We apply Fourier transforms in x and y to the Green function problem... We substitute the solution u and the adjoint Green function G∗ into the generalized Green’s Theorem.... We take th
Trang 2The jump condition is
ˆG(ω, 0; ξ, τ+) = F [δ(x − ξ)]
We write the solution for ˆG and invert using the convolution theorem
ˆ
G = F [δ(x − ξ)] e−κω2(t−τ )H(t − τ )ˆ
G = 12π
Trang 3Solution 45.2
1 We apply Fourier transforms in x and y to the Green function problem
Gtt− c2(Gxx+ Gyy) = δ(t − τ )δ(x − ξ)δ(y − η)ˆ
Trang 4Next we introduce polar coordinates for x and y.
G(x, t|ξ, τ ) = H(c(t − τ ) − |x − ξ|)
2πcp(c(t − τ ))2− |x − ξ|2
2 To find the 1D Green function, we consider a line source, δ(x)δ(t) Without loss of generality, we have taken the
Trang 5source to be at x = 0, t = 0 We use the 2D Green function and integrate over space and time.
2cH (ct − |x|)g(x, t|ξ, τ ) = 1
2cH (c(t − τ ) − |x − ξ|)Solution 45.3
1
Gtt = c2Gxx, G(x, 0) = 0, Gt(x, 0) = δ(x − ξ)ˆ
Gtt = −c2ω2G,ˆ G(ω, 0) = 0,ˆ Gˆt(ω, 0) = F [δ(x − ξ)]
ˆ
G = F [δ(x − ξ)] 1
cω sin(cωt)ˆ
Z ∞
−∞
δ(x − ξ − η)H(ct − |η|) dηG(x, t) = 1
2cH(ct − |x − ξ|)
Trang 62 We can write the solution of
Rx+t
−1 (1 − |ξ|) dξ, x − t < −1 < x + t
1 2
Rx+t x−t(1 − |ξ|) dξ, −1 < x − t, x + t < 1
1 2
R1 x−t(1 − |ξ|) dξ, x − t < 1 < x + t
1
2(2t − t2− x2) x − t < 0 < x + t(1 − x)t 0 < x − t, x + t < 1
1
4(1 + t − x)2 x − t < 1 < x + t
Trang 7Next we consider the case 1/2 < t < 1.
Rx+t
−1 (1 − |ξ|) dξ, x − t < −1 < x + t
1 2
Rx+t x−t(1 − |ξ|) dξ, −1 < x − t, x + t < 1
1 2
R1 x−t(1 − |ξ|) dξ, x − t < 1 < x + t
Trang 8Finally we consider the case 1 < t.
Rx+t
−1 (1 − |ξ|) dξ, −1 < x + t < 1
1 2
R1
−1(1 − |ξ|) dξ, x − t < −1, 1 < x + t
1 2
R1 x−t(1 − |ξ|) dξ, −1 < x − t < 1
0.1 0.2 0.3 0.4 0.5
Figure 45.1: The solution at t = 1/2 and t = 2
Figure 45.2 shows the behavior of the solution in the phase plane There are lines emanating form x = −1, 0, 1showing the range of influence of these points
Trang 9u=0 u=0
u=1
Figure 45.2: The behavior of the solution in the phase plane
Solution 45.4
We define
L[u] ≡ ∇2u + a(x) · ∇u + h(x)u
We use the Divergence Theorem to derive a generalized Green’s Theorem
(u∇v − v∇u + uva) · n dA
We define the adjoint operator L∗
L∗[u] = ∇2u − ∇ · (au) + hu
Trang 10We substitute the solution u and the adjoint Green function G∗ into the generalized Green’s Theorem.
Trang 112 We take c = D/ and consider the limit → 0.
u = lim
4π
1p(x − /2)2+ y2+ z2 − 1
|x − ξ|
Trang 12
We write this in polar coordinates Denote x = r eıθ and ξ = ρ eıϑ Let φ = θ − ϑ be the difference in angle between
x and ξ
G(x|ξ) = 1
2πln
pr2+ ρ2 − 2rρ cos φρpr2+ 1/ρ2− 2(r/ρ) cos φ
Z 2π
0
f (ϑ)Gρ(r, θ|1, ϑ) dϑ
Gρ= 12π
ρ − r4ρ + r(r2− 1)(ρ2+ 1) cos φ(r2+ ρ2 − 2rρ cos φ)(r2ρ2+ 1 − 2rρ cos φ)
Gρ(r, θ|1, ϑ) = 1
2π
1 − r2
1 + r2− 2r cos φu(r, θ) = 1 − r
1
∆G = δ(x − ξ)δ(y − η)δ(z − ζ)1
Trang 13We find the homogeneous solutions.
G = − 1
4πr
Trang 143 We write the Laplacian in circular coordinates.
∆G = δ(x − ξ)δ(y − η)1
Trang 15Thus we see that G = c ln r We determine the constant by integrating ∆G over a ball about the origin, R.
Z Z
R
∆G dx = 1Z
∂R
∇G · n ds = 1Z
G = 12π ln r
Trang 16u = − 14π
Z ∞
−∞
r(r2+ ζ2)3/2 dζ
ur = 14π
2r
u = 12πln rSolution 45.8
1 We take the Laplace transform of the differential equation and the boundary conditions in x
Gt− νGxx = δ(x − ξ)δ(t − τ )
s ˆG − ν ˆGxx = δ(x − ξ)ˆ
Now we have an ordinary differential equation Green function problem We find homogeneous solutions whichrespectively satisfy the left and right boundary conditions and compute their Wronskian
y1 = sinhr s
νx
, y2 = sinhr s
ν(L − x)
Trang 17
W =
= −2r s
ν
sinhr s
νx
coshr s
ν(L − x)
+ coshr s
νx
sinhr s
Trang 18We use the expansion of the hyperbolic cosecant in our expression for the Green function.
Trang 193 We take the inverse Laplace transform to find the Green function for the diffusion equation.
2√πνt
in the sine series decay exponentially Again, a small number of terms could be used for an accurate approximation.Solution 45.9
1 We take the Fourier cosine transform of the differential equation
Gt− νGxx = δ(x − ξ)δ(t − τ )ˆ
Gt+ νω2G = Fˆ c[δ(x − ξ)]δ(t − τ )ˆ
G = Fc[δ(x − ξ)] e−νω2(t−τ )H(t − τ )ˆ
Trang 20We do the inversion with the convolution theorem.
G = 12π
2 The fundamental solution on the infinite domain is
Trang 21Now we have an initial value problem with no forcing.
ut= νuxx, for t > 0, u(x, 0) = δ(x − ξ)
2 We take the Laplace transform of the initial value problem
sˆu − u(x, 0) = ν ˆuxxˆ
uxx− s
νu = −ˆ
1
νδ(x − ξ), u(±∞, s) = 0ˆThe solutions that satisfy the left and right boundary conditions are, respectively,
= −2r s
νˆ
u = −1νe
Trang 22Solution 45.11
Gtt− c2Gxx = δ(x − ξ)δ(t − τ ),G(x, t; ξ, τ ) = 0 for t < τ
We take the Fourier transform in x
ˆ
Gtt+ c2ω2G = F [δ(x − ξ)]δ(t − τ ), G(ω, 0; ξ, τˆ −) = ˆGt(ω, 0; ξ, τ−) = 0Now we have an ordinary differential equation Green function problem for ˆG We have written the causality condition,the Green function is zero for t < τ , in terms of initial conditions The homogeneous solutions of the ordinary differentialequation are
{cos(cωt), sin(cωt)}
It will be handy to use the fundamental set of solutions at t = τ :
cos(cω(t − τ )), 1
cω sin(cω(t − τ ))
.The continuity and jump conditions are
ˆG(ω, 0; ξ, τ+) = 0, Gˆt(ω, 0; ξ, τ+) = F [δ(x − ξ)]
We write the solution for ˆG and invert using the convolution theorem
ˆ
G = F [δ(x − ξ)]H(t − τ ) 1
cω sin(cω(t − τ ))ˆ
Z ∞
−∞
δ(y − ξ)H(c(t − τ ) − |x − y|) dy
G = 12cH(t − τ )H(c(t − τ ) − |x − ξ|)
G = 12cH(c(t − τ ) − |x − ξ|)
Trang 23The Green function for ξ = τ = 0 and c = 1 is plotted in Figure 45.3 on the domain x ∈ (−1 1), t ∈ (0 1) TheGreen function is a displacement of height 2c1 that propagates out from the point x = ξ in both directions with speed c.The Green function shows the range of influence of a disturbance at the point x = ξ and time t = τ The disturbanceinfluences the solution for all ξ − ct < x < ξ + ct and t > τ
-1 -0.5
0 0.5
1 x
0 0.2 0.4 0.6 0.8 1
t
0 0.2 0.4
-1 -0.5
0 0.5
1 x
0 0.2 0.4 0.6 0.8 1
t
Figure 45.3: Green function for the wave equation
Now we solve the wave equation with a source
u = 12c
Trang 24(2n − 1)πx2L
Lsin
(2n − 1)πx2L
Lsin
(2n − 1)πξ2L
r 2
Lsin
(2n − 1)πx2L
Lsin
(2n − 1)πξ2L
δ(y − ψ)From the boundary conditions at y = 0 and y = H, we obtain boundary conditions for the an(y)
2L
.The Wronskian of these solutions is
W = −(2n − 1)π
(2n − 1)π2
Trang 25
Thus the solution for an(y) is
an(y) =
r2
Lsin
(2n − 1)πξ2L
(2n − 1)π2
cosh (2n − 1)πy<
2L
.This determines the Green function
G(x; xi) = −2
√2Lπ
∞
X
n=1
12n − 1csch
(2n − 1)π2
cosh (2n − 1)πy<
2L
sin (2n − 1)πx
amn(z)√2
LH sin
mπxL
sinnπyH
We substitute this into the differential equation
∇2
∞
X
m=1 n=1
amn(z)√2
LH sin
mπxL
sinnπyH
= δ(x − ξ)δ(y − ψ)δ(z − ζ)
Trang 26+nπH
2
amn(z)
2
√
LH sin
mπxL
sinnπyH
2
√
LH sin
mπξL
sin nπψH
2
√
LH sin
mπxL
sinnπyH
a00mn(z) − π
mL
2
+nH
2
amn(z) = √2
LH sin
mπξL
sin nπψH
δ(z − ζ)From the boundary conditions on G, we obtain boundary conditions for the amn
amn(0) = amn(W ) = 0The solutions that satisfy the left and right boundary conditions are
amn1 = sinh
r
mL
2
+nH
2
πz
!, amn2 = sinh
r
mL
2
+nH
2
π(W − z)
!.The Wronskian of these solutions is
W = −
r
mL
2
+nH
2
π sinh
r
mL
2
+nH
2
πW
!.Thus the solution for amn(z) is
amn(z) = √2
LH sin
mπξL
sin nπψH
sinh
q
m L
q
m L
2
+ Hn2π sinh
q
m L
2
+ Hn2πW
Trang 27
sinh (λmnπz<) sinh (λmnπ(W − z>)) ,where
λmn =
r
mL
2
+nH
2
.This determines the Green function
1
λmncsch (λmnπW ) sin
mπξL
sinmπxL
sin nπψH
sinnπyH
sinh (λmnπz<) sinh (λmnπ(W − z>))
3 First we write the problem in circular coordinates
Trang 28From the boundary conditions on G, we obtain boundary conditions for the gn.
gn(0) = gn(a) = 0The solutions that satisfy the left and right boundary conditions are
gn1 = rn, gn2 =r
a
n
−ar
n
.The Wronskian of these solutions is
W = 2na
n
r .Thus the solution for gn(r) is
4 First we write the problem in circular coordinates
Trang 29We substitute the series into the differential equation.
gn(0) = g0n(a) = 0The solutions that satisfy the left and right boundary conditions are
gn1 = r2n, gn2 =r
a
2n
+ar
2n
.The Wronskian of these solutions is
W = −4na
2n
r .Thus the solution for gn(r) is
Trang 30Solution 45.13
1 The set
{Xn} =
sin (2m − 1)πx
are eigenfunctions of ∇2 and satisfy the boundary conditions Yn0(0) = Yn0(H) = 0 The set
sin (2m − 1)πx
2L
cosnπyH
∞ m=1,n=0
are eigenfunctions of ∇2 and satisfy the boundary conditions of this problem We expand the Green function in
a series of these eigenfunctions
LH sin
(2m − 1)πx2L
+
∞
X
m=1 n=1
gmn√2
LH sin
(2m − 1)πx2L
cosnπyH
We substitute the series into the Green function differential equation
∆G = δ(x − ξ)δ(y − ψ)
Trang 31gmn (2m − 1)π
2L
2
+nπyH
2! 2
√
LH sin
(2m − 1)πx2L
cosnπyH
LH sin
(2m − 1)πξ2L
r2
LH sin
(2m − 1)πx2L
2
√
LH sin
(2m − 1)πξ2L
cos nπψH
2
√
LH sin
(2m − 1)πx2L
cosnπyH
We equate terms and solve for the coefficients gmn
gm0 = −
r2LH
2L(2m − 1)π
2
+ Hn2 sin
(2m − 1)πξ2L
cos nπψH
, sinmπy
H
, sinnπzW
: k, m, n ∈ Z+
kπxL
sinmπyH
sinnπzW
Trang 32
We substitute the series into the Green function differential equation.
2
+
mπH
2
+
nπW
2! r 8
kπxL
sin
mπyH
sin
nπzW
kπξL
sin mπψ
H
sin nπζW
r8
kπxL
sinmπyH
sinnπzW
H sin nπζ
W
π2 k L
2
+ mH2+ Wn2This determines the Green function
3 The Green function problem is
Trang 33Now we look for eigenfunctions of the laplacian.
, m, n ∈ Z+here jn,m is the mth root of Jn
Note that
sin(nθ)Jn jn,mr
a
: m, n ∈ Z+
: m, n ∈ Z+
sin(nθ)
Trang 34We substitute the series into the Green function differential equation.
2
π a|Jn+1(jn,m)|Jn
jn,mra
sin(nθ)
π a|Jn+1(jn,m)|Jn
jn,mra
sin(nθ)
We equate terms and solve for the coefficients gmn
gnm = −
a
sin(nϑ)This determines the green function
4 The Green function problem is
Trang 35Now we look for eigenfunctions of the laplacian.
a , Rnm = J2n
j02n,mra
, m, n ∈ Z+here j0n,m is the mth root of J0n
Note that
sin(2nθ)J02n j
0
a
: m, n ∈ Z+
Trang 36We expand the Green function in a series of these eigenfunctions.
sin(2nθ)
We substitute the series into the Green function differential equation
2
0 2n,m
We equate terms and solve for the coefficients gmn
gnm = −
a
j0 2n,m
This determines the green function
Solution 45.14
We start with the equation
∇2G = δ(x − ξ)δ(y − ψ)
Trang 37We do an odd reflection across the y axis so that G(0, y; ξ, ψ) = 0.
∇2G = δ(x − ξ)δ(y − ψ) − δ(x + ξ)δ(y − ψ)Then we do an even reflection across the x axis so that Gy(x, 0; ξ, ψ) = 0
∇2G = δ(x − ξ)δ(y − ψ) − δ(x + ξ)δ(y − ψ) + δ(x − ξ)δ(y + ψ) − δ(x + ξ)δ(y + ψ)
We solve this problem using the infinite space Green function
2+ (y + ψ)2 − 1
4πln (x + ξ)
2 + (y + ψ)2
G = 14πln
((x − ξ)2+ (y − ψ)2) ((x − ξ)2+ (y + ψ)2)((x + ξ)2+ (y − ψ)2) ((x + ξ)2+ (y + ψ)2)
∂n − G∂u(x, y)
∂n
dS +Z
V
G∆u dVu(ξ, ψ) =
Trang 38G = F [δ(x − ξ)]H(t − τ ) 1
cω sin(cω(t − τ ))ˆ
Z ∞
−∞
δ(y − ξ)H(c(t − τ ) − |x − y|) dy
G = 12cH(t − τ )H(c(t − τ ) − |x − ξ|)
G = 12cH(c(t − τ ) − |x − ξ|)
1 So that the Green function vanishes at x = 0 we do an odd reflection about that point
Gtt− c2Gxx = δ(x − ξ)δ(t − τ ) − δ(x + ξ)δ(t − τ )
G = 12cH(c(t − τ ) − |x − ξ|) −
12cH(c(t − τ ) − |x + ξ|)
2 Note that the Green function satisfies the symmetry relation
G(x, t; ξ, τ ) = G(ξ, −τ ; x, −t)
This implies that
Gxx = Gξξ, Gtt = Gτ τ
Trang 39We write the Green function problem and the inhomogeneous differential equation for u in terms of ξ and τ
Gξ = 1
2c (δ(c(t − τ ) − |x − ξ|)(−1) sign(x − ξ)(−1) − δ(c(t − τ ) − |x + ξ|)(−1) sign(x + ξ))
Gξ(x, t; 0, ψ) = 1
cδ(c(t − τ ) − |x|) sign(x)
Trang 40We are interested in x > 0.
Gξ(x, t; 0, ψ) = 1
cδ(c(t − τ ) − x)Now we can calculate the solution u
Z t +
0
h(τ )δ
(t − τ ) − x
c
dτ
gtt+ c2ω2gˆxx = 0, ˆg(x, 0; ξ, τ ) = F [δ(x − ξ)], ˆgt(x, 0; ξ, τ ) = 0
ˆ
g = F [δ(x − ξ)] cos(cωt)ˆ
g = F [δ(x − ξ)]F [π(δ(x + ct) + δ(x − ct))]
g = 12π
Z ∞
−∞
δ(ψ − ξ)π(δ(x − ψ + ct) + δ(x − ψ − ct)) dψg(x, t; ξ) = 1
2(δ(x − ξ + ct) + δ(x − ξ − ct))
...Gρ(r, θ |1, ϑ) = 1< /sup>
2π
1 − r2
1 + r2− 2r cos φu(r, θ) = 1 − r
1
∆G = δ(x − ξ)δ(y − η)δ(z − ζ )1
2π ln r Trang 16 < /span>u... data-page="23">
The Green function for ξ = τ = and c = is plotted in Figure 45.3 on the domain x ∈ (? ?1 1), t ∈ (0 1) TheGreen function is a displacement of height 2c1< /sup> that propagates