3

x

ee

349

1 0

x

ee

350

ln2 0

1

x

edx

351 1 

01 x

x

e

dx e

352 ln2 

0 x 5

e dx

353

1 0

1 4

x dx

e

354 ln8 

3

ln e 1 dx

e

x x

355 ln 8  3 ln

2 .

1 e dx

356 ln2  

0 1

1

dx e

e

x x

357

2 1

1

1  ex dx

358

x x

e dx

e

359

1

x x

e

 

1

ln (ln 1)

361

x x

e

 

362

ln3 0

1 1

x dx

e

Ngày đăng: 19/09/2014, 23:38

TỪ KHÓA LIÊN QUAN

w