1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Mathematical Methods for Scientists and Engineers Episode 6 Part 1 pps

40 274 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 288,39 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

We apply Fourier transforms in x and y to the Green function problem... We substitute the solution u and the adjoint Green function G∗ into the generalized Green’s Theorem.... We take th

Trang 2

The jump condition is

ˆG(ω, 0; ξ, τ+) = F [δ(x − ξ)]

We write the solution for ˆG and invert using the convolution theorem

ˆ

G = F [δ(x − ξ)] e−κω2(t−τ )H(t − τ )ˆ

G = 12π

Trang 3

Solution 45.2

1 We apply Fourier transforms in x and y to the Green function problem

Gtt− c2(Gxx+ Gyy) = δ(t − τ )δ(x − ξ)δ(y − η)ˆ

Trang 4

Next we introduce polar coordinates for x and y.

G(x, t|ξ, τ ) = H(c(t − τ ) − |x − ξ|)

2πcp(c(t − τ ))2− |x − ξ|2

2 To find the 1D Green function, we consider a line source, δ(x)δ(t) Without loss of generality, we have taken the

Trang 5

source to be at x = 0, t = 0 We use the 2D Green function and integrate over space and time.

2cH (ct − |x|)g(x, t|ξ, τ ) = 1

2cH (c(t − τ ) − |x − ξ|)Solution 45.3

1

Gtt = c2Gxx, G(x, 0) = 0, Gt(x, 0) = δ(x − ξ)ˆ

Gtt = −c2ω2G,ˆ G(ω, 0) = 0,ˆ Gˆt(ω, 0) = F [δ(x − ξ)]

ˆ

G = F [δ(x − ξ)] 1

cω sin(cωt)ˆ

Z ∞

−∞

δ(x − ξ − η)H(ct − |η|) dηG(x, t) = 1

2cH(ct − |x − ξ|)

Trang 6

2 We can write the solution of

Rx+t

−1 (1 − |ξ|) dξ, x − t < −1 < x + t

1 2

Rx+t x−t(1 − |ξ|) dξ, −1 < x − t, x + t < 1

1 2

R1 x−t(1 − |ξ|) dξ, x − t < 1 < x + t

1

2(2t − t2− x2) x − t < 0 < x + t(1 − x)t 0 < x − t, x + t < 1

1

4(1 + t − x)2 x − t < 1 < x + t

Trang 7

Next we consider the case 1/2 < t < 1.

Rx+t

−1 (1 − |ξ|) dξ, x − t < −1 < x + t

1 2

Rx+t x−t(1 − |ξ|) dξ, −1 < x − t, x + t < 1

1 2

R1 x−t(1 − |ξ|) dξ, x − t < 1 < x + t

Trang 8

Finally we consider the case 1 < t.

Rx+t

−1 (1 − |ξ|) dξ, −1 < x + t < 1

1 2

R1

−1(1 − |ξ|) dξ, x − t < −1, 1 < x + t

1 2

R1 x−t(1 − |ξ|) dξ, −1 < x − t < 1

0.1 0.2 0.3 0.4 0.5

Figure 45.1: The solution at t = 1/2 and t = 2

Figure 45.2 shows the behavior of the solution in the phase plane There are lines emanating form x = −1, 0, 1showing the range of influence of these points

Trang 9

u=0 u=0

u=1

Figure 45.2: The behavior of the solution in the phase plane

Solution 45.4

We define

L[u] ≡ ∇2u + a(x) · ∇u + h(x)u

We use the Divergence Theorem to derive a generalized Green’s Theorem

(u∇v − v∇u + uva) · n dA

We define the adjoint operator L∗

L∗[u] = ∇2u − ∇ · (au) + hu

Trang 10

We substitute the solution u and the adjoint Green function G∗ into the generalized Green’s Theorem.

Trang 11

2 We take c = D/ and consider the limit  → 0.

u = lim

4π

1p(x − /2)2+ y2+ z2 − 1

|x − ξ|



Trang 12

We write this in polar coordinates Denote x = r eıθ and ξ = ρ eıϑ Let φ = θ − ϑ be the difference in angle between

x and ξ

G(x|ξ) = 1

2πln

pr2+ ρ2 − 2rρ cos φρpr2+ 1/ρ2− 2(r/ρ) cos φ

Z 2π

0

f (ϑ)Gρ(r, θ|1, ϑ) dϑ

Gρ= 12π

ρ − r4ρ + r(r2− 1)(ρ2+ 1) cos φ(r2+ ρ2 − 2rρ cos φ)(r2ρ2+ 1 − 2rρ cos φ)

Gρ(r, θ|1, ϑ) = 1

1 − r2

1 + r2− 2r cos φu(r, θ) = 1 − r

1

∆G = δ(x − ξ)δ(y − η)δ(z − ζ)1

Trang 13

We find the homogeneous solutions.

G = − 1

4πr

Trang 14

3 We write the Laplacian in circular coordinates.

∆G = δ(x − ξ)δ(y − η)1

Trang 15

Thus we see that G = c ln r We determine the constant by integrating ∆G over a ball about the origin, R.

Z Z

R

∆G dx = 1Z

∂R

∇G · n ds = 1Z

G = 12π ln r

Trang 16

u = − 14π

Z ∞

−∞

r(r2+ ζ2)3/2 dζ

ur = 14π

2r

u = 12πln rSolution 45.8

1 We take the Laplace transform of the differential equation and the boundary conditions in x

Gt− νGxx = δ(x − ξ)δ(t − τ )

s ˆG − ν ˆGxx = δ(x − ξ)ˆ

Now we have an ordinary differential equation Green function problem We find homogeneous solutions whichrespectively satisfy the left and right boundary conditions and compute their Wronskian

y1 = sinhr s

νx

, y2 = sinhr s

ν(L − x)



Trang 17

W =

= −2r s

ν

sinhr s

νx

coshr s

ν(L − x)

+ coshr s

νx

sinhr s

Trang 18

We use the expansion of the hyperbolic cosecant in our expression for the Green function.

Trang 19

3 We take the inverse Laplace transform to find the Green function for the diffusion equation.

2√πνt

in the sine series decay exponentially Again, a small number of terms could be used for an accurate approximation.Solution 45.9

1 We take the Fourier cosine transform of the differential equation

Gt− νGxx = δ(x − ξ)δ(t − τ )ˆ

Gt+ νω2G = Fˆ c[δ(x − ξ)]δ(t − τ )ˆ

G = Fc[δ(x − ξ)] e−νω2(t−τ )H(t − τ )ˆ

Trang 20

We do the inversion with the convolution theorem.

G = 12π

2 The fundamental solution on the infinite domain is

Trang 21

Now we have an initial value problem with no forcing.

ut= νuxx, for t > 0, u(x, 0) = δ(x − ξ)

2 We take the Laplace transform of the initial value problem

sˆu − u(x, 0) = ν ˆuxxˆ

uxx− s

νu = −ˆ

1

νδ(x − ξ), u(±∞, s) = 0ˆThe solutions that satisfy the left and right boundary conditions are, respectively,

= −2r s

νˆ

u = −1νe

Trang 22

Solution 45.11

Gtt− c2Gxx = δ(x − ξ)δ(t − τ ),G(x, t; ξ, τ ) = 0 for t < τ

We take the Fourier transform in x

ˆ

Gtt+ c2ω2G = F [δ(x − ξ)]δ(t − τ ), G(ω, 0; ξ, τˆ −) = ˆGt(ω, 0; ξ, τ−) = 0Now we have an ordinary differential equation Green function problem for ˆG We have written the causality condition,the Green function is zero for t < τ , in terms of initial conditions The homogeneous solutions of the ordinary differentialequation are

{cos(cωt), sin(cωt)}

It will be handy to use the fundamental set of solutions at t = τ :

cos(cω(t − τ )), 1

cω sin(cω(t − τ ))

.The continuity and jump conditions are

ˆG(ω, 0; ξ, τ+) = 0, Gˆt(ω, 0; ξ, τ+) = F [δ(x − ξ)]

We write the solution for ˆG and invert using the convolution theorem

ˆ

G = F [δ(x − ξ)]H(t − τ ) 1

cω sin(cω(t − τ ))ˆ

Z ∞

−∞

δ(y − ξ)H(c(t − τ ) − |x − y|) dy

G = 12cH(t − τ )H(c(t − τ ) − |x − ξ|)

G = 12cH(c(t − τ ) − |x − ξ|)

Trang 23

The Green function for ξ = τ = 0 and c = 1 is plotted in Figure 45.3 on the domain x ∈ (−1 1), t ∈ (0 1) TheGreen function is a displacement of height 2c1 that propagates out from the point x = ξ in both directions with speed c.The Green function shows the range of influence of a disturbance at the point x = ξ and time t = τ The disturbanceinfluences the solution for all ξ − ct < x < ξ + ct and t > τ

-1 -0.5

0 0.5

1 x

0 0.2 0.4 0.6 0.8 1

t

0 0.2 0.4

-1 -0.5

0 0.5

1 x

0 0.2 0.4 0.6 0.8 1

t

Figure 45.3: Green function for the wave equation

Now we solve the wave equation with a source

u = 12c

Trang 24

 (2n − 1)πx2L

Lsin

 (2n − 1)πx2L

Lsin

 (2n − 1)πξ2L

 r 2

Lsin

 (2n − 1)πx2L

Lsin

 (2n − 1)πξ2L

δ(y − ψ)From the boundary conditions at y = 0 and y = H, we obtain boundary conditions for the an(y)

2L

.The Wronskian of these solutions is

W = −(2n − 1)π

 (2n − 1)π2



Trang 25

Thus the solution for an(y) is

an(y) =

r2

Lsin

 (2n − 1)πξ2L

 (2n − 1)π2

cosh (2n − 1)πy<

2L

.This determines the Green function

G(x; xi) = −2

√2Lπ

X

n=1

12n − 1csch

 (2n − 1)π2

cosh (2n − 1)πy<

2L

sin (2n − 1)πx

amn(z)√2

LH sin

mπxL

sinnπyH



We substitute this into the differential equation

∇2

X

m=1 n=1

amn(z)√2

LH sin

mπxL

sinnπyH



= δ(x − ξ)δ(y − ψ)δ(z − ζ)

Trang 26

+nπH

2

amn(z)

2

LH sin

mπxL

sinnπyH

2

LH sin

 mπξL

sin nπψH

2

LH sin

mπxL

sinnπyH



a00mn(z) − π



mL

2

+nH

2

amn(z) = √2

LH sin

 mπξL

sin nπψH

δ(z − ζ)From the boundary conditions on G, we obtain boundary conditions for the amn

amn(0) = amn(W ) = 0The solutions that satisfy the left and right boundary conditions are

amn1 = sinh

r

mL

2

+nH

2

πz

!, amn2 = sinh

r

mL

2

+nH

2

π(W − z)

!.The Wronskian of these solutions is

W = −

r

mL

2

+nH

2

π sinh

r

mL

2

+nH

2

πW

!.Thus the solution for amn(z) is

amn(z) = √2

LH sin

 mπξL

sin nπψH



sinh

q

m L

q

m L

2

+ Hn2π sinh

q

m L

2

+ Hn2πW



Trang 27

sinh (λmnπz<) sinh (λmnπ(W − z>)) ,where

λmn =

r

mL

2

+nH

2

.This determines the Green function

1

λmncsch (λmnπW ) sin

 mπξL

sinmπxL



sin nπψH

sinnπyH

sinh (λmnπz<) sinh (λmnπ(W − z>))

3 First we write the problem in circular coordinates

Trang 28

From the boundary conditions on G, we obtain boundary conditions for the gn.

gn(0) = gn(a) = 0The solutions that satisfy the left and right boundary conditions are

gn1 = rn, gn2 =r

a

n

−ar

n

.The Wronskian of these solutions is

W = 2na

n

r .Thus the solution for gn(r) is

4 First we write the problem in circular coordinates

Trang 29

We substitute the series into the differential equation.

gn(0) = g0n(a) = 0The solutions that satisfy the left and right boundary conditions are

gn1 = r2n, gn2 =r

a

2n

+ar

2n

.The Wronskian of these solutions is

W = −4na

2n

r .Thus the solution for gn(r) is

Trang 30

Solution 45.13

1 The set

{Xn} =

sin (2m − 1)πx

are eigenfunctions of ∇2 and satisfy the boundary conditions Yn0(0) = Yn0(H) = 0 The set

sin (2m − 1)πx

2L

cosnπyH

∞ m=1,n=0

are eigenfunctions of ∇2 and satisfy the boundary conditions of this problem We expand the Green function in

a series of these eigenfunctions

LH sin

 (2m − 1)πx2L

+

X

m=1 n=1

gmn√2

LH sin

 (2m − 1)πx2L

cosnπyH



We substitute the series into the Green function differential equation

∆G = δ(x − ξ)δ(y − ψ)

Trang 31

gmn  (2m − 1)π

2L

2

+nπyH

2! 2

LH sin

 (2m − 1)πx2L

cosnπyH

LH sin

 (2m − 1)πξ2L

 r2

LH sin

 (2m − 1)πx2L

2

LH sin

 (2m − 1)πξ2L

cos nπψH

2

LH sin

 (2m − 1)πx2L

cosnπyH



We equate terms and solve for the coefficients gmn

gm0 = −

r2LH

2L(2m − 1)π

2

+ Hn2 sin

 (2m − 1)πξ2L

cos nπψH

, sinmπy

H

, sinnπzW

: k, m, n ∈ Z+

 kπxL

sinmπyH

sinnπzW



Trang 32

We substitute the series into the Green function differential equation.

2

+

mπH

2

+

nπW

2! r 8

 kπxL

sin

mπyH

sin

nπzW

 kπξL

sin mπψ

H

sin nπζW



r8

 kπxL

sinmπyH

sinnπzW

H  sin nπζ

W



π2 k L

2

+ mH2+ Wn2This determines the Green function

3 The Green function problem is

Trang 33

Now we look for eigenfunctions of the laplacian.

, m, n ∈ Z+here jn,m is the mth root of Jn

Note that

sin(nθ)Jn jn,mr

a

: m, n ∈ Z+

: m, n ∈ Z+

sin(nθ)

Trang 34

We substitute the series into the Green function differential equation.

2

π a|Jn+1(jn,m)|Jn

 jn,mra

sin(nθ)



π a|Jn+1(jn,m)|Jn

 jn,mra

sin(nθ)

We equate terms and solve for the coefficients gmn

gnm = −

a

sin(nϑ)This determines the green function

4 The Green function problem is

Trang 35

Now we look for eigenfunctions of the laplacian.

a , Rnm = J2n

 j02n,mra

, m, n ∈ Z+here j0n,m is the mth root of J0n

Note that

sin(2nθ)J02n j

0

a

: m, n ∈ Z+

Trang 36

We expand the Green function in a series of these eigenfunctions.

sin(2nθ)

We substitute the series into the Green function differential equation

2

0 2n,m

We equate terms and solve for the coefficients gmn

gnm = −

a

j0 2n,m

This determines the green function

Solution 45.14

We start with the equation

∇2G = δ(x − ξ)δ(y − ψ)

Trang 37

We do an odd reflection across the y axis so that G(0, y; ξ, ψ) = 0.

∇2G = δ(x − ξ)δ(y − ψ) − δ(x + ξ)δ(y − ψ)Then we do an even reflection across the x axis so that Gy(x, 0; ξ, ψ) = 0

∇2G = δ(x − ξ)δ(y − ψ) − δ(x + ξ)δ(y − ψ) + δ(x − ξ)δ(y + ψ) − δ(x + ξ)δ(y + ψ)

We solve this problem using the infinite space Green function

2+ (y + ψ)2 − 1

4πln (x + ξ)

2 + (y + ψ)2

G = 14πln

 ((x − ξ)2+ (y − ψ)2) ((x − ξ)2+ (y + ψ)2)((x + ξ)2+ (y − ψ)2) ((x + ξ)2+ (y + ψ)2)

∂n − G∂u(x, y)

∂n



dS +Z

V

G∆u dVu(ξ, ψ) =

Trang 38

G = F [δ(x − ξ)]H(t − τ ) 1

cω sin(cω(t − τ ))ˆ

Z ∞

−∞

δ(y − ξ)H(c(t − τ ) − |x − y|) dy

G = 12cH(t − τ )H(c(t − τ ) − |x − ξ|)

G = 12cH(c(t − τ ) − |x − ξ|)

1 So that the Green function vanishes at x = 0 we do an odd reflection about that point

Gtt− c2Gxx = δ(x − ξ)δ(t − τ ) − δ(x + ξ)δ(t − τ )

G = 12cH(c(t − τ ) − |x − ξ|) −

12cH(c(t − τ ) − |x + ξ|)

2 Note that the Green function satisfies the symmetry relation

G(x, t; ξ, τ ) = G(ξ, −τ ; x, −t)

This implies that

Gxx = Gξξ, Gtt = Gτ τ

Trang 39

We write the Green function problem and the inhomogeneous differential equation for u in terms of ξ and τ

Gξ = 1

2c (δ(c(t − τ ) − |x − ξ|)(−1) sign(x − ξ)(−1) − δ(c(t − τ ) − |x + ξ|)(−1) sign(x + ξ))

Gξ(x, t; 0, ψ) = 1

cδ(c(t − τ ) − |x|) sign(x)

Trang 40

We are interested in x > 0.

Gξ(x, t; 0, ψ) = 1

cδ(c(t − τ ) − x)Now we can calculate the solution u

Z t +

0

h(τ )δ

(t − τ ) − x

c

dτ

gtt+ c2ω2gˆxx = 0, ˆg(x, 0; ξ, τ ) = F [δ(x − ξ)], ˆgt(x, 0; ξ, τ ) = 0

ˆ

g = F [δ(x − ξ)] cos(cωt)ˆ

g = F [δ(x − ξ)]F [π(δ(x + ct) + δ(x − ct))]

g = 12π

Z ∞

−∞

δ(ψ − ξ)π(δ(x − ψ + ct) + δ(x − ψ − ct)) dψg(x, t; ξ) = 1

2(δ(x − ξ + ct) + δ(x − ξ − ct))

...

Gρ(r, θ |1, ϑ) = 1< /sup>

1 − r2

1 + r2− 2r cos φu(r, θ) = 1 − r

1

∆G = δ(x − ξ)δ(y − η)δ(z − ζ )1

2π ln r

Trang 16 < /span>

u... data-page="23">

The Green function for ξ = τ = and c = is plotted in Figure 45.3 on the domain x ∈ (? ?1 1), t ∈ (0 1) TheGreen function is a displacement of height 2c1< /sup> that propagates

Ngày đăng: 06/08/2014, 01:21