1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Modeling of Combustion Systems A Practical Approach 1 pot

22 403 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 7,23 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Appendix AFuel and Combustion Properties... 60 rF & 14.696 psia Btu/Ibm/ rF Latent Heat of Vaporization 14.696 psia & Boiling Point Btu/Ibm Heating Value Unit Volume per Unit Volume of

Trang 1

Appendix A

Fuel and Combustion Properties

Trang 2

60 rF &

14.696 psia (Btu/Ibm/ rF)

Latent Heat of Vaporization 14.696 psia &

Boiling Point (Btu/Ibm)

Heating Value Unit Volume per Unit Volume of Combustible Unit Mass per Unit Mass of Combustible

Theoretical Air Required (Ibm/10,000 Btu)

Flammbility Limits (vol% in air mixture) Boiling

Point 14.696 psia ( rF)

Vapor Pressure

100 rF

(psia)

Gas Density Ideal Gas, 14.696 psia, 60 rF Btu/scf Btu/Ibm Required for Combustion Flue Gas Products

Required for Combustion Flue Gas Products

Trang 3

Combustion Data for Hydrocarbons

Higher Heating Value (vapor) (Btu lb m1 )

Theor Air/Fuel Ratio, by Mass

Max Flame Speed, (ft s1 )

Adiabatic Flame Temp (in air) ( °°°° F)

Ignition Temp

(in air) ( °°°° F)

Flash Point ( °°°° F)

Flammability Limits (in air) (% by volume) Paraffins or Alkanes

Trang 4

TABLE A.2 (CONTINUED)

Combustion Data for Hydrocarbons (Continued)

Higher Heating Value (vapor) (Btu lb m1 )

Theor Air/Fuel Ratio, by Mass

Max Flame Speed, (ft s1 )

Adiabatic Flame Temp (in air) ( °°°° F)

Ignition Temp

(in air) ( °°°° F)

Flash Point ( °°°° F)

Flammability Limits (in air) (% by volume) Aromatics

in Btu lb m − 1 by 2324 For flame speed in ms − 1 , multiply the value in fts − 1 by 0.3048.

REFERENCES

American Institute of Physics Handbook, 2nd ed., D.E Gray, Ed., McGraw-Hill Book Company, 1963.

Chemical Engineers’ Handbook, 4th ed., R.H Perry, C.H Chilton, and S.D Kirkpatrick, Eds., McGraw-Hill Book Company, 1963.

Handbook of Chemistry and Physics, 53rd ed., R.C Weast, Ed., The Chemical Rubber Company, 1972; gives the heat of combustion of 500 organic compounds Handbook of Laboratory Safety, 2nd ed., N.V Steere, Ed., The Chemical Rubber Company, 1971.

Physical Measurements in Gas Dynamics and Combustion, Princeton University Press, 1954.

© 2006 by Taylor & Francis Group, LLC

Trang 5

TABLE A.3

Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,

Including Fuels and Refrigerants, English and Metric Units

Note: The properties of pure gases are given at 25°C (77°F, 298 K) and atmospheric pressure (except as stated).

From: Kreith, F The CRC Press Handbook of Thermal Engineering, CRC Press, Boca Raton, FL, 2000.

Trang 6

538 Modeling of Combustion Systems: A Practical Approach

TABLE A.3 (CONTINUED)

Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,

Including Fuels and Refrigerants, English and Metric Units

© 2006 by Taylor & Francis Group, LLC

Trang 7

TABLE A.3 (CONTINUED)

Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,

Including Fuels and Refrigerants, English and Metric Units

Trang 8

540 Modeling of Combustion Systems: A Practical Approach

TABLE A.3 (CONTINUED)

Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,

Including Fuels and Refrigerants, English and Metric Units

© 2006 by Taylor & Francis Group, LLC

Trang 9

TABLE A.3 (CONTINUED)

Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,

Including Fuels and Refrigerants, English and Metric Units

Trang 10

542 Modeling of Combustion Systems: A Practical Approach

TABLE A.3 (CONTINUED)

Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors,

Including Fuels and Refrigerants, English and Metric Units

© 2006 by Taylor & Francis Group, LLC

Trang 11

operties

Trang 12

TABLE A.4 (CONTINUED)

© 2006 by Taylor & Francis Group, LLC

Trang 13

operties

Trang 14

Fuel and Combustion Pr

TABLE A.4 (CONTINUED)

© 2006 by Taylor & Francis Group, LLC

Trang 15

TABLE A.5

Thermodynamic Properties of Selected Compounds

(Coefficients for Heat Capacity Equation: C p = a 0 + a 1 T + a 2 T 2 + a 3 T 3 , Enthalpy, and Free Energy)

Formula Name

a 0 a 1 a 2 a 3 ΔΔΔΔ H f ΔΔΔΔ G f

NO Nitric oxide 2.935E+01 –9.370E–04 9.747E–06 –4.187E–09 9.043E+04 8.675E+04 NO2 Nitrogen dioxide 2.423E+01 4.863E–02 –2.081E–05 2.930E–10 3.387E+04 5.200E+04

N2 Nitrogen 3.115E+01 –1.357E–02 2.608E–05 –1.168E–08 0.000E+00 0.000E+00 N2O Nitrous oxide 2.162E+01 7.281E–02 –5.778E–05 1.830E–08 8.160E+04 1.037E+05

O2 Oxygen 2.811E+01 –3.680E–06 1.746E–05 –1.065E–08 0.000E+00 0.000E+00 HCl Hydrogen chloride 3.067E+01 –7.201E–03 1.246E–05 –3.898E–09 –9.236E+04 –9.533E+04

H2 Hydrogen 2.714E+01 9.274E–03 –1.381E–05 7.645E–09 0.000E+00 0.000E+00 H2O Water vapor 3.224E+01 1.924E–03 1.055E–05 –3.596E–09 –2.420E+05 –2.288E+05

H2S Hydrogen sulfide 3.194E+01 1.435E–03 2.432E–05 –1.176E–08 –2.018E+04 –3.308E+04 NH3 Ammonia 2.731E+01 2.383E–02 1.707E–05 –1.185E–08 –4.572E+04 –1.616E+04

SO2 Sulfur dioxide 2.385E+01 6.699E–02 –4.961E–05 1.328E–08 –2.971E+05 –3.004E+05 SO3 Sulfur trioxide 1.921E+01 1.374E–01 –1.176E–04 3.700E–08 –3.960E+05 –3.713E+05

CO Carbon monoxide 3.087E+01 –1.283E–02 2.789E–05 –1.272E–08 –1.106E+05 –1.374E+05 CO2 Carbon dioxide 1.980E+01 7.344E–02 –5.602E–05 1.715E–08 –3.938E+05 –3.946E+05

CH4 Methane 1.925E+01 5.213E–02 1.197E–05 –1.132E–08 –7.490E+04 –5.087E+04 C2H4 Ethylene 3.806E+00 1.566E–01 –8.348E–05 1.755E–08 5.234E+04 6.816E+04

C2H6 Ethane 5.409E+00 1.781E–01 –6.938E–05 8.713E–09 –8.474E+04 –3.295E+04 C3H4 Propadiene 9.906E+00 1.977E–01 –1.182E–04 2.782E–08 1.923E+05 2.025E+05

C3H4 Methyl acetylene 1.471E+01 1.864E–01 –1.174E–04 3.224E–08 1.856E+05 1.946E+05 C3H6 Cyclopropane –3.524E+01 3.813E–01 –2.881E–04 9.035E–08 5.334E+04 1.045E+05

C3H6 Propylene 3.710E+00 2.343E–01 –1.160E–04 2.205E–08 2.043E+04 6.276E+04 C3H8 Propane –4.224E+00 3.063E–01 –1.586E–04 3.215E–08 –1.039E+05 –2.349E+04

C4H4 Vinyl acetylene 6.757E+00 2.841E–01 –2.265E–04 7.461E–08 3.048E+05 3.062E+05 C4H6 1-Butyne 1.255E+01 2.744E–01 –1.545E–04 3.405E–08 1.653E+05 2.022E+05

C4H6 2-Butyne 1.593E+01 2.381E–01 –1.070E–04 1.735E–08 1.464E+04 1.856E+05 C4H6 1,2-Butadiene 1.120E+01 2.724E–01 –1.468E–04 3.089E–08 1.623E+05 1.986E+05

C4H6 1,3-Butadiene –1.678E+00 3.419E–01 –2.340E–04 6.335E–08 1.102E+05 1.508E+05 C4H8 1-Butene –2.994E+00 3.532E–01 –1.990E–04 4.463E–08 –1.260E+02 7.134E+04

C4H8 2-Butene, cis 4.396E–01 2.953E–01 –1.018E–04 –6.160E–10 –6.990E+03 6.590E+04 C4H8 2-Butene, trans 1.832E+01 2.564E–01 –7.013E–05 –8.989E–09 –1.118E+04 6.301E+04

C4H8 Cyclobutane –5.025E+01 5.025E–01 –3.558E–04 1.047E–07 2.667E+04 1.101E+05 C4H8 Isobutylene 1.605E+01 2.804E–01 –1.091E–04 9.098E–09 –1.691E+04 5.811E+04

C4H10 n-Butane 9.487E+00 3.313E–01 –1.108E–04 –2.822E–09 –1.262E+05 –1.610E+04 C4H10 Isobutane –1.390E+00 3.847E–01 –1.846E–04 2.895E–08 –1.346E+05 –2.090E+04

From Reid, R.C., Prausnitz, J.M., and Poling, B.E., The Properties of Liquids and Gases, 4th ed., McGraw-Hill,

New York, 1987, Appendix A.

Trang 16

548 Modeling of Combustion Systems: A Practical Approach

CO Carbon monoxide 29.19 29.21 29.30 29.70 30.28 30.99 31.74 33.49 24.90 CO2 Carbon dioxide 36.03 38.26 40.29 43.82 46.72 49.08 51.02 57.89 69.50 CH4 Methane 34.15 36.96 39.78 45.40 50.93 56.31 61.48 81.66 86.21 C2H4 Ethylene 40.71 46.28 51.53 61.07 69.44 76.75 83.09 104.08 116.85 C2H6 Ethane 49.06 56.01 62.66 75.07 86.34 96.52 105.66 137.68 151.65 C3H4 Propadiene 55.65 62.39 68.66 79.93 89.63 97.91 104.96 127.43 143.92 C3H4 Methyl acetylene 57.52 63.77 69.59 80.04 89.05 96.82 103.55 128.26 155.85 C3H6 Cyclopropane 49.26 60.94 71.62 90.24 105.67 118.44 129.10 169.68 238.75 C3H6 Propylene 59.50 68.05 76.13 90.93 104.04 115.59 125.71 159.49 177.37 C3H8 Propane 68.26 79.28 89.66 108.60 125.28 139.90 152.64 195.01 219.48 C4H4 Vinyl acetylene 68.98 77.43 85.11 98.37 109.23 118.12 125.50 155.29 214.32 C4H6 1-Butyne 76.67 86.24 95.20 111.40 125.48 137.64 148.08 181.74 203.17 C4H6 2-Butyne 73.34 82.28 90.78 106.47 120.51 133.01 144.07 181.43 198.43 C4H6 1,2-Butadiene 75.28 84.94 94.01 110.49 124.92 137.47 148.33 183.80 204.87 C4H6 1,3-Butadiene 75.54 86.51 96.61 114.41 129.34 141.76 152.06 185.05 222.02 C4H8 1-Butene 79.54 91.87 103.41 124.30 142.47 158.20 171.75 216.22 246.42 C4H8 2-Butene, cis 73.49 85.21 96.42 117.30 136.13 152.90 167.61 210.12 200.55 C4H8 2-Butene, trans 82.94 93.55 103.76 122.98 140.54 156.39 170.48 212.53 202.35 C4H8 Cyclobutane 62.59 78.51 93.15 118.94 140.59 158.72 173.96 228.85 305.79 C4H8 Isobutylene 84.68 95.57 105.96 125.26 142.63 158.14 171.83 214.97 220.94 C4H10 n-Butane 91.65 104.88 117.53 141.14 162.44 181.43 198.09 245.86 232.84 C4H10 Isobutane 90.50 104.62 117.96 142.37 163.91 182.75 199.07 248.91 261.74

Based on Reid, R.C., Prausnitz, J.M., and Poling, B.E., The Properties of Liquids and Gases, 4th ed.,

McGraw-Hill, New York, 1987, Appendix A.

© 2006 by Taylor & Francis Group, LLC

Trang 17

vinyl acetylene propylene

propadiene methyl acetylene ethane

isobutylene n-butane

isobutane cyclobutane

Trang 18

nitrogen dioxide ammonia

water vapor hydrogen sulfide

© 2006 by Taylor & Francis Group, LLC

Trang 19

nitrogen carbon dioxide

oxygen

Trang 20

552 Modeling of Combustion Systems: A Practical Approach

° l

e u

8 O

C

© 2006 by Taylor & Francis Group, LLC

Trang 21

Coking Gas

Reforming Gas

FCC Gas

Refinery Gas Sample 1

Refinery Gas Sample 2

PSA Gas

Flexicoking Gas Tulsa Alaska Netherlands Algeria Propane Butane

Trang 22

Coking Gas

Reforming Gas

FCC Gas

Refinery Gas Sample 1

Refinery Gas Sample 2

PSA Gas

Flexicoking Gas Tulsa Alaska Netherlands Algeria Propane Butane

Molecular weight 17.16 16.1 18.51 18.49 44.1 58.12 22.76 28.62 30.21 29.18 28.02 24.61 25.68 23.73

Lower heating value (LHV), Btu/SCF 913 905 799 1025 2316 3010 1247 1542 1622 1459 1389 1297 263 131

Higher heating value (HHV), Btu/SCF 1012 1005 886 1133 2517 3262 1369 1686 1769 1587 1515 1421 294 142

Specific gravity

(14.696 psia/60°F, Air = 1.0)

0.59 0.56 0.64 0.64 1.53 1.1 0.79 0.99 1.05 1.01 0.97 0.85 0.89 0.82 Wobbe number, HHV/(SG1/2) 1318 1343 1108 1416 2035 3110 1540 1694 1726 1579 1538 1541 312 157

Isentropic coefficient (Cp/Cv) 1.30 1.31 1.31 1.28 1.13 1.10 1.24 1.19 1.19 1.20 1.21 1.23 1.33 1.38

Stoichiometric air required, SCF/MMBtu 10554 10567 10554 10525 10369 10371 10402 10379 10322 10234 10311 10375 9667 8265

Stoichiometric air required,

lbm/MMBtu

805 806 805 803 791 791 794 792 787 781 787 792 738 630 Air required for 15% excess air,

SCF/MMBtu

12138 12152 12138 12104 11925 11926 11962 11936 11870 11769 11858 11931 11117 9505 Air required for 15% excess air,

lbm/MMBtu

923 924 923 920 907 907 910 908 903 895 902 907 845 723 Volume of dry combustion products,

SCF/MMBtu

10983 10956 11141 10953 10962 10996 10890 10909 10871 10847 10911 10904 11722 13517 Weight of dry combustion products,

lbm/MMBtu

865 862 876 863 870 874 861 864 862 860 864 862 985 1103 Volume of wet combustion products,

SCF/MMBtu

13257 13258 13415 13163 12788 12757 12935 12862 12771 12689 12821 12902 14198 15585 Weight of wet combustion products,

lbm/MMBtu

973 971 984 968 957 958 958 957 952 948 864 957 1102 1201 Adiabatic flame temperature, °F 3306 3308 3284 3317 3351 3351 3342 3348 3359 3371 3353 3345 3001 2856

Note: All values calculated using 60°F fuel gas and 60°F, 50% relative humidity combustion air.

© 2006 by Taylor & Francis Group, LLC

Ngày đăng: 13/08/2014, 05:22

TỪ KHÓA LIÊN QUAN