1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 5 pdf

40 428 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 504,28 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hint, Solution Exercise 4.3 mathematica/calculus/integral/fundamental.nbEvaluateR x√x2+ 3 dx.. Hint, Solution Exercise 4.4 mathematica/calculus/integral/fundamental.nbEvaluateR cos xsin

Trang 2

4.6 Exercises

Exercise 4.1 (mathematica/calculus/integral/fundamental.nb)EvaluateR (2x + 3)10dx

Hint, Solution

Exercise 4.2 (mathematica/calculus/integral/fundamental.nb)EvaluateR (ln x) 2

x dx

Hint, Solution

Exercise 4.3 (mathematica/calculus/integral/fundamental.nb)EvaluateR x√x2+ 3 dx

Hint, Solution

Exercise 4.4 (mathematica/calculus/integral/fundamental.nb)EvaluateR cos xsin xdx

Hint, Solution

Exercise 4.5 (mathematica/calculus/integral/fundamental.nb)EvaluateR x3x−52 dx

Trang 3

where ∆x = b−a

N and xn = a + n∆x, to show that

Z 1 0

Z f (x) g(x)

f0(x − ξ) dξ

b From the above identity show that

f (x) = f (0) + xf0(0) +

Z x 0

ξf00(x − ξ) dξ

Trang 4

c Using induction, show that

1n!ξ

Trang 5

Exercise 4.16 (mathematica/calculus/integral/partial.nb)EvaluateR x3 +xx+12 −6xdx.

Hint, Solution

Exercise 4.17 (mathematica/calculus/integral/improper.nb)EvaluateR04 (x−1)1 2 dx

Hint, Solution

Exercise 4.18 (mathematica/calculus/integral/improper.nb)EvaluateR1

Hint, Solution

Trang 7

Hint 4.9

CONTINUE

Hint 4.10

a Evaluate the integral

b Use integration by parts to evaluate the integral

c Use integration by parts with u = f(n+1)(x − ξ) and dv = n!1ξn

Hint 4.11

The arc length from 0 to x is

Z x 0

a(x − 2) +

b(x + 2)

1 = a(x + 2) + b(x − 2)

Trang 8

Set x = 2 and x = −2 to solve for a and b.

Hint 4.17

Z 4 0

1(x − 1)2dx = lim

δ→0 +

Z 1−δ 0

1(x − 1)2 dx + lim

→0 +

Z 4 1+

1(x − 1)2 dxHint 4.18

Z 1 0

Z1

x2 + a2 dx = 1

aarctan

xa



Trang 9

4.8 Solutions

Solution 4.1

Z(2x + 3)10dxLet u = 2x + 3, g(u) = x = u−3

2 , g0(u) = 1

2.Z(2x + 3)10dx =

= (2x + 3)

11

22Solution 4.2

Z(ln x)2

x dx =

Z(ln x)2d(ln x)

dx dx

= (ln x)

3

3Solution 4.3

d(x2)

dx dx

= 12

(x2+ 3)3/23/2

= (x

2+ 3)3/2

3

Trang 10

Solution 4.4

Zcos xsin x dx =

Z1sin x

x3− 5

13

= 12

Trang 11

Solution 4.7

Let u = sin x and dv = sin x dx Then du = cos x dx and v = − cos x

Z π 0

sin2x dx = − sin x cos xπ0 +

Z π 0

cos2x dx

=

Z π 0

cos2x dx

=

Z π 0

(1 − sin2x) dx

= π −

Z π 0

sin2x dx

2

Z π 0

sin2x dx = π

Z π 0

sin2x dx = π

2Solution 4.8

Let H0(x) = h(x)

ddx

Z f (x) g(x)

h(ξ) dξ = d

dx(H(f (x)) − H(g(x)))

= H0(f (x))f0(x) − H0(g(x))g0(x)

= h(f (x))f0(x) − h(g(x))g0(x)Solution 4.9

First we compute the area for positive integer n

An =

Z 1 0

= 1

2 − 1

n + 1

Trang 12

Then we consider the area in the limit as n → ∞.

In Figure4.3 we plot the functions x1, x2, x4, x8, , x1024 In the limit as n → ∞, xn on the interval [0 1] tends tothe function

(

0 0 ≤ x < 1

1 x = 1Thus the area tends to the area of the right triangle with unit base and height

0.2 0.4 0.6 0.8 1 0.2

0.4 0.6 0.8 1

Figure 4.3: Plots of x1, x2, x4, x8, , x1024

Trang 13

Solution 4.10

1

f (0) +

Z x 0

f0(x − ξ) dξ = f (0) + [−f (x − ξ)]x0

= f (0) − f (0) + f (x)

= f (x)2

f (0) + xf0(0) +

Z x 0

ξf00(x − ξ) dξ = f (0) + xf0(0) + [−ξf0(x − ξ)]x0 −

Z x 0

1n!ξ

n+1f(n+1)(x − ξ)

x 0

Z x 0

Z x 0

1(n + 1)!ξ

n+1f(n+2)(x − ξ) dξThis shows that the hypothesis holds for n = m + 1 By induction, the hypothesis hold for all n ≥ 0

Trang 14

Solution 4.11

First note that the arc length from a to b is 2(b − a)

Z b a

p

1 + (f0(x))2dx =

Z b 0

p

1 + (f0(x))2dx −

Z a 0

f (x) is a continuous, piecewise differentiable function which satisfies f0(x) = ±√

3 at the points where it is differentiable.One example is

f (x) =√

3xSolution 4.12

= −x cos x + sin x + CSolution 4.14

Let u = x3 and dv = e2x dx Then du = 3x2dx and v = 12e2x

x2e2x dx

Trang 15

Let u = x2 and dv = e2x dx Then du = 2x dx and v = 1

2 e2x.Z

 1

2x e

2x−12

A(x − 2) +

B(x + 2)

1 = A(x + 2) + B(x − 2)Setting x = 2 yields A = 14 Setting x = −2 yields B = −14 Now we can do the integral

x2− 4dx =

Z 

14(x − 2) − 1

4(x + 2)

dx

x − 2

x + 2

+ C

Trang 16

310(x − 2) − 2

15(x + 3)

dx

Z 4 0

1(x − 1)2dx = lim

δ→0 +

Z 1−δ 0

1(x − 1)2 dx + lim

→0 +

Z 4 1+

1(x − 1)2 dx

Trang 17

Solution 4.18

Z 1 0

Z ∞ 0

1

x2+ 4dx = limα→∞

Z α 0

α 0

= 12

2 − 0

= π4

Trang 19

4.10 Quiz Solutions

Solution 4.1

Let a = x0 < x1 < · · · < xn−1 < xn = b be a partition of the interval (a b) We define ∆xi = xi+1− xi and

∆x = maxi∆xi and choose ξi ∈ [xi xi+1]

Z b a

x dx

=

Z 1 0

x dx +

Z 2 0

+ 2

3x

3/2

2 0

ddx

Trang 20

Solution 4.4

First we expand the integrand in partial fractions

1 + x + x2(x + 1)3 = a

 d

dx(1 + x + x

2)

 ... 0 .5 1. 5< /small>

2 -1< /small> -0 .5< /sup>

0 0 .5 1< /small>

0 0 .5 1. 5 2

Figure 5 .10 : Paraboloid, Tangent Plane and Line Connecting (1, ... point (1, 1, 2) this is

∇f (1, 1, 2) = 2i + 2j − k

We know a point on the tangent plane, (1, 1, 2), and the normal, ∇f (1, 1, 2) The equation of the plane is

∇f (1, 1, 2) ·... −

16

(1) (1 − 2) (1 − 3) =

12

(2)(2 − 1) (2 − 3) = −

12

(3)(3 − 1) (3 − 2) =

16 1

x(x − 1) (x − 2)(x −

Ngày đăng: 06/08/2014, 01:21

TỪ KHÓA LIÊN QUAN