1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Smithells Metals Reference Book Part 3 ppt

100 289 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 100
Dung lượng 2,57 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The value of a heat evolved during a reaction is taken to be negative AG=maximum work change of free energy in kJ mol-1 or kJ g-atom-' S29e=standard entropy at 298 K 25OC in Jk-' mol-

Trang 2

(Ce, La, Di)(C03)F

(Ce, La, Y, Th) PO.,

FeCr,O,

40 3.6 (Variable)

50

46

38.246.5

13-28 11-21.7 13.8-24

54 18.8-26.6

13 Variable 28.5-35.5 35-36

58

100

55

58 88.8 36.2

56

25 59.4 79.9

63.5

34.6 66.7 45.7-49.0 57.5 var

25.e45.7

2.71

4.9-5.2 4.6-5.4

4.5-4.8

6.9-7.3 6.5-6.9 5.7-6.8 4.1 3.06 2.8-4.4 3.44 6.0-6.3 4.8 4.8-5.0 8.95 3.77 4.05 5.9-6.2 2.0-2.2 3.97 2.1-2.3 3.76 5.5-5.8 4.9-5.4 4.1-4.3 4.6-4.76 4.45 4.4-4.5 4.6-5.1

Australia, India, 0.1-3'% Ce Brazil, S Africa,

USA, Malaysia

S Africa, USSR, 2 0 4 5 % Cr Zimbabwe, Finland,

Canada, Peru

W Germany

37 x 103 - (rare earth oxides)

USSR, Australia, 19789 3 595 Canada, W Germany (excl USSR) (estimated order)

4

Trang 3

2

Table 7.1 ORE GRADES AND SOURCES-continued

World reserves 5

a

1983184 (TKOs

abundance content gravity Major mineral ore Major metal production of contained 3

metal (tonnes) metal)

a,

Q

< O B 1 S Africa, Jamaica, 0.001-0.05% W Germany, USA, (incl one-third (in bauxite) 5

(in Bauxite)

an alumina (in zinc $,

by-product) ores Only 1

percentage 2

is & economic- ally recoverable)

-

.,

15

minerals)

Germanium Renierite (Cu, Fe),(Fe, Ge, Zn, Sn)

1-2 Germanite (Cu, Ge3)(S, As) 6, As),

(in Coal ash)

(Anode slime from

39-43.6 9.0-9.3 30.7-43.9 8.6 19.0-25.4 8.7-9.02 24.2-29.9 8.16 7.4-10.2 1.4

90 (estimate) -

Trang 4

Up to 0.1% In (in associated USA, W Germany, minerals) Belgium

25-70% Fe USSR, Brazil,

Canada, Japan,

Australia, USA, Canada, China, India, S Africa

2.8-2.9

3.7 4.8 4.7 4.4-5.0 4.3 4.7-4.8 8.1

6.5-7.0 4.6-4.7 4.5

442 x 106 (in mine produdion)

PbC03 PbS0, PbS

77.0 68.0 86.6

USA, Australia, USSR, Canada,

S Africa, Yugoslavia Bolivia, USA, Australia, Zimbabwe, Namibia, USSR

2-14% Pb USA, USSR,

W Germany, Japan,

UK, Canada 0.2-1% Li USA, USSR

1936

(W World only)

295 x 103 (Primary metal)

8 0 9 7 ~ 1 0 ~ (contained in mine production)

2 530 x lo6

China, USSR,

N Korea, Brazil, Australia

S Africa, USSR, Brazil, Australia, India, China

Spain, Yugoslavia, USSR, China, USA USA, Chile, USSR, Canada, Mexico

0.2-1 % Hg USSR, Spain,

USA, China, Algeria, Mexico 0.002-0.2% Mo USA, Chile,

China, USSR, Canada, Peru

Molybdenum (Wulfenite)

1 Molybdite Molybdenite

PbMoO, MOO,

MoSz

24.6-33.3 59.9 66.7

in

Trang 5

Table 7.1 ORE GRADES A N D soURCES eontinwd 9

World reserves 1983/84 (QOOa z

E Germany, France Chile, USA, Canada, USSR, Peru

Chile, USA, Canada, Zambia, Zaire, Mexico Worldwide

Japan, Australia, USA, Norway

0.4-3% Nb Brazil, Canada,

Thailand, Nigeria, Australia, Zaire

Trang 6

(in Tin slags)

(Anode slime from

Germany, USSR (estimated order)

Norway, France, Yugoslavia, Portugal

Mexico, USA, Peru, Australia 1 800

Up to 8% in

anode slimes Canada, Peru,

0.05-0.1% TI USA, Belgium, (in flue dusts) Gemany, USSR

Tho2 ThSi04

Trang 7

Table 7.1 ORE GRADES AND SOURCES-eontinued

a,

1983184 (Ws

5-

Major metal production of contained CQ

content gravity Major mineraI ore

(Zn, Fe)S ZflZ

9.5-10.6 6.5-7.1

0.8-0.9 47-50.6 3.2

29.0-52.0 4.0-4.45

51-67 3.9-4.1 71.4-73.4 5.4-6.0 49.7 4.2-4.7

In ilmenite: S Africa, India, China

In rutile: Brazil, Australia, India China, Canada, 0,4-3% W

USSR, USA, Australia

2-30% Ti

Australia, USA, 0.1-0.3% U

S Africa, Canada, Niger*

USSR, S Africa, 0.4-2% V China, USA,

Finland Australia

Canada, USSR, 5 1 0 % Zn

Australia, Peru, Mexico, USA Australia, S Africa, USSR, USA,

Brazil

e 10% Zr

USSR, USA, Japan, UK, China

China, Canada, USSR, USA, Australia

Canada, USA,

S Africa, Namibia, Niger, France**

USA, S Africa?, Japan, USSR

USSR, Japan, Canada, W Germany, USA, Australia Japan, France, USA

*Reasonably ** W World produclion t Vanadium from mineral s o u r n netroleurn residues, ashes and catalysts

Trang 8

&=latent heat of fusion

&=latent heat of vaporization

L, = latent heat of transition

L,=latent heat of sublimation } in kJ mol-' (or kJ g-atom-') or in Jg-'

AV, = volume change during melting [ (Vlig -Vsolid)/VSolid]%

AH29,=heat of formation at 298K (25°C) in kJ mol-' (or kJ g-atom-') or in Jg-' (The value of a heat evolved during a reaction is taken to be negative)

AG=maximum work (change of free energy) in kJ mol-1 (or kJ g-atom-')

S29e=standard entropy at 298 K (25OC) in Jk-' mol-' (or J g-atom-')

p (mm Hg)=vapour or dissociation pressure in mmHg

N, =mol fraction of the first component

N,=mol fraction of the second component

C,=specific heat in J k-' mol-'

c,=specific heat in J g-' k-'

8.2 Changes of phase

TsUe 8.1 ELEMENTS

Latent heats and temperatures of fusion, vaporization and transition, and change in volume on melting

Melting Boiling L, at mp L, kJ patom-' or mol-' L,

m'nt 0, point 9, 0, kJ g-atom-' kJ g-atom-' AV,

Trang 9

8-2 Thermochemical data

TaUe 8.1 ELEMENTS-cotatinued

Melting Boiling L,at mp L, kJ g-atom-' or mol-' L,

point Om point 0, 0, kJ g-atom-' kJ g-atom-' AVm

Element "C "C "C or mol-' L, ut 25 C L, af b p 0: mol-' %

1484

767

3 430 -34.1

176.2 150.7 112.2 99.6 (407) 376.0

422.9 402.4 161.6 147.8 146.5 127.7

29 1 .O 231.1 664.5 590.3

-

-

108.9 98.0 722.2 683.7

-

-

1.90 diam+

graph 0.25 (2.9)

-

-5.1 (123) 3.7 21.6 2.0 2.55

-

-

-

(1.65) 4.12 (1.7)

-

7.4 3.5 3.5

-

-

-

-

Trang 10

Changes phase 8-3

Table 8.1 E L E M E N T S - t o n t i m d

Melting Boiling 4 at m p L, kJ g-atom-' or mol-' L,

point 8, point 0, 0, kJ g-atom-' kJ g-atom-' AV, Element "C "C O C ormol-' L,ut.25 C L,urb.p mrno1-I "/,

-

2.198 33.5 (22.6) 1.235

-

- 19.89 6.28 50.66 8.92 7.08 (8.4) (24.7)

-

-

17.6 (17.5) 4.3 12.5 16.74 35.2 11.43 7.28 (19.3)

-

-

545.0 343.7

-

87.5 779.2 556.0

-

-

17 l.6(Te2) 576.1 469.3 180.9 482.2 510.2 847.8 424.9 129.3 612.1

-

4692 352.0

-

75.8 (712) (494)

-

-

- 104.7(Te2) (511) 425.8 166.2

41 7.4 457.2 (737) 367.6 114.3 579.9

-

- 3.39,0.59, 0.54,0.08,

*L,at 4.p.: S,, 106.4 (625'C); S,, 96.0 (625T); SI, 66.2 (527T); S8, 63.1 (490°C)

AV,,, ref 4

Table 8.b INTERMETALLIC COMPOUNDS

Latent heats and temperatures of fusion

If an intermetallic phase is completely disordered, the entropy of fusion (LJT,)

can generally be calculated additively from the entropies of fusion of the com-

ponents If it is completely ordered, - 19.146 (N, log N, + N 2 log N,) is as a rule to

be added to the calculated entropy of fusion

10-2 8-Ag-Cd

50.0

66.7 50.0

455

627 254-m

8.8f0.8

8.96+0.50 8.00f0.75 12.81 f0.33 12.31 f0.54 7.45f0.38

J g-' 76.2 95.5 131.5 320.3 346.7 57.8 39.4 81.2 93.8 93A

Trang 11

50.0

50.0 50.0 33.3 28.6

50.0 50.0

66.7 33.3 66.7 28.5 50.0 71.5

50.0

87.5 63.0

-

7.24 10.25 9.71 k0.21 9.55k0.21 5.86 6.05 6.91 7.87k0.63 16.0k0.33 16.7k0.8 25.1+1.7 8.8 50.8 2.01 k0.13 13.4k0.8 24.7 kO.8 2.920.1 13.42 1.3 14.3 f0.8 7.18 20.5

8.4kO.4 7.1 k0.4 8.4 k 0.8 5.23 k0.17 5.65 k0.17

7.33 4.81 35.2 103.8 103.0 56.5 87.9

1524 95.5 136.9 435.4 131.0

63 10.0 219.8 205.2 103.4

Ref 3

Table 83b INTERMETALLIC COMPOUNDS

Latent heats and temperatures of transition

The method of measurement is subject to error Most of the reported values are

probably too low

Trang 12

Changes ofphase 8-5 Table 8 3 OTHER METALLURGICALLY IMPORTANT COMPOUNDS

Latent heats and temperatures of fusion, vaporization and transition

(If not stated otherwise, the values of the latent heats are for the temperatm of transition, fusion, evaporation

or sublimation, respectively Boiling and sublimation points are for 1 atm pressure of the undissaciated

Le, 45.6 L,, 16.3 L., 10.38

Le, 270

&, 16.7 L,, 17.2

La, 31.4 L,, 26.4

&, 23.9 L,, 72.4 L,,21.8

Le, 75.4

L,,,, 0.701 L,, 13.063

&, 3.957 L,, 5.95

Le, 44.4 L,, 64.5

&, 2.51

Le, 30.6 L,,29.7

Le, 312.2

&,4.77

CaC!, CaBr, CaI, CdF, CdCl, CdBr, CdI,

CsBr CSI

CUCI

CuBr CUI

FeCI,

FeCI, FeI,

GaCI, Ga,CI, GaBr,

%ZBr6

a 3

Gaz4

*CL GeBr,

Le, 157.4

L,, 31.4

Le, 198.9 L,, 237.8 L,, 21.8

Le, 155.7 L,, 20.5

&, (9.6)

L,,,, (10.9) L,, 43.1

Le, 126.4 L, (43.1)

Le, 60.7 FezC16) L,, 0.83 L,, 44.8

Le, 111.8

&, 11.5

Le, 62.8 L,, 11.7

Le, 58.6

Le, 502

L,,,, 16.3 L,, 67.8

Trang 13

Le, 216.9 L,,,, 28.1

P W ,

PbBr, PbI, PdCI, PrcI, PrBr, PrI, PuF3

m 6

PUCI, PuBr, RbF RbCl RbBr RbI ReF, ReF, RcF, SFS S2C12 Sbcl, SKI, SbBr, SbI,

=I3

SeF, SiF, SiCI, SiBr, SiI., SnCl, SncI, SnBr,

L,, 25.8 L,, 28.9

Trang 14

ZrF,

ZrC1, ZrBr, ZrI,

Le, 471.0

L,, 251

L,,,, 31.0

L,, 138.2 L,, 6.016

Trang 15

e,, e,, ~ , O I O, L,,,, I,, L, or L,

8.3 Heat, entropy and free energy of formation

Trang 16

Heat, entropy and free energy of formation 8-9 Table 8.Sa INTERMETALLIC COMPOUNDS

Heats of formation in kJ and standard entropies

42.1 38.7 34.9

-

-

32.2

420 55.2 13.4 15.1 17.2 15.9 15.1 10.9 13.4 20.0 23.0

(26.0) 2.1 97.6 75.0

-

126.4 77.4 104.7 218.5 216.8

-

-

129.7 114.3 98.8 57.8

Trang 17

cu-Pt See Table 8 5 ~

314 159.0 180.0 163.2

732 94.2 138.1

-

188.0 117.9 198.0 109.6 160.0 88.3

-

-

66.6 101.7

Trang 18

Heat, entropy and free energy of formation 8-1 1 Table 8 5 INTERMETALLIC COMPOUNDS-continued

282

34.8

44.0 16.7 21.4 18.8 13.4 11.7

See Table 8.5~

See Table 8 k

-

56.6 47.1 28.3 9.0 35.2 30.6

-

-

-

39.3 40.2 35.1

-

-

25.3 17.3 18.8 10.5 10.9 10.0

-

-

11.7 20.1 25.1

See Table 8 5 ~

32.2 81.6 41.9 104.6 90.0 83.6 77.4 56.1 113.0 104.4 88.0 83.5 42.7 94.4 93.8 46.9 31.1

226.4 188.4 56.5 18.0

-

- 232.3 180.0 153.6

-

-

-

115.2 80.6 48.1 300.1 126.8 51.9 56.5

-

-

-

57.3 32.6 217.1 197.6 66.2 190.5 65.3 58.6

60.3

50.2

Trang 19

8-12 Themchemical datu

Table 85a INTER METALLIC COMPOUNDS-continued

-AH

-

15.3

-

- 90.8 51.9

-

78.3 131.4

Table &Sb SELENIDES AND TELLURIDES

Heats of formation in kJ and standard entropies

Trang 20

Heat, entropy and free energy offormation 8-13

Table 8.Sb SELENIDES AND TELLURIDES-continued

893 218.9 229.0 100.9 113.0 111.6 201.3 157.0 105.7 238.6

-

-

m2.3 223.4 71.2 77.4 62.8 14.5 90.8 93.8 145.0

-

62.8 94.6 83.7 145.3 75.2 71.2 80.1 102.6 110.1

15 4.5

2

4

1

Trang 21

electromotive force at different temperatures They are probably correct to within 10% As the

molar heats of alloys are obtained nearly additively from the atomic beats of the components

(Neumann and Kopp's rule) all the heats of formation (even if measured at higher temperatures) are probably valid also at room temperature within the limits of error mentioned above The for-

mulae of the compounds are given only to indicate composition, independent of whether the phases form a broad or narrow homogeneous field, or are ordered or disordered

TaMe 82% INTERMETALLIC PHASES

Heats, entropies and free energies of formation

Temp -AH -AG AS

Trang 22

Heat, entropy andfree energy offormation 8-15 Table 85e INTERMETALLIC PHASES continued

Phase N2 "C Ug-atom-' Idg-atom-' J K-' g-atom-' Remarks

- 7.5 -0.96 2.09 15.24 2.81 3.18 34.2 38.1 36.8 4.35 5.61 5.19 8.37 5.65 6.67 50.9 66.6 6.6

- 5.9 -4.73

- 1.24

- 6.70 11.18 9.6

- 1.84 12.6 15.5 4.2 9.38 9.17 11.72 12.35 7.20 5.0 4.35 3.4 26.8 29.3 30.2 30.77 29.48 -0.29 -2.1 -0.75

- 0.04 20.5

9.67 4.90 8.96 8.19 7.24

-

1.34 1.80 5.28 5.15

-

-

5.65 2.91 0.00 4.10 1.26 8.71 4.6 1 -0.72 -0.23 5.86 4.69 -3.93 -5.0 -4.96

4.35

- 0:04

- 1.05 -0.17 -0.86 -4.12 -96.13 8.42 6.91 7.70 9.21

-

- 8.4 4.40 -5.32 -4.15 -3.56

.-

2.81 4.19 1.47 0.54 1.00 3.60

-

4.61 Na,K Na, 1.13 Na,K, Na,

Trang 23

- 3.98 4.56

Pb solid

- 1.3 -2.26 -0.63 1

Sn solid -1.17

- 1.05 -7.75 -15.1

- 15.1

- 16.96 -17.2 -40.6

- 33.5 -33.29 -28.26

- 24.07

AS=entropy of formation N2=mol fraction ofsecond component s.s.=solid solution

8.4 Metallic systems of unlimited mutual solubility

While mutual solubility in the solid state is usually limited, that in the liquid state is frequently unlimited Thus, the curves ofconcentration against integral heat, free energy and entropy of formation are convex with a maximum or a minimum The thermochemical values at the concentrations corresponding to these maxima and minima are given in Table 8.6

According to van Laar the form of the heat of mixing curve may be represented by

AS= -19.155 (N, log N , f N , log N , ) JK-' g-atom-'

which has a maximum value of 5.78 J K-' g-atom-' at N , = N, = 0.5 Some deviations from this

value may be due to experimental errors, but others are real

For more detailed discussions see refs 1-3

Trang 24

Metallic systems of unlimited mutual solubility 8-17 Table 8.6 LIQUID BINARY METALLIC SYSTEMS

Heats and entropies of formation

Heat offomtion Entropy offormation

System "C N2 W n a a J g-atom-' N , 4 n a x J K g-atom-'

{ ::

0.45 0.50

0.52

0.65 0.60 0.70 0.55 0.50 0.50 0.50 0.62 0.58 0.50 0.50 0.46 0.50 0.45 0.47 0.43 0.40 0.50 0.45 0.59 0.65

{%

0.44 0.45

- 6 410 -5 150

1700

4 260 -5680

1215

3 720 -3120

2 510

7340 -9435

670 -3915

5735 -3390

4 100

2 575

625 -4400

- 3 220

{-E

-11595

140 -22810

880

5 420

555 -185 -1100

560

105

4 685

2 665 -2625

1435 -5615

- 0.47 0.52 0.56 0.50

-

0.60 0.50 0.50 0.50

0.50 0.50 0.50 0.50 0.53

0.50

0.42 0.50 0.25 0.52

0.50 0.50 0.50 0.50 0.50

0.50 0.50 0.50 0.50 0.43 0.50 0.50 0.45 0.50 0.50 0.50 0.50 0.58

-

-

0.55 0.50 0.49 0.55

7.58 3.81 6.17 6.27 3.82

-

7.62 8.37 6.68 6.32

- 9.25 6.10 6.20 6.36 4.94 6.99 6.71 6.97 6.90 7.54

7.9 1

7.86 4.50 7.25 7.59 5.55 5.87 5.94 8.15 5.48 6.67 7.85 5.73 5.28 6.32 4.12 6.50 6.92 6.91 6.78 5.86 3.80

-

-

4.83 2.53 6.85 8.20

-

-.%',=mol fraction of second component

*or +indicates that the standard state for the first or second component, respectively, is the hypothetical

Trang 25

8-18 Thermochemical data

TaMe 8.6 LIQUID BINARY METALLIC SYSTEMS-cantirnced

Heat offornrntion Entropy of formation

O W

{::E

0.40 0.28 0.33 0.60 0.48 0.45 0.45 0.42 0.58 0.40 0.40 0.40 0.40 0.60 0.42 0.40 0.50 0.55 0.50 0.55 0.50 0.45 0.57

505

905

- 1 130

440 -7300

963

3 300 -200

575

3 235

737 -10050

- I4 650 -7040 (-160

-6490

1260 -17100

1 200

- 15

1370 -1090

- 1 390

724

3 220

0.54 0.52

0.50 0.45

(0.04)

0.12

0.50 0.50 0.42

-

-

0.50 0.50 0.48 0.50 0.53 0.50 0.53 0.57

-

-

-

0.50 0.50 0.55 0.50 0.50 0.47 0.54

8.16 7.75

6.80 5.25 -4.57

{ 0.71 4.60 5.17 4.89

(0.4)

-

-

6.29 6.51 6.76 5.48 6.99 5.66 5.21 6.66

-

-

5.41 6.21 4.81 5.22 6.08 5.17 7.93

N,=mol fraction of second component

*or tindicates that thestandard statefor the first or~ndoomponm~rerpstively,isthe hypotheticalouper-

cooled liquid

Table 8.7a

Partial molar free energies (-=) in kJ

For the solution of 1 g-atom of metal C in a theoretically infinite amount of alloy of concentration N, (mol fraction of the dissolved metal), -G is given in kJ

LIQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUTIONS

System Metal C Temp."C N,: 0.1 0.2 0.3 0.5 0.8

Trang 26

Metallic systems of unlimited mutual solubility 8-19 Table 8.7a LlQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUTlONS-continued

Zn

Mn

42.41 15.94 19.28~

63.56~

20.99 25.85 25.34 30.96a 31.26 3.34 13.52 l+s 51.92~~

S

S

28.90 49.19 17.27

l + s

l + s

l + s 15.28 9.77 87.44

m.04

17.24 10.76 25.15 9.96 16.01 4.71 11.37 24.45 21.30 7.30 24.62 11.62 8.88 30.29

51.33a 13.56 21.00 21.02

l + s 26.04a 21.21 1.99 8.88

l+s

44.12a

S

23.41 36.15 8.95 3.208 23.71 44.03

I+s

68.04 11.10 6.52 78.57

54.44

I252 7.36 21.10 5.61 12.34 2.92 8.15 19.38 11.42 4.9 1 18.97 7.96 5.62 21.09

20.91 7.41 6.24~

S + S

9.51 18.16 17.68 (5.31) 19.69~

14.97

1.64

6.78 10.45 35.16a2 (38.0) 19.24 27.32 4.44 l+s 17.34 30.87 51.84 8.61 4.69 70.33 50.17 9.48 5.43 17.73 3.35 10.22 1.96 6.35 15.57 6.21 3.83 14.19 5.97 4.18 16.05 (13)

ideal in y phase 48.82 37.08 16.60 12.82

21.398 12.248 28.36 22.66 4.81 3.78 6.28 4.12 6.74 4.53 41.52 32.98 30.57 18.93 29.67~ 22.05~

31.28 23.66

2219 16.58

10.03 4.58 l+s 32.578 5.50 13.52 11.50 2.77 11.578 7.42 1.41 4.42 5.11 19.05 11.88 14.95 0.44

I+s

9.15 13.51 8.00 26.32 5.07 2.52 48.10

4248 5.27 3.11 10.90 1.01 6.60 1.28 3.84 7.87 2.02

262 6.29 3.62

253 10.21 19.75 8.10 3.64 18.848

5.798 14.17

285 2.21 2.88 20.38 8.87 (14.48) 12.94 9.71

2.40 2.06 l+s

1 1.96 3.49 3.50 1.20

s+l

2.01

S+S

1.45 1.94

1 3.33 2.17 3.84

S + S

l + s 2.83

2 28 2.19 3.86 1.34 0.74 1-1-5 3.73 1.43 2.01 2.50 0.21

l + s 0.77 1.34 1.42 0.76 1.15 l+s 1.33 1.04 3.65 4.35

270 1.59

a 3.88 1.66 1.08 1.96 5.44 2.84 2.286 3.26

-

Trang 27

8-20 Thermochemical data

Table 8.7a LIQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUlTONS Eontinued

System Metal C Temp."C N,: 0.1 0.2 0.3 0.5 0.8 Fe-Ni (sol.)

43.89 12.03 69.98 64.02 68.61 8.46 8.12 31.33 6.41, 49.77 27.17 38.47 55.98 32.26 61.763 45.92 48.76 41.06 18.86 9.27 16.32 22.73

I+s

9.93 10.49

-

30.82 33.54 97.62 41.78a 35.68 8.1 1 44.39 46.64 56.51 5.43 5.55 23.07 3.53 42.69 24.20 33.45 47.77 22.51 43.10~

38.70 41.44 32.05 13.32 7.37 11.90 16.40 18.82 6.71 6.54

13.02~

24.39 23.75 68.68

3 0 2 1 ~ 28.86 5.93 25.56 32.22 47.76 3.64 4.08 16.56 2.05 35.17 21.65 28.97 40.53 16.22 33.3511 30.82 34.95 24.07 9.99 6.57 9.16 12.34 15.12 5.06 4.46

7.45 y 15.38 11.74 23.35 15.43~ 17.50 3.38 6.33 12.25 33.45

I+s

2.26 8.08 1.21 17.78 14.58 19.10 25.86 8.37 17.22~ 19.05 10.47 5.69 4.79 5.43 6.89 8.10 3.15 2.22

S

2.My 4.36 3.60 4.64 3.91a 3.04 1.15 1.09 1.62 1.22

l + s l+s 1.88 0.51 2.24 3.22 4.84 6.26 2.24 (2.W 3.14 2.68 1.47 1.75 1.80 1.41 1.97 0.81 1.20 0.84

*Note standard state for metal C

Table 8.7b

Partial molar heats of solution (KH) in kJ

LIQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUTIONS

800

380

727

700 427'

- 38.45 15.70

11.05

- 1422 -11.86 11.93 8.35

I + s -55.26

- 12.37 18.48 3.05

- 18.96 -31.18 10.76

9.56

- 11.08 -9.14 8.99 6.51

I + s -49.42

- 12.00 14.14 -2.18

- 32.83 -61.04 -4.80

- 66.36 1.81

- 8.98 -9.29

- 15.42 7.48 (26.3) 7.76

- 9.41 -6.61 6.30 4.94 1.77

- 39.3 lcc,

- 10.92 12.02

- 1.14 -22.70 -48.12 1.41

- 3.64

- 68.34

+ 5.53

- 5.07 3.77

-

- 3.73

- 7.898 -268 3.79

264

0.70 -20.328

- 7.39 9.67

- 0.09 -9.31

- 25.20 1.13 -235

( - 5 4 )

+ 1.31 -0.88

- 0.63

- 0.17

l + s -0.21 s+s

0.46 0.04

e + 1

-0.37

s + s

+ 0.60 -0.48

- 1.93 -0.19

I+s

0.63

Trang 28

Metallurgicaily important compounds 8-21

TaMe 8.7b LIQUID BINARY METALLIC SYSTEMS AND SOME SOLID SOLUTIONS-continued

System Metal C Temp "C N; 0.1 0 2 0.3 0.5 0.8

- 10.96 12.22 9.19 -7.85 -14.88 14.15 7.89

I+s

5.45 6.49 6.82 3.52 21.70

- 7.48

- 28.65 -28.69

- 12.36

- 4.3 1 -9.77

- 125.15 -9.29

- 72.24 -0.73 -4.31 -0.59 2.12 9.50 -39.05 -33.33 -0.14

4.52

3.61 2.98

4.69 -4.50 -3.11 -4.02

l + s

2.70 8.22

-290 0.27 -9.33 10.81 6.60

- 7.09 -14.39 3.54 6.54

l + s

4.40 5.56 5.37 -2.62 3.96 16.80 -27.41

+0.16

2.23 -278

240 -0.46 1.51 7.98 -37.55 -30.22

- 0.20 3.48 -4.20

- 2.67

- 3.56 -4.73 1.94 7.47

- 2.29 0.20

- 7.89 9.11 4.89

- 5.66

- 12.29 2.89 5.28 (-4.5) 3.52 4.65 4.04 +4.43 3.94 13.06 -25.30

- 17.36 -9.59 -8.83

- 9.72 -81.20 -0.57 3.08 -40.18 +0.65 1.41

- 2.06 1.88 -0.38 1.05 6.50

- 34.32

- 24.70 -0.19 2.59

- 3.98 -2.18 -291

- 5.39 1.28 6.43

- 1.07 0.10 -7.18 6.20 2.67

- 247

- 5.92 1.70 3.14 -3.24 2.16

280

212

- 7.70

293 6.99 -13.10 (- 15.7p) -6.61

- 5.99

- 7.22

- 27.80 f14.17 2.01

- 10.88

+ 0.96 0.62

l + s

1.00

- 0.2 1 0.42 3.78 -23.86

- 10.98

- 0.04 1.34

- 2.93

- 1.15

- 1.50 -270 0.41 4.13

-0.09 0.02

- 1.12 1.59 0.84 0.3 1 0.39 0.84 f0.45 0.52 0.65 0.40

- 1.49 0.69 1.96 -3.33

- 2.408

- 1.65 -0.34

1

-

- 1.82

+ 10.71 0.51 -0.35 +0.45

I+s

I + S

057 -0.04 0.04 0.91

- 3.43 -0.67 f0.03 0.25

- 1.08 -0.15 -0.15 +0.96

0.08

1.35

-

'Note standard state for metal C

8.5 Metallurgically important compounds

In Tables 8.8a to 8.8j values of the heats and free energies of formation from the constituent elements are given throughout in kJmol-' of compound and standard entropies in J K - ' mol-'

of compound It is to be noted that the minus signs appear in the captions, and therefore positive numerical values demote exothermic formation

The standard state of a reactant element is the most stable form at the temperature indicated unless otherwise stated in the headings; the ideal diatomic gases were used as the standard states for sulphur, bromine and iodine in computing the free energy values at room temperature The standard state of the compounds is the ideal stoichiometric proportion, and the state of

Trang 29

8-22 Thermochemical data

aggregation where necessary is indicated by s=solid, m=liquid and g=gaseous Many com-

pounds are stable with slight deviations from stoichiometric proportion Compounds which may

exist over a range of composition are indicated by an asterisk (*) For such compounds thermochemical values must be used with caution; dissociation pressures calculated from the free energy values may show considerable deviations from measured dissociation pressures

Free energy values are given at five temperatures; further values can be obtained by linear

interpolation provided that no change in the state of aggregation occurs in the interval Even then,

a linear interpolation will generally give a value within the accuracy of the data The limits of accuracy are given in the last column of the tables; they apply to the values of the heat and free energy of formation below, say, 1 500 K The errors may be greater at 2 OOO K

Dissociation pressures of sulphides and phosphides have only been determined for parts of many systems, the data for the lowest oxidation steps often being absent No total thermochemical values for the formation of the compounds from the elements can therefore be given in Tables 8.8f and 8.8j but dissociation pressures of the compounds rich in sulphur or phosphorus appear in Tables 8.9a and 8.9b, respectively

The thermochemical values for the metal borides and carbides suggested below can only be used

as a guide They are not sufficiently reliable for accurate calculations-mainly for two reasons (1) transition metals do not form stoichiometric compounds with boron and carbon but rather extensively homogeneity ranges of which the investigators have taken too little heed Thus the data below are oversimplifications (2) it is very doubtful whether the experimental zero-point entropies of borides and carbides are generally zero More likely, ‘frozen-in disorder’ of the substances studied accounted for substantial zero-point entropies, so that the values in column 3 when obtained from low-temperature heat capacities are not truly ‘standard entropies’

Table888 BORIDES

Heats and free energies of formation in kJ and standard entropies

- M z s s S298 -AG,,, -AGso0 -AGlooo -AGlSoo Accuracy

Trang 30

Metallurgically important compounds 8-23 Table 8 8 b CARBIDES

Heats and free energies of formation in kJ and standard entropies

Sz98 -AG300 -AG,oo -AG,ooo -AG,,oo -AGzooo ACWWY

-

-

- 19.3 100.0 223.4 108.6

- 19.0 50.7k)

-

-

180.0 92.1 205.2 98.4 37.3 198.3

- 14.2 32.7(8)

-

-

117.2 172.9 96.7 206.4 101.7 94.6 35.6 190.7

-

153.3 68.7 100.9 103.0(8)

-

-

-

118.3 254.3 122.4 +4.90

-

-

-

167.1 95.5 199.3 99.6 91.3 34.8 184.4

-

122.2 67.4 78.8 121.0(fi)

Table && NITRIDES

Heats and free energies of formation in kJ and standard entropies

-Affz98 S298 -bG,oo -AGwo -AGIO00 -AG,sDo -AGzooo A c a r W

96.7 93.8

- -41.0

I

Trang 31

Heats and free energies of formation in kJ and standard entropies

-AHzge s298 -AGloo -AGsoo -AG,o,o -AG,,,, Accuracy

2125 58.6 293.1 117.4 314.5 131.4 136.0

- 87.5 93.1 164.0

-

88.9 95.1 87.9 204.6 54.4 75.1 72.1 55.0 69.0 224.0 56.6 277.7 118.3 318.8 130.8 133.9

-

85.4 92.1 170.5

-

85.8 95.5 85.8 201.2 55.0

727 70.9 63.8 235.6 54.5

2623

-

119.3 323.1 130.3 131.7

-

83.3 91.0 177.1

Trang 32

Metallurgically important compounds 8-25

- 49.0 61.1 167.4 197.6 66.6 231.5 106.3 82.0

52.5 90.2 126.7 340.2 118.2 270.2 123.2 470.9 170.3

- 49.0 132.0 91.5 173.6 83.9 353.7 127.1 130.5

127.4 129.2 343.7 352.4 117.5 115.6 263.9 248.1 121.3 116.6 466.4 455.2 169.9 169.0

Table 88e OXIDES

Heats and free energies of formation in kJ and standard entropies

1532 151.6

-

58.82 87.5

-

10.68 1584.0 577.4 771.6

11929 524.5 580.0 496.6 138.2 394.4 603.7 229.7 1733.7

-

-

1025.8 212.7 177.1 1051.3

-

-

-

144.9 127.3 1773.9 1808.7 241.2 1015.3

-

-

-

1520.8 526.3 675.7 1139.8 504.4 560.7 155.7 394.8 584.1

2121 1676.9 983.9 705.9 991.0

-

-

-

95.5 66.6

-

-

197.2 556.8 780.8

-

-

-

- 127.7 731.0

-

-

-

21 3.3 6.3

8

22

13 412.9 13

Trang 33

-

-

122.6 128.1 37.93 26.97 59.9 148.6 110.5 53.2

54.55

137.3 158.6 38.1 80.4 136.9 229.0 66.3 211.4 71.9 39.3 158.6 80.0

54.2(g) 69.2(g)

228.6(g) 219.0(g) 118.l(m) -

-

1 053.4 58.32

17924 834.0 186.1 320.7

-

-

1 706.2 560.2 571.1 363.0 1280.3 882.2 462.2

-

-

533.4 668.6 376.1

-

-

391.2 743.2

17660 213.1

-

-

-

1381.6 188.8

-

-

-

1014.0 36.59 1732.1 771.6 149.2

2952

-

-

1648.4 534.2 550.1 348.8 1209.6 821.9 424.5

-

- 496.5 617.1 350.1

-

-

373.1 705.5 1676.4 194.7

-

-

1509.0

467.7 498.6 312.3 1035.8 703.8 334.9

-

-

404.3 486.9 285.0

-

-

326.5 612.1

8

4

8 6.3

13

13

13

13 10.5

4

4

8 6.3

Trang 34

Metallurgicnlly important compounds 8-27 Tabk 8.8e OXIDES continued

55.5

59.0 143.2

-

-

-

58.6 184.2 74.1 65.3 34.8 17.3 129.4 50.2 134.3 137.3 77.9 336.2 282.6 98.8 38.9 98.4 51.5 131.0 75.9 50.6 99.2 133.1 43.5 50.7

-

376.4(g) 295.6(g) 214.4(g) -

-

- 1744.2

-

519.4 562.4 1910.9

1 173.6

509.5

1427.1

2 309.4 862.1

I 135.0

49 1.9 375.8

2 224.4 827.3

- 301.0 1003.7

1 048.8 447.1 245.7 2010.1 739.5

-

-

- 913.6

405.7

1618.6

-

256.6 909.9

4027 1116.5 1797.0 652.7

-

-

334.5 1482.1

- 174.6 818.2

Trang 35

8-28 Thermochemical data

Table 881 SULPHIDE

Heats and free energies of formation in kJ and standard entropies

In calculating the heats of formation, rhombic sulphur is taken as the standard state For the free energies of

formation the perfect diatomic gas S, is taken as the standard state at all temperatures

-AH298 s,,, -AG300 AG,,, -AGlooo -AGlSo0 -AG2000 Accuracy

64.0

120.9 66.6 60.3 53.2 51.7 139.8

-

185.5 496.5

- 211.4

-

-

36.7 65.10(g)

-

- 252.0

- 144.9 120.6 96.3 141.1

42

8

8 6.3 10.5

29

21

17 14.7 14.7

13 6.3

Trang 36

Metallurgically important compounds 8-29 Table 8.M SULPHIDES-eontinued

- M m u SZSU - AG,,, - AG,,, - AG,,oo - AG,,,, - AG,,,, Accuracy

Heats and free energies of formation in kJ and standard entropies

For the free energies of formation the standard states for the halogens at all temperatures are the perfect diatomic gases at a pressure of one atmosphere

1418.5 1377.9 75.3(g) 94.6(g) 5723(g) 566.5(8)

44.0 4.2 12.6 0.0

4 0.8

Trang 37

142 83.6 115.3 139.0 158.4 147.8 214.7 82.1 95.4 109.3 134.0

1532 89.7 93.95

-

115.3 123.01 199.6 88.3 100.1 113.5

-

-

-

87.1 108.4 96.3 133.9 96.7 146.9 87.1 98.4 120.2 142.3 140.0

-

736.0 617.6 236.6(g) 963.4 16.3k) 452.2

322 186.7

821

-

328.5 131.5 68.2

888k)

-

-

1167.1 752.4 663.6 551.4 648.1 301.4

-

-

981.8 679.1 646.4 744.3 425.5 203.9 118.9

-

1 043

1118 351.3 491.9 179.6 527.5 404.4 382.3 340.4

5022 117.2 163.3 101.3 126.9 79.5

-

702.5 584.5

724 633.0 519.6 613.4 272.1

-

-

9320 631.4 618.4 706.3 239.5 177.1 85.0

-

996 1065.5 327.0

445.0

151.1 507.0 384.3 361.7 318.6 475.9 105.9 132.7 89.6 98.4 65.7

-

622.2 507.9(m) 299.8k) 81.6(g) 385.2(m)

-

-

818.5

520.4 547.6 602.3 174.2 1227(m) 30.6(m)

-

879 272.1 327.4 88.3 458.8 336.6 318.2 273.0 411.3 93.8

-

-

-

70.8 39.4

-

-

- 574.3

824 2227(m)

4

17

9

5 10.5

4 10.5

4

25

54 1.7

4

4

33

Trang 38

Metallurgically important compounds 8-31 Taw 8.8g HALIDES-continued

-&29s sz,, -AG300 -AG,, -AGtoo0 -AGIsoo -AGzoo0 Accuracy

N 2 W 347.5(g) 396.9 429.11s) 173.8(g) 186.94(g) 198.9(g)

=w!) 136.0 190.9

-

-

98.4 144.4 111.4 162.9 121.4 170.8 95.0 122.2 141.0 113.9 178.7 131.5

-

-

57.4 89.6 117.2 129.8 93.16

-

118.28 138.1 350.6(g) 238.6

-

250.4 149.5 466.8 375.1 248.3

213.5 122.7 431(m) 339(m) 2Wm)

-

898.9 219.0 104.7 183.4 92.1 152.0 66.2 119.3

180 315.1

680.8

589.1 381.4 340.8 219.1 1068.1 591.6 509.4 311.6

754

-

- 442.5 373.0 262.9 1473.4

724

-

-

417.0 336.2 233.6

657

-

-

360.9(m) 273.4(m) 172.9(m)

416.2(m) 228.2(m) 757.qrn) 423(m) 518.l(m) 288.5(m) 255.8(m) 201.8(m)

-

421.6(m) 360(m) 242.0(m) 611(m)

324.9(m) 231.5(m) 131.0(m)

4

13

4

2 10.5

13

8 1.3 1.3 1.3

8

17

21

42 1.3

4 1.3 1.3 0.8 1.7 10.5

8 18.8

8

13

8 10.5

Trang 39

117 (137.3) (151.6) (184.2) (226)

(306)

-

-

73.7 97.76 136.0 154.0 118.5 160.3

272.9(8) 218.l(m) 312.3(g) 364.W 348.8(g) 374.6(8) 161.5 136.5 161.6 176.7 103.8 (144.4) 235.3 (129.8) (205.1) (1 54.9) (251.2)

-

-

-

(281.3) 113.0 164.1 191.3 73.7 91.7 108.9 118.1

-

-

-

83.7 121.4 123.9 188.4

542.1 384.8 351.4 295.2

-

-

630.8 845.3 312.8 263.8 195.1

138 93.8 985.2 679.7 69.9

152

117

-

- 97.1

-

-

-

527.7 403.2 378.5 334.5 1068(m) 200.1 145.7 66.2 123.1

-

-

521.6 365.1 333.6 276.3

105 64.9 940.4 631.2 41.0 100.0

-

I

-

469.3 315.7 288.3 232.8(m)

25 833.6 520.7

3 16.9(m) 273.0(m)

2

4 8.3

13

21

2 18.8

Trang 40

Metalhcrgicaliy important compounds 8-33 TaMe &Sg HALIDES-continued

- 210.1 215.5

90

-

-

314.4@) 194.6

182.1 64.9k)

860.5

357.1(m) 249.5 133.6 828.6 686.2 1014(g)

127.7 137.3 123.5 151.9 1793.2 1736.7

-

-

230.7(g) - 360.9(g) -

13 2.9 2.5

25

Ngày đăng: 10/08/2014, 12:21

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1.30(895) 1.38(93 1) K,= -0.2452+1.8878, x IO-% at 415491 Sách, tạp chí
Tiêu đề: K,=
108,82 113 114 98 98,31, 115 I09 98 116,21 8631 97, 16 117 97 118 41 1142 Sách, tạp chí
Tiêu đề: 98 "116,21 8631 97, 16 117 "97
1.12 1.171844) 1.21(858) 1.23(868) 129(886) 0.448 0.470(814) 0.499(836) 0.523(860) Khác
2.194 -- -- - 0.730- Khác
1.83 - - - 130 1490 -- Khác
108, 105, 104, 78, 64, 63, 57, 56,46,42, 36,22,14,12,9,107,109 90108 108,65 Khác
108, 91, 86, 82, 65, 31, 22 Khác

TỪ KHÓA LIÊN QUAN