The value of a heat evolved during a reaction is taken to be negative AG=maximum work change of free energy in kJ mol-1 or kJ g-atom-' S29e=standard entropy at 298 K 25OC in Jk-' mol-
Trang 2(Ce, La, Di)(C03)F
(Ce, La, Y, Th) PO.,
FeCr,O,
40 3.6 (Variable)
50
46
38.246.5
13-28 11-21.7 13.8-24
54 18.8-26.6
13 Variable 28.5-35.5 35-36
58
100
55
58 88.8 36.2
56
25 59.4 79.9
63.5
34.6 66.7 45.7-49.0 57.5 var
25.e45.7
2.71
4.9-5.2 4.6-5.4
4.5-4.8
6.9-7.3 6.5-6.9 5.7-6.8 4.1 3.06 2.8-4.4 3.44 6.0-6.3 4.8 4.8-5.0 8.95 3.77 4.05 5.9-6.2 2.0-2.2 3.97 2.1-2.3 3.76 5.5-5.8 4.9-5.4 4.1-4.3 4.6-4.76 4.45 4.4-4.5 4.6-5.1
Australia, India, 0.1-3'% Ce Brazil, S Africa,
USA, Malaysia
S Africa, USSR, 2 0 4 5 % Cr Zimbabwe, Finland,
Canada, Peru
W Germany
37 x 103 - (rare earth oxides)
USSR, Australia, 19789 3 595 Canada, W Germany (excl USSR) (estimated order)
4
Trang 32
Table 7.1 ORE GRADES AND SOURCES-continued
World reserves 5
a
1983184 (TKOs
abundance content gravity Major mineral ore Major metal production of contained 3
metal (tonnes) metal)
a,
Q
< O B 1 S Africa, Jamaica, 0.001-0.05% W Germany, USA, (incl one-third (in bauxite) 5
(in Bauxite)
an alumina (in zinc $,
by-product) ores Only 1
percentage 2
is & economic- ally recoverable)
-
.,
15
minerals)
Germanium Renierite (Cu, Fe),(Fe, Ge, Zn, Sn)
1-2 Germanite (Cu, Ge3)(S, As) 6, As),
(in Coal ash)
(Anode slime from
39-43.6 9.0-9.3 30.7-43.9 8.6 19.0-25.4 8.7-9.02 24.2-29.9 8.16 7.4-10.2 1.4
90 (estimate) -
Trang 4Up to 0.1% In (in associated USA, W Germany, minerals) Belgium
25-70% Fe USSR, Brazil,
Canada, Japan,
Australia, USA, Canada, China, India, S Africa
2.8-2.9
3.7 4.8 4.7 4.4-5.0 4.3 4.7-4.8 8.1
6.5-7.0 4.6-4.7 4.5
442 x 106 (in mine produdion)
PbC03 PbS0, PbS
77.0 68.0 86.6
USA, Australia, USSR, Canada,
S Africa, Yugoslavia Bolivia, USA, Australia, Zimbabwe, Namibia, USSR
2-14% Pb USA, USSR,
W Germany, Japan,
UK, Canada 0.2-1% Li USA, USSR
1936
(W World only)
295 x 103 (Primary metal)
8 0 9 7 ~ 1 0 ~ (contained in mine production)
2 530 x lo6
China, USSR,
N Korea, Brazil, Australia
S Africa, USSR, Brazil, Australia, India, China
Spain, Yugoslavia, USSR, China, USA USA, Chile, USSR, Canada, Mexico
0.2-1 % Hg USSR, Spain,
USA, China, Algeria, Mexico 0.002-0.2% Mo USA, Chile,
China, USSR, Canada, Peru
Molybdenum (Wulfenite)
1 Molybdite Molybdenite
PbMoO, MOO,
MoSz
24.6-33.3 59.9 66.7
in
Trang 5Table 7.1 ORE GRADES A N D soURCES eontinwd 9
World reserves 1983/84 (QOOa z
E Germany, France Chile, USA, Canada, USSR, Peru
Chile, USA, Canada, Zambia, Zaire, Mexico Worldwide
Japan, Australia, USA, Norway
0.4-3% Nb Brazil, Canada,
Thailand, Nigeria, Australia, Zaire
Trang 6(in Tin slags)
(Anode slime from
Germany, USSR (estimated order)
Norway, France, Yugoslavia, Portugal
Mexico, USA, Peru, Australia 1 800
Up to 8% in
anode slimes Canada, Peru,
0.05-0.1% TI USA, Belgium, (in flue dusts) Gemany, USSR
Tho2 ThSi04
Trang 7Table 7.1 ORE GRADES AND SOURCES-eontinued
a,
1983184 (Ws
5-
Major metal production of contained CQ
content gravity Major mineraI ore
(Zn, Fe)S ZflZ
9.5-10.6 6.5-7.1
0.8-0.9 47-50.6 3.2
29.0-52.0 4.0-4.45
51-67 3.9-4.1 71.4-73.4 5.4-6.0 49.7 4.2-4.7
In ilmenite: S Africa, India, China
In rutile: Brazil, Australia, India China, Canada, 0,4-3% W
USSR, USA, Australia
2-30% Ti
Australia, USA, 0.1-0.3% U
S Africa, Canada, Niger*
USSR, S Africa, 0.4-2% V China, USA,
Finland Australia
Canada, USSR, 5 1 0 % Zn
Australia, Peru, Mexico, USA Australia, S Africa, USSR, USA,
Brazil
e 10% Zr
USSR, USA, Japan, UK, China
China, Canada, USSR, USA, Australia
Canada, USA,
S Africa, Namibia, Niger, France**
USA, S Africa?, Japan, USSR
USSR, Japan, Canada, W Germany, USA, Australia Japan, France, USA
*Reasonably ** W World produclion t Vanadium from mineral s o u r n netroleurn residues, ashes and catalysts
Trang 8&=latent heat of fusion
&=latent heat of vaporization
L, = latent heat of transition
L,=latent heat of sublimation } in kJ mol-' (or kJ g-atom-') or in Jg-'
AV, = volume change during melting [ (Vlig -Vsolid)/VSolid]%
AH29,=heat of formation at 298K (25°C) in kJ mol-' (or kJ g-atom-') or in Jg-' (The value of a heat evolved during a reaction is taken to be negative)
AG=maximum work (change of free energy) in kJ mol-1 (or kJ g-atom-')
S29e=standard entropy at 298 K (25OC) in Jk-' mol-' (or J g-atom-')
p (mm Hg)=vapour or dissociation pressure in mmHg
N, =mol fraction of the first component
N,=mol fraction of the second component
C,=specific heat in J k-' mol-'
c,=specific heat in J g-' k-'
8.2 Changes of phase
TsUe 8.1 ELEMENTS
Latent heats and temperatures of fusion, vaporization and transition, and change in volume on melting
Melting Boiling L, at mp L, kJ patom-' or mol-' L,
m'nt 0, point 9, 0, kJ g-atom-' kJ g-atom-' AV,
Trang 98-2 Thermochemical data
TaUe 8.1 ELEMENTS-cotatinued
Melting Boiling L,at mp L, kJ g-atom-' or mol-' L,
point Om point 0, 0, kJ g-atom-' kJ g-atom-' AVm
Element "C "C "C or mol-' L, ut 25 C L, af b p 0: mol-' %
1484
767
3 430 -34.1
176.2 150.7 112.2 99.6 (407) 376.0
422.9 402.4 161.6 147.8 146.5 127.7
29 1 .O 231.1 664.5 590.3
-
-
108.9 98.0 722.2 683.7
-
-
1.90 diam+
graph 0.25 (2.9)
-
-5.1 (123) 3.7 21.6 2.0 2.55
-
-
-
(1.65) 4.12 (1.7)
-
7.4 3.5 3.5
-
-
-
-
Trang 10Changes phase 8-3
Table 8.1 E L E M E N T S - t o n t i m d
Melting Boiling 4 at m p L, kJ g-atom-' or mol-' L,
point 8, point 0, 0, kJ g-atom-' kJ g-atom-' AV, Element "C "C O C ormol-' L,ut.25 C L,urb.p mrno1-I "/,
-
2.198 33.5 (22.6) 1.235
-
- 19.89 6.28 50.66 8.92 7.08 (8.4) (24.7)
-
-
17.6 (17.5) 4.3 12.5 16.74 35.2 11.43 7.28 (19.3)
-
-
545.0 343.7
-
87.5 779.2 556.0
-
-
17 l.6(Te2) 576.1 469.3 180.9 482.2 510.2 847.8 424.9 129.3 612.1
-
4692 352.0
-
75.8 (712) (494)
-
-
- 104.7(Te2) (511) 425.8 166.2
41 7.4 457.2 (737) 367.6 114.3 579.9
-
- 3.39,0.59, 0.54,0.08,
*L,at 4.p.: S,, 106.4 (625'C); S,, 96.0 (625T); SI, 66.2 (527T); S8, 63.1 (490°C)
AV,,, ref 4
Table 8.b INTERMETALLIC COMPOUNDS
Latent heats and temperatures of fusion
If an intermetallic phase is completely disordered, the entropy of fusion (LJT,)
can generally be calculated additively from the entropies of fusion of the com-
ponents If it is completely ordered, - 19.146 (N, log N, + N 2 log N,) is as a rule to
be added to the calculated entropy of fusion
10-2 8-Ag-Cd
50.0
66.7 50.0
455
627 254-m
8.8f0.8
8.96+0.50 8.00f0.75 12.81 f0.33 12.31 f0.54 7.45f0.38
J g-' 76.2 95.5 131.5 320.3 346.7 57.8 39.4 81.2 93.8 93A
Trang 1150.0
50.0 50.0 33.3 28.6
50.0 50.0
66.7 33.3 66.7 28.5 50.0 71.5
50.0
87.5 63.0
-
7.24 10.25 9.71 k0.21 9.55k0.21 5.86 6.05 6.91 7.87k0.63 16.0k0.33 16.7k0.8 25.1+1.7 8.8 50.8 2.01 k0.13 13.4k0.8 24.7 kO.8 2.920.1 13.42 1.3 14.3 f0.8 7.18 20.5
8.4kO.4 7.1 k0.4 8.4 k 0.8 5.23 k0.17 5.65 k0.17
7.33 4.81 35.2 103.8 103.0 56.5 87.9
1524 95.5 136.9 435.4 131.0
63 10.0 219.8 205.2 103.4
Ref 3
Table 83b INTERMETALLIC COMPOUNDS
Latent heats and temperatures of transition
The method of measurement is subject to error Most of the reported values are
probably too low
Trang 12Changes ofphase 8-5 Table 8 3 OTHER METALLURGICALLY IMPORTANT COMPOUNDS
Latent heats and temperatures of fusion, vaporization and transition
(If not stated otherwise, the values of the latent heats are for the temperatm of transition, fusion, evaporation
or sublimation, respectively Boiling and sublimation points are for 1 atm pressure of the undissaciated
Le, 45.6 L,, 16.3 L., 10.38
Le, 270
&, 16.7 L,, 17.2
La, 31.4 L,, 26.4
&, 23.9 L,, 72.4 L,,21.8
Le, 75.4
L,,,, 0.701 L,, 13.063
&, 3.957 L,, 5.95
Le, 44.4 L,, 64.5
&, 2.51
Le, 30.6 L,,29.7
Le, 312.2
&,4.77
CaC!, CaBr, CaI, CdF, CdCl, CdBr, CdI,
CsBr CSI
CUCI
CuBr CUI
FeCI,
FeCI, FeI,
GaCI, Ga,CI, GaBr,
%ZBr6
a 3
Gaz4
*CL GeBr,
Le, 157.4
L,, 31.4
Le, 198.9 L,, 237.8 L,, 21.8
Le, 155.7 L,, 20.5
&, (9.6)
L,,,, (10.9) L,, 43.1
Le, 126.4 L, (43.1)
Le, 60.7 FezC16) L,, 0.83 L,, 44.8
Le, 111.8
&, 11.5
Le, 62.8 L,, 11.7
Le, 58.6
Le, 502
L,,,, 16.3 L,, 67.8
Trang 13Le, 216.9 L,,,, 28.1
P W ,
PbBr, PbI, PdCI, PrcI, PrBr, PrI, PuF3
m 6
PUCI, PuBr, RbF RbCl RbBr RbI ReF, ReF, RcF, SFS S2C12 Sbcl, SKI, SbBr, SbI,
=I3
SeF, SiF, SiCI, SiBr, SiI., SnCl, SncI, SnBr,
L,, 25.8 L,, 28.9
Trang 14ZrF,
ZrC1, ZrBr, ZrI,
Le, 471.0
L,, 251
L,,,, 31.0
L,, 138.2 L,, 6.016
Trang 15e,, e,, ~ , O I O, L,,,, I,, L, or L,
8.3 Heat, entropy and free energy of formation
Trang 16Heat, entropy and free energy of formation 8-9 Table 8.Sa INTERMETALLIC COMPOUNDS
Heats of formation in kJ and standard entropies
42.1 38.7 34.9
-
-
32.2
420 55.2 13.4 15.1 17.2 15.9 15.1 10.9 13.4 20.0 23.0
(26.0) 2.1 97.6 75.0
-
126.4 77.4 104.7 218.5 216.8
-
-
129.7 114.3 98.8 57.8
Trang 17cu-Pt See Table 8 5 ~
314 159.0 180.0 163.2
732 94.2 138.1
-
188.0 117.9 198.0 109.6 160.0 88.3
-
-
66.6 101.7
Trang 18Heat, entropy and free energy of formation 8-1 1 Table 8 5 INTERMETALLIC COMPOUNDS-continued
282
34.8
44.0 16.7 21.4 18.8 13.4 11.7
See Table 8.5~
See Table 8 k
-
56.6 47.1 28.3 9.0 35.2 30.6
-
-
-
39.3 40.2 35.1
-
-
25.3 17.3 18.8 10.5 10.9 10.0
-
-
11.7 20.1 25.1
See Table 8 5 ~
32.2 81.6 41.9 104.6 90.0 83.6 77.4 56.1 113.0 104.4 88.0 83.5 42.7 94.4 93.8 46.9 31.1
226.4 188.4 56.5 18.0
-
- 232.3 180.0 153.6
-
-
-
115.2 80.6 48.1 300.1 126.8 51.9 56.5
-
-
-
57.3 32.6 217.1 197.6 66.2 190.5 65.3 58.6
60.3
50.2
Trang 198-12 Themchemical datu
Table 85a INTER METALLIC COMPOUNDS-continued
-AH
-
15.3
-
- 90.8 51.9
-
78.3 131.4
Table &Sb SELENIDES AND TELLURIDES
Heats of formation in kJ and standard entropies
Trang 20Heat, entropy and free energy offormation 8-13
Table 8.Sb SELENIDES AND TELLURIDES-continued
893 218.9 229.0 100.9 113.0 111.6 201.3 157.0 105.7 238.6
-
-
m2.3 223.4 71.2 77.4 62.8 14.5 90.8 93.8 145.0
-
62.8 94.6 83.7 145.3 75.2 71.2 80.1 102.6 110.1
15 4.5
2
4
1
Trang 21electromotive force at different temperatures They are probably correct to within 10% As the
molar heats of alloys are obtained nearly additively from the atomic beats of the components
(Neumann and Kopp's rule) all the heats of formation (even if measured at higher temperatures) are probably valid also at room temperature within the limits of error mentioned above The for-
mulae of the compounds are given only to indicate composition, independent of whether the phases form a broad or narrow homogeneous field, or are ordered or disordered
TaMe 82% INTERMETALLIC PHASES
Heats, entropies and free energies of formation
Temp -AH -AG AS
Trang 22Heat, entropy andfree energy offormation 8-15 Table 85e INTERMETALLIC PHASES continued
Phase N2 "C Ug-atom-' Idg-atom-' J K-' g-atom-' Remarks
- 7.5 -0.96 2.09 15.24 2.81 3.18 34.2 38.1 36.8 4.35 5.61 5.19 8.37 5.65 6.67 50.9 66.6 6.6
- 5.9 -4.73
- 1.24
- 6.70 11.18 9.6
- 1.84 12.6 15.5 4.2 9.38 9.17 11.72 12.35 7.20 5.0 4.35 3.4 26.8 29.3 30.2 30.77 29.48 -0.29 -2.1 -0.75
- 0.04 20.5
9.67 4.90 8.96 8.19 7.24
-
1.34 1.80 5.28 5.15
-
-
5.65 2.91 0.00 4.10 1.26 8.71 4.6 1 -0.72 -0.23 5.86 4.69 -3.93 -5.0 -4.96
4.35
- 0:04
- 1.05 -0.17 -0.86 -4.12 -96.13 8.42 6.91 7.70 9.21
-
- 8.4 4.40 -5.32 -4.15 -3.56
.-
2.81 4.19 1.47 0.54 1.00 3.60
-
4.61 Na,K Na, 1.13 Na,K, Na,
Trang 23- 3.98 4.56
Pb solid
- 1.3 -2.26 -0.63 1
Sn solid -1.17
- 1.05 -7.75 -15.1
- 15.1
- 16.96 -17.2 -40.6
- 33.5 -33.29 -28.26
- 24.07
AS=entropy of formation N2=mol fraction ofsecond component s.s.=solid solution
8.4 Metallic systems of unlimited mutual solubility
While mutual solubility in the solid state is usually limited, that in the liquid state is frequently unlimited Thus, the curves ofconcentration against integral heat, free energy and entropy of formation are convex with a maximum or a minimum The thermochemical values at the concentrations corresponding to these maxima and minima are given in Table 8.6
According to van Laar the form of the heat of mixing curve may be represented by
AS= -19.155 (N, log N , f N , log N , ) JK-' g-atom-'
which has a maximum value of 5.78 J K-' g-atom-' at N , = N, = 0.5 Some deviations from this
value may be due to experimental errors, but others are real
For more detailed discussions see refs 1-3
Trang 24Metallic systems of unlimited mutual solubility 8-17 Table 8.6 LIQUID BINARY METALLIC SYSTEMS
Heats and entropies of formation
Heat offomtion Entropy offormation
System "C N2 W n a a J g-atom-' N , 4 n a x J K g-atom-'
{ ::
0.45 0.50
0.52
0.65 0.60 0.70 0.55 0.50 0.50 0.50 0.62 0.58 0.50 0.50 0.46 0.50 0.45 0.47 0.43 0.40 0.50 0.45 0.59 0.65
{%
0.44 0.45
- 6 410 -5 150
1700
4 260 -5680
1215
3 720 -3120
2 510
7340 -9435
670 -3915
5735 -3390
4 100
2 575
625 -4400
- 3 220
{-E
-11595
140 -22810
880
5 420
555 -185 -1100
560
105
4 685
2 665 -2625
1435 -5615
- 0.47 0.52 0.56 0.50
-
0.60 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.53
0.50
0.42 0.50 0.25 0.52
0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.43 0.50 0.50 0.45 0.50 0.50 0.50 0.50 0.58
-
-
0.55 0.50 0.49 0.55
7.58 3.81 6.17 6.27 3.82
-
7.62 8.37 6.68 6.32
- 9.25 6.10 6.20 6.36 4.94 6.99 6.71 6.97 6.90 7.54
7.9 1
7.86 4.50 7.25 7.59 5.55 5.87 5.94 8.15 5.48 6.67 7.85 5.73 5.28 6.32 4.12 6.50 6.92 6.91 6.78 5.86 3.80
-
-
4.83 2.53 6.85 8.20
-
-.%',=mol fraction of second component
*or +indicates that the standard state for the first or second component, respectively, is the hypothetical
Trang 258-18 Thermochemical data
TaMe 8.6 LIQUID BINARY METALLIC SYSTEMS-cantirnced
Heat offornrntion Entropy of formation
O W
{::E
0.40 0.28 0.33 0.60 0.48 0.45 0.45 0.42 0.58 0.40 0.40 0.40 0.40 0.60 0.42 0.40 0.50 0.55 0.50 0.55 0.50 0.45 0.57
505
905
- 1 130
440 -7300
963
3 300 -200
575
3 235
737 -10050
- I4 650 -7040 (-160
-6490
1260 -17100
1 200
- 15
1370 -1090
- 1 390
724
3 220
0.54 0.52
0.50 0.45
(0.04)
0.12
0.50 0.50 0.42
-
-
0.50 0.50 0.48 0.50 0.53 0.50 0.53 0.57
-
-
-
0.50 0.50 0.55 0.50 0.50 0.47 0.54
8.16 7.75
6.80 5.25 -4.57
{ 0.71 4.60 5.17 4.89
(0.4)
-
-
6.29 6.51 6.76 5.48 6.99 5.66 5.21 6.66
-
-
5.41 6.21 4.81 5.22 6.08 5.17 7.93
N,=mol fraction of second component
*or tindicates that thestandard statefor the first or~ndoomponm~rerpstively,isthe hypotheticalouper-
cooled liquid
Table 8.7a
Partial molar free energies (-=) in kJ
For the solution of 1 g-atom of metal C in a theoretically infinite amount of alloy of concentration N, (mol fraction of the dissolved metal), -G is given in kJ
LIQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUTIONS
System Metal C Temp."C N,: 0.1 0.2 0.3 0.5 0.8
Trang 26Metallic systems of unlimited mutual solubility 8-19 Table 8.7a LlQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUTlONS-continued
Zn
Mn
42.41 15.94 19.28~
63.56~
20.99 25.85 25.34 30.96a 31.26 3.34 13.52 l+s 51.92~~
S
S
28.90 49.19 17.27
l + s
l + s
l + s 15.28 9.77 87.44
m.04
17.24 10.76 25.15 9.96 16.01 4.71 11.37 24.45 21.30 7.30 24.62 11.62 8.88 30.29
51.33a 13.56 21.00 21.02
l + s 26.04a 21.21 1.99 8.88
l+s
44.12a
S
23.41 36.15 8.95 3.208 23.71 44.03
I+s
68.04 11.10 6.52 78.57
54.44
I252 7.36 21.10 5.61 12.34 2.92 8.15 19.38 11.42 4.9 1 18.97 7.96 5.62 21.09
20.91 7.41 6.24~
S + S
9.51 18.16 17.68 (5.31) 19.69~
14.97
1.64
6.78 10.45 35.16a2 (38.0) 19.24 27.32 4.44 l+s 17.34 30.87 51.84 8.61 4.69 70.33 50.17 9.48 5.43 17.73 3.35 10.22 1.96 6.35 15.57 6.21 3.83 14.19 5.97 4.18 16.05 (13)
ideal in y phase 48.82 37.08 16.60 12.82
21.398 12.248 28.36 22.66 4.81 3.78 6.28 4.12 6.74 4.53 41.52 32.98 30.57 18.93 29.67~ 22.05~
31.28 23.66
2219 16.58
10.03 4.58 l+s 32.578 5.50 13.52 11.50 2.77 11.578 7.42 1.41 4.42 5.11 19.05 11.88 14.95 0.44
I+s
9.15 13.51 8.00 26.32 5.07 2.52 48.10
4248 5.27 3.11 10.90 1.01 6.60 1.28 3.84 7.87 2.02
262 6.29 3.62
253 10.21 19.75 8.10 3.64 18.848
5.798 14.17
285 2.21 2.88 20.38 8.87 (14.48) 12.94 9.71
2.40 2.06 l+s
1 1.96 3.49 3.50 1.20
s+l
2.01
S+S
1.45 1.94
1 3.33 2.17 3.84
S + S
l + s 2.83
2 28 2.19 3.86 1.34 0.74 1-1-5 3.73 1.43 2.01 2.50 0.21
l + s 0.77 1.34 1.42 0.76 1.15 l+s 1.33 1.04 3.65 4.35
270 1.59
a 3.88 1.66 1.08 1.96 5.44 2.84 2.286 3.26
-
Trang 278-20 Thermochemical data
Table 8.7a LIQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUlTONS Eontinued
System Metal C Temp."C N,: 0.1 0.2 0.3 0.5 0.8 Fe-Ni (sol.)
43.89 12.03 69.98 64.02 68.61 8.46 8.12 31.33 6.41, 49.77 27.17 38.47 55.98 32.26 61.763 45.92 48.76 41.06 18.86 9.27 16.32 22.73
I+s
9.93 10.49
-
30.82 33.54 97.62 41.78a 35.68 8.1 1 44.39 46.64 56.51 5.43 5.55 23.07 3.53 42.69 24.20 33.45 47.77 22.51 43.10~
38.70 41.44 32.05 13.32 7.37 11.90 16.40 18.82 6.71 6.54
13.02~
24.39 23.75 68.68
3 0 2 1 ~ 28.86 5.93 25.56 32.22 47.76 3.64 4.08 16.56 2.05 35.17 21.65 28.97 40.53 16.22 33.3511 30.82 34.95 24.07 9.99 6.57 9.16 12.34 15.12 5.06 4.46
7.45 y 15.38 11.74 23.35 15.43~ 17.50 3.38 6.33 12.25 33.45
I+s
2.26 8.08 1.21 17.78 14.58 19.10 25.86 8.37 17.22~ 19.05 10.47 5.69 4.79 5.43 6.89 8.10 3.15 2.22
S
2.My 4.36 3.60 4.64 3.91a 3.04 1.15 1.09 1.62 1.22
l + s l+s 1.88 0.51 2.24 3.22 4.84 6.26 2.24 (2.W 3.14 2.68 1.47 1.75 1.80 1.41 1.97 0.81 1.20 0.84
*Note standard state for metal C
Table 8.7b
Partial molar heats of solution (KH) in kJ
LIQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUTIONS
800
380
727
700 427'
- 38.45 15.70
11.05
- 1422 -11.86 11.93 8.35
I + s -55.26
- 12.37 18.48 3.05
- 18.96 -31.18 10.76
9.56
- 11.08 -9.14 8.99 6.51
I + s -49.42
- 12.00 14.14 -2.18
- 32.83 -61.04 -4.80
- 66.36 1.81
- 8.98 -9.29
- 15.42 7.48 (26.3) 7.76
- 9.41 -6.61 6.30 4.94 1.77
- 39.3 lcc,
- 10.92 12.02
- 1.14 -22.70 -48.12 1.41
- 3.64
- 68.34
+ 5.53
- 5.07 3.77
-
- 3.73
- 7.898 -268 3.79
264
0.70 -20.328
- 7.39 9.67
- 0.09 -9.31
- 25.20 1.13 -235
( - 5 4 )
+ 1.31 -0.88
- 0.63
- 0.17
l + s -0.21 s+s
0.46 0.04
e + 1
-0.37
s + s
+ 0.60 -0.48
- 1.93 -0.19
I+s
0.63
Trang 28Metallurgicaily important compounds 8-21
TaMe 8.7b LIQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUTIONS-continued
System Metal C Temp "C N; 0.1 0 2 0.3 0.5 0.8
- 10.96 12.22 9.19 -7.85 -14.88 14.15 7.89
I+s
5.45 6.49 6.82 3.52 21.70
- 7.48
- 28.65 -28.69
- 12.36
- 4.3 1 -9.77
- 125.15 -9.29
- 72.24 -0.73 -4.31 -0.59 2.12 9.50 -39.05 -33.33 -0.14
4.52
3.61 2.98
4.69 -4.50 -3.11 -4.02
l + s
2.70 8.22
-290 0.27 -9.33 10.81 6.60
- 7.09 -14.39 3.54 6.54
l + s
4.40 5.56 5.37 -2.62 3.96 16.80 -27.41
+0.16
2.23 -278
240 -0.46 1.51 7.98 -37.55 -30.22
- 0.20 3.48 -4.20
- 2.67
- 3.56 -4.73 1.94 7.47
- 2.29 0.20
- 7.89 9.11 4.89
- 5.66
- 12.29 2.89 5.28 (-4.5) 3.52 4.65 4.04 +4.43 3.94 13.06 -25.30
- 17.36 -9.59 -8.83
- 9.72 -81.20 -0.57 3.08 -40.18 +0.65 1.41
- 2.06 1.88 -0.38 1.05 6.50
- 34.32
- 24.70 -0.19 2.59
- 3.98 -2.18 -291
- 5.39 1.28 6.43
- 1.07 0.10 -7.18 6.20 2.67
- 247
- 5.92 1.70 3.14 -3.24 2.16
280
212
- 7.70
293 6.99 -13.10 (- 15.7p) -6.61
- 5.99
- 7.22
- 27.80 f14.17 2.01
- 10.88
+ 0.96 0.62
l + s
1.00
- 0.2 1 0.42 3.78 -23.86
- 10.98
- 0.04 1.34
- 2.93
- 1.15
- 1.50 -270 0.41 4.13
-0.09 0.02
- 1.12 1.59 0.84 0.3 1 0.39 0.84 f0.45 0.52 0.65 0.40
- 1.49 0.69 1.96 -3.33
- 2.408
- 1.65 -0.34
1
-
- 1.82
+ 10.71 0.51 -0.35 +0.45
I+s
I + S
057 -0.04 0.04 0.91
- 3.43 -0.67 f0.03 0.25
- 1.08 -0.15 -0.15 +0.96
0.08
1.35
-
'Note standard state for metal C
8.5 Metallurgically important compounds
In Tables 8.8a to 8.8j values of the heats and free energies of formation from the constituent elements are given throughout in kJmol-' of compound and standard entropies in J K - ' mol-'
of compound It is to be noted that the minus signs appear in the captions, and therefore positive numerical values demote exothermic formation
The standard state of a reactant element is the most stable form at the temperature indicated unless otherwise stated in the headings; the ideal diatomic gases were used as the standard states for sulphur, bromine and iodine in computing the free energy values at room temperature The standard state of the compounds is the ideal stoichiometric proportion, and the state of
Trang 298-22 Thermochemical data
aggregation where necessary is indicated by s=solid, m=liquid and g=gaseous Many com-
pounds are stable with slight deviations from stoichiometric proportion Compounds which may
exist over a range of composition are indicated by an asterisk (*) For such compounds thermochemical values must be used with caution; dissociation pressures calculated from the free energy values may show considerable deviations from measured dissociation pressures
Free energy values are given at five temperatures; further values can be obtained by linear
interpolation provided that no change in the state of aggregation occurs in the interval Even then,
a linear interpolation will generally give a value within the accuracy of the data The limits of accuracy are given in the last column of the tables; they apply to the values of the heat and free energy of formation below, say, 1 500 K The errors may be greater at 2 OOO K
Dissociation pressures of sulphides and phosphides have only been determined for parts of many systems, the data for the lowest oxidation steps often being absent No total thermochemical values for the formation of the compounds from the elements can therefore be given in Tables 8.8f and 8.8j but dissociation pressures of the compounds rich in sulphur or phosphorus appear in Tables 8.9a and 8.9b, respectively
The thermochemical values for the metal borides and carbides suggested below can only be used
as a guide They are not sufficiently reliable for accurate calculations-mainly for two reasons (1) transition metals do not form stoichiometric compounds with boron and carbon but rather extensively homogeneity ranges of which the investigators have taken too little heed Thus the data below are oversimplifications (2) it is very doubtful whether the experimental zero-point entropies of borides and carbides are generally zero More likely, ‘frozen-in disorder’ of the substances studied accounted for substantial zero-point entropies, so that the values in column 3 when obtained from low-temperature heat capacities are not truly ‘standard entropies’
Table888 BORIDES
Heats and free energies of formation in kJ and standard entropies
- M z s s S298 -AG,,, -AGso0 -AGlooo -AGlSoo Accuracy
Trang 30Metallurgically important compounds 8-23 Table 8 8 b CARBIDES
Heats and free energies of formation in kJ and standard entropies
Sz98 -AG300 -AG,oo -AG,ooo -AG,,oo -AGzooo ACWWY
-
-
- 19.3 100.0 223.4 108.6
- 19.0 50.7k)
-
-
180.0 92.1 205.2 98.4 37.3 198.3
- 14.2 32.7(8)
-
-
117.2 172.9 96.7 206.4 101.7 94.6 35.6 190.7
-
153.3 68.7 100.9 103.0(8)
-
-
-
118.3 254.3 122.4 +4.90
-
-
-
167.1 95.5 199.3 99.6 91.3 34.8 184.4
-
122.2 67.4 78.8 121.0(fi)
Table && NITRIDES
Heats and free energies of formation in kJ and standard entropies
-Affz98 S298 -bG,oo -AGwo -AGIO00 -AG,sDo -AGzooo A c a r W
96.7 93.8
- -41.0
I
Trang 31Heats and free energies of formation in kJ and standard entropies
-AHzge s298 -AGloo -AGsoo -AG,o,o -AG,,,, Accuracy
2125 58.6 293.1 117.4 314.5 131.4 136.0
- 87.5 93.1 164.0
-
88.9 95.1 87.9 204.6 54.4 75.1 72.1 55.0 69.0 224.0 56.6 277.7 118.3 318.8 130.8 133.9
-
85.4 92.1 170.5
-
85.8 95.5 85.8 201.2 55.0
727 70.9 63.8 235.6 54.5
2623
-
119.3 323.1 130.3 131.7
-
83.3 91.0 177.1
Trang 32Metallurgically important compounds 8-25
- 49.0 61.1 167.4 197.6 66.6 231.5 106.3 82.0
52.5 90.2 126.7 340.2 118.2 270.2 123.2 470.9 170.3
- 49.0 132.0 91.5 173.6 83.9 353.7 127.1 130.5
127.4 129.2 343.7 352.4 117.5 115.6 263.9 248.1 121.3 116.6 466.4 455.2 169.9 169.0
Table 88e OXIDES
Heats and free energies of formation in kJ and standard entropies
1532 151.6
-
58.82 87.5
-
10.68 1584.0 577.4 771.6
11929 524.5 580.0 496.6 138.2 394.4 603.7 229.7 1733.7
-
-
1025.8 212.7 177.1 1051.3
-
-
-
144.9 127.3 1773.9 1808.7 241.2 1015.3
-
-
-
1520.8 526.3 675.7 1139.8 504.4 560.7 155.7 394.8 584.1
2121 1676.9 983.9 705.9 991.0
-
-
-
95.5 66.6
-
-
197.2 556.8 780.8
-
-
-
- 127.7 731.0
-
-
-
21 3.3 6.3
8
22
13 412.9 13
Trang 33-
-
122.6 128.1 37.93 26.97 59.9 148.6 110.5 53.2
54.55
137.3 158.6 38.1 80.4 136.9 229.0 66.3 211.4 71.9 39.3 158.6 80.0
54.2(g) 69.2(g)
228.6(g) 219.0(g) 118.l(m) -
-
1 053.4 58.32
17924 834.0 186.1 320.7
-
-
1 706.2 560.2 571.1 363.0 1280.3 882.2 462.2
-
-
533.4 668.6 376.1
-
-
391.2 743.2
17660 213.1
-
-
-
1381.6 188.8
-
-
-
1014.0 36.59 1732.1 771.6 149.2
2952
-
-
1648.4 534.2 550.1 348.8 1209.6 821.9 424.5
-
- 496.5 617.1 350.1
-
-
373.1 705.5 1676.4 194.7
-
-
1509.0
467.7 498.6 312.3 1035.8 703.8 334.9
-
-
404.3 486.9 285.0
-
-
326.5 612.1
8
4
8 6.3
13
13
13
13 10.5
4
4
8 6.3
Trang 34Metallurgicnlly important compounds 8-27 Tabk 8.8e OXIDES continued
55.5
59.0 143.2
-
-
-
58.6 184.2 74.1 65.3 34.8 17.3 129.4 50.2 134.3 137.3 77.9 336.2 282.6 98.8 38.9 98.4 51.5 131.0 75.9 50.6 99.2 133.1 43.5 50.7
-
376.4(g) 295.6(g) 214.4(g) -
-
- 1744.2
-
519.4 562.4 1910.9
1 173.6
509.5
1427.1
2 309.4 862.1
I 135.0
49 1.9 375.8
2 224.4 827.3
- 301.0 1003.7
1 048.8 447.1 245.7 2010.1 739.5
-
-
- 913.6
405.7
1618.6
-
256.6 909.9
4027 1116.5 1797.0 652.7
-
-
334.5 1482.1
- 174.6 818.2
Trang 358-28 Thermochemical data
Table 881 SULPHIDE
Heats and free energies of formation in kJ and standard entropies
In calculating the heats of formation, rhombic sulphur is taken as the standard state For the free energies of
formation the perfect diatomic gas S, is taken as the standard state at all temperatures
-AH298 s,,, -AG300 AG,,, -AGlooo -AGlSo0 -AG2000 Accuracy
64.0
120.9 66.6 60.3 53.2 51.7 139.8
-
185.5 496.5
- 211.4
-
-
36.7 65.10(g)
-
- 252.0
- 144.9 120.6 96.3 141.1
42
8
8 6.3 10.5
29
21
17 14.7 14.7
13 6.3
Trang 36Metallurgically important compounds 8-29 Table 8.M SULPHIDES-eontinued
- M m u SZSU - AG,,, - AG,,, - AG,,oo - AG,,,, - AG,,,, Accuracy
Heats and free energies of formation in kJ and standard entropies
For the free energies of formation the standard states for the halogens at all temperatures are the perfect diatomic gases at a pressure of one atmosphere
1418.5 1377.9 75.3(g) 94.6(g) 5723(g) 566.5(8)
44.0 4.2 12.6 0.0
4 0.8
Trang 37142 83.6 115.3 139.0 158.4 147.8 214.7 82.1 95.4 109.3 134.0
1532 89.7 93.95
-
115.3 123.01 199.6 88.3 100.1 113.5
-
-
-
87.1 108.4 96.3 133.9 96.7 146.9 87.1 98.4 120.2 142.3 140.0
-
736.0 617.6 236.6(g) 963.4 16.3k) 452.2
322 186.7
821
-
328.5 131.5 68.2
888k)
-
-
1167.1 752.4 663.6 551.4 648.1 301.4
-
-
981.8 679.1 646.4 744.3 425.5 203.9 118.9
-
1 043
1118 351.3 491.9 179.6 527.5 404.4 382.3 340.4
5022 117.2 163.3 101.3 126.9 79.5
-
702.5 584.5
724 633.0 519.6 613.4 272.1
-
-
9320 631.4 618.4 706.3 239.5 177.1 85.0
-
996 1065.5 327.0
445.0
151.1 507.0 384.3 361.7 318.6 475.9 105.9 132.7 89.6 98.4 65.7
-
622.2 507.9(m) 299.8k) 81.6(g) 385.2(m)
-
-
818.5
520.4 547.6 602.3 174.2 1227(m) 30.6(m)
-
879 272.1 327.4 88.3 458.8 336.6 318.2 273.0 411.3 93.8
-
-
-
70.8 39.4
-
-
- 574.3
824 2227(m)
4
17
9
5 10.5
4 10.5
4
25
54 1.7
4
4
33
Trang 38Metallurgically important compounds 8-31 Taw 8.8g HALIDES-continued
-&29s sz,, -AG300 -AG,, -AGtoo0 -AGIsoo -AGzoo0 Accuracy
N 2 W 347.5(g) 396.9 429.11s) 173.8(g) 186.94(g) 198.9(g)
=w!) 136.0 190.9
-
-
98.4 144.4 111.4 162.9 121.4 170.8 95.0 122.2 141.0 113.9 178.7 131.5
-
-
57.4 89.6 117.2 129.8 93.16
-
118.28 138.1 350.6(g) 238.6
-
250.4 149.5 466.8 375.1 248.3
213.5 122.7 431(m) 339(m) 2Wm)
-
898.9 219.0 104.7 183.4 92.1 152.0 66.2 119.3
180 315.1
680.8
589.1 381.4 340.8 219.1 1068.1 591.6 509.4 311.6
754
-
- 442.5 373.0 262.9 1473.4
724
-
-
417.0 336.2 233.6
657
-
-
360.9(m) 273.4(m) 172.9(m)
416.2(m) 228.2(m) 757.qrn) 423(m) 518.l(m) 288.5(m) 255.8(m) 201.8(m)
-
421.6(m) 360(m) 242.0(m) 611(m)
324.9(m) 231.5(m) 131.0(m)
4
13
4
2 10.5
13
8 1.3 1.3 1.3
8
17
21
42 1.3
4 1.3 1.3 0.8 1.7 10.5
8 18.8
8
13
8 10.5
Trang 39117 (137.3) (151.6) (184.2) (226)
(306)
-
-
73.7 97.76 136.0 154.0 118.5 160.3
272.9(8) 218.l(m) 312.3(g) 364.W 348.8(g) 374.6(8) 161.5 136.5 161.6 176.7 103.8 (144.4) 235.3 (129.8) (205.1) (1 54.9) (251.2)
-
-
-
(281.3) 113.0 164.1 191.3 73.7 91.7 108.9 118.1
-
-
-
83.7 121.4 123.9 188.4
542.1 384.8 351.4 295.2
-
-
630.8 845.3 312.8 263.8 195.1
138 93.8 985.2 679.7 69.9
152
117
-
- 97.1
-
-
-
527.7 403.2 378.5 334.5 1068(m) 200.1 145.7 66.2 123.1
-
-
521.6 365.1 333.6 276.3
105 64.9 940.4 631.2 41.0 100.0
-
I
-
469.3 315.7 288.3 232.8(m)
25 833.6 520.7
3 16.9(m) 273.0(m)
2
4 8.3
13
21
2 18.8
Trang 40Metalhcrgicaliy important compounds 8-33 TaMe &Sg HALIDES-continued
- 210.1 215.5
90
-
-
314.4@) 194.6
182.1 64.9k)
860.5
357.1(m) 249.5 133.6 828.6 686.2 1014(g)
127.7 137.3 123.5 151.9 1793.2 1736.7
-
-
230.7(g) - 360.9(g) -
13 2.9 2.5
25