Hint 12.5Show that |S2n− Sn| > 1 2.Hint 12.6 The alternating harmonic series is conditionally convergent.. ln n !n Since the terms in the series on the right side do not vanish as n → ∞,
Trang 3X
n=0
1ln(n + 20)Shift the indices
∞
X
n=0
(Logπ2)nThis is a geometric series
Trang 53 −1
4 =
1121
5 −1
6 =
130
· · ·
Trang 6Hint 12.5
Show that
|S2n− Sn| > 1
2.Hint 12.6
The alternating harmonic series is conditionally convergent Let {an} and {bn} be the positive and negative terms inthe sum, respectively, ordered in decreasing magnitude Note that both P∞
Trang 82 Integrate the series for 1/z.
3 Differentiate the series for 1/z
4 Integrate the series for Log z
Trang 9Hint 12.21
Evaluate the derivatives of ez at z = 0 Use Taylor’s Theorem.Write the cosine and sine in terms of the exponential function.Hint 12.22
cos z = − cos(z − π)sin z = − sin(z − π)Hint 12.23
Trang 10∀ > 0 ∃N s.t n > N ⇒ |an| < This is exactly the Cauchy convergence criterion for the sequence {an} Thus we see that limn→∞an = 0 is a necessarycondition for the convergence of the series P∞
n=0an.Solution 12.2
Z ∞ 2
Trang 11The sum converges.
Z ∞ 10
1
x ln x ln(ln x)dx =
Z ∞ ln(10)
1
y ln y dy =
Z ∞ ln(ln(10))
1
zdzSince the integral diverges, the series also diverges
X
n=0
1ln(n + 20) =
Trang 12− ln
12n + 1
Trang 133n+ 4n+ 5
5n− 4n− 3
1/n
= lim
n→∞
45
(3/4)n+ 1 + 5/4n
1 − (4/5)n− 3/5n
= lim
n→∞
(n + 1)2
((n + 1)2− n2)!
= lim
n→∞
... 1)!)2< /small>(n2< /small>)!((n + 1)2< /small>)!(n!)2< /small>
= lim
n→∞
(n + 1)2< /small>
((n + 1)2< /small>−... data-page="15">
< 12< /p>Trang 16< /span> Solution 12. 5 Since |S2n− Sn|... 1)2< /small> ((n + 1)2< /small>− n2< /small>)! = lim n→∞ (n + 1)2< /sup>(2n + 1)! = 0The series is convergent