Hint, Solution Exercise 4.3 mathematica/calculus/integral/fundamental.nbEvaluateR x√x2+ 3 dx.. Hint, Solution Exercise 4.4 mathematica/calculus/integral/fundamental.nbEvaluateR cos xsin
Trang 24.6 Exercises
Exercise 4.1 (mathematica/calculus/integral/fundamental.nb)EvaluateR (2x + 3)10dx
Hint, Solution
Exercise 4.2 (mathematica/calculus/integral/fundamental.nb)EvaluateR (ln x) 2
x dx
Hint, Solution
Exercise 4.3 (mathematica/calculus/integral/fundamental.nb)EvaluateR x√x2+ 3 dx
Hint, Solution
Exercise 4.4 (mathematica/calculus/integral/fundamental.nb)EvaluateR cos xsin xdx
Hint, Solution
Exercise 4.5 (mathematica/calculus/integral/fundamental.nb)EvaluateR x3x−52 dx
Trang 3where ∆x = b−a
N and xn = a + n∆x, to show that
Z 1 0
Z f (x) g(x)
f0(x − ξ) dξ
b From the above identity show that
f (x) = f (0) + xf0(0) +
Z x 0
ξf00(x − ξ) dξ
Trang 4c Using induction, show that
1n!ξ
Trang 5Exercise 4.16 (mathematica/calculus/integral/partial.nb)EvaluateR x3 +xx+12 −6xdx.
Hint, Solution
Exercise 4.17 (mathematica/calculus/integral/improper.nb)EvaluateR04 (x−1)1 2 dx
Hint, Solution
Exercise 4.18 (mathematica/calculus/integral/improper.nb)EvaluateR1
Hint, Solution
Trang 7Hint 4.9
CONTINUE
Hint 4.10
a Evaluate the integral
b Use integration by parts to evaluate the integral
c Use integration by parts with u = f(n+1)(x − ξ) and dv = n!1ξn
Hint 4.11
The arc length from 0 to x is
Z x 0
a(x − 2) +
b(x + 2)
1 = a(x + 2) + b(x − 2)
Trang 8Set x = 2 and x = −2 to solve for a and b.
Hint 4.17
Z 4 0
1(x − 1)2dx = lim
δ→0 +
Z 1−δ 0
1(x − 1)2 dx + lim
→0 +
Z 4 1+
1(x − 1)2 dxHint 4.18
Z 1 0
Z1
x2 + a2 dx = 1
aarctan
xa
Trang 9
4.8 Solutions
Solution 4.1
Z(2x + 3)10dxLet u = 2x + 3, g(u) = x = u−3
2 , g0(u) = 1
2.Z(2x + 3)10dx =
= (2x + 3)
11
22Solution 4.2
Z(ln x)2
x dx =
Z(ln x)2d(ln x)
dx dx
= (ln x)
3
3Solution 4.3
d(x2)
dx dx
= 12
(x2+ 3)3/23/2
= (x
2+ 3)3/2
3
Trang 10Solution 4.4
Zcos xsin x dx =
Z1sin x
x3− 5
13
= 12
Trang 11Solution 4.7
Let u = sin x and dv = sin x dx Then du = cos x dx and v = − cos x
Z π 0
sin2x dx = − sin x cos xπ0 +
Z π 0
cos2x dx
=
Z π 0
cos2x dx
=
Z π 0
(1 − sin2x) dx
= π −
Z π 0
sin2x dx
2
Z π 0
sin2x dx = π
Z π 0
sin2x dx = π
2Solution 4.8
Let H0(x) = h(x)
ddx
Z f (x) g(x)
h(ξ) dξ = d
dx(H(f (x)) − H(g(x)))
= H0(f (x))f0(x) − H0(g(x))g0(x)
= h(f (x))f0(x) − h(g(x))g0(x)Solution 4.9
First we compute the area for positive integer n
An =
Z 1 0
= 1
2 − 1
n + 1
Trang 12Then we consider the area in the limit as n → ∞.
In Figure4.3 we plot the functions x1, x2, x4, x8, , x1024 In the limit as n → ∞, xn on the interval [0 1] tends tothe function
(
0 0 ≤ x < 1
1 x = 1Thus the area tends to the area of the right triangle with unit base and height
0.2 0.4 0.6 0.8 1 0.2
0.4 0.6 0.8 1
Figure 4.3: Plots of x1, x2, x4, x8, , x1024
Trang 13Solution 4.10
1
f (0) +
Z x 0
f0(x − ξ) dξ = f (0) + [−f (x − ξ)]x0
= f (0) − f (0) + f (x)
= f (x)2
f (0) + xf0(0) +
Z x 0
ξf00(x − ξ) dξ = f (0) + xf0(0) + [−ξf0(x − ξ)]x0 −
Z x 0
1n!ξ
n+1f(n+1)(x − ξ)
x 0
−
Z x 0
Z x 0
1(n + 1)!ξ
n+1f(n+2)(x − ξ) dξThis shows that the hypothesis holds for n = m + 1 By induction, the hypothesis hold for all n ≥ 0
Trang 14Solution 4.11
First note that the arc length from a to b is 2(b − a)
Z b a
p
1 + (f0(x))2dx =
Z b 0
p
1 + (f0(x))2dx −
Z a 0
f (x) is a continuous, piecewise differentiable function which satisfies f0(x) = ±√
3 at the points where it is differentiable.One example is
f (x) =√
3xSolution 4.12
= −x cos x + sin x + CSolution 4.14
Let u = x3 and dv = e2x dx Then du = 3x2dx and v = 12e2x
x2e2x dx
Trang 15Let u = x2 and dv = e2x dx Then du = 2x dx and v = 1
2 e2x.Z
1
2x e
2x−12
A(x − 2) +
B(x + 2)
1 = A(x + 2) + B(x − 2)Setting x = 2 yields A = 14 Setting x = −2 yields B = −14 Now we can do the integral
x2− 4dx =
Z
14(x − 2) − 1
4(x + 2)
dx
x − 2
x + 2
+ C
Trang 16310(x − 2) − 2
15(x + 3)
dx
Z 4 0
1(x − 1)2dx = lim
δ→0 +
Z 1−δ 0
1(x − 1)2 dx + lim
→0 +
Z 4 1+
1(x − 1)2 dx
Trang 17Solution 4.18
Z 1 0
Z ∞ 0
1
x2+ 4dx = limα→∞
Z α 0
α 0
= 12
π
2 − 0
= π4
Trang 194.10 Quiz Solutions
Solution 4.1
Let a = x0 < x1 < · · · < xn−1 < xn = b be a partition of the interval (a b) We define ∆xi = xi+1− xi and
∆x = maxi∆xi and choose ξi ∈ [xi xi+1]
Z b a
√
x dx
=
Z 1 0
√
x dx +
Z 2 0
+ 2
3x
3/2
2 0
ddx
Trang 20Solution 4.4
First we expand the integrand in partial fractions
1 + x + x2(x + 1)3 = a
d
dx(1 + x + x
2)
... 0 .5 1. 5< /small>
2 -1< /small> -0 .5< /sup>
0 0 .5 1< /small>
0 0 .5 1. 5 2
Figure 5 .10 : Paraboloid, Tangent Plane and Line Connecting (1, ... point (1, 1, 2) this is
∇f (1, 1, 2) = 2i + 2j − k
We know a point on the tangent plane, (1, 1, 2), and the normal, ∇f (1, 1, 2) The equation of the plane is
∇f (1, 1, 2) ·... −
16
(1) (1 − 2) (1 − 3) =
12
(2)(2 − 1) (2 − 3) = −
12
(3)(3 − 1) (3 − 2) =
16 1
x(x − 1) (x − 2)(x −