1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 1 pdf

40 622 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 436,23 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

786 14.5 The First Order, Linear Differential Equation.. 15 First Order Linear Systems of Differential Equations 84615.1 Introduction.. 872 16 Theory of Linear Ordinary Differential Equa

Trang 2

0.1 Advice to Teachers xxv

0.2 Acknowledgments xxv

0.3 Warnings and Disclaimers xxvi

0.4 Suggested Use xxvii

0.5 About the Title xxvii

I Algebra 1 1 Sets and Functions 2 1.1 Sets 2

1.2 Single Valued Functions 4

1.3 Inverses and Multi-Valued Functions 6

1.4 Transforming Equations 9

1.5 Exercises 11

1.6 Hints 14

1.7 Solutions 16

Trang 3

2 Vectors 22

2.1 Vectors 22

2.1.1 Scalars and Vectors 22

2.1.2 The Kronecker Delta and Einstein Summation Convention 25

2.1.3 The Dot and Cross Product 26

2.2 Sets of Vectors in n Dimensions 33

2.3 Exercises 36

2.4 Hints 38

2.5 Solutions 40

II Calculus 47 3 Differential Calculus 48 3.1 Limits of Functions 48

3.2 Continuous Functions 53

3.3 The Derivative 56

3.4 Implicit Differentiation 61

3.5 Maxima and Minima 62

3.6 Mean Value Theorems 66

3.6.1 Application: Using Taylor’s Theorem to Approximate Functions 68

3.6.2 Application: Finite Difference Schemes 73

3.7 L’Hospital’s Rule 75

3.8 Exercises 81

3.8.1 Limits of Functions 81

3.8.2 Continuous Functions 81

3.8.3 The Derivative 82

3.8.4 Implicit Differentiation 84

3.8.5 Maxima and Minima 84

3.8.6 Mean Value Theorems 85

Trang 4

3.8.7 L’Hospital’s Rule 85

3.9 Hints 87

3.10 Solutions 93

3.11 Quiz 113

3.12 Quiz Solutions 114

4 Integral Calculus 116 4.1 The Indefinite Integral 116

4.2 The Definite Integral 122

4.2.1 Definition 122

4.2.2 Properties 123

4.3 The Fundamental Theorem of Integral Calculus 125

4.4 Techniques of Integration 127

4.4.1 Partial Fractions 127

4.5 Improper Integrals 130

4.6 Exercises 134

4.6.1 The Indefinite Integral 134

4.6.2 The Definite Integral 134

4.6.3 The Fundamental Theorem of Integration 136

4.6.4 Techniques of Integration 136

4.6.5 Improper Integrals 137

4.7 Hints 138

4.8 Solutions 141

4.9 Quiz 150

4.10 Quiz Solutions 151

5 Vector Calculus 154 5.1 Vector Functions 154

5.2 Gradient, Divergence and Curl 155

5.3 Exercises 163

Trang 5

5.4 Hints 166

5.5 Solutions 168

5.6 Quiz 177

5.7 Quiz Solutions 178

III Functions of a Complex Variable 179 6 Complex Numbers 180 6.1 Complex Numbers 180

6.2 The Complex Plane 184

6.3 Polar Form 188

6.4 Arithmetic and Vectors 193

6.5 Integer Exponents 195

6.6 Rational Exponents 197

6.7 Exercises 201

6.8 Hints 208

6.9 Solutions 211

7 Functions of a Complex Variable 239 7.1 Curves and Regions 239

7.2 The Point at Infinity and the Stereographic Projection 242

7.3 A Gentle Introduction to Branch Points 246

7.4 Cartesian and Modulus-Argument Form 246

7.5 Graphing Functions of a Complex Variable 249

7.6 Trigonometric Functions 252

7.7 Inverse Trigonometric Functions 259

7.8 Riemann Surfaces 268

7.9 Branch Points 270

7.10 Exercises 286

Trang 6

7.11 Hints 297

7.12 Solutions 302

8 Analytic Functions 360 8.1 Complex Derivatives 360

8.2 Cauchy-Riemann Equations 367

8.3 Harmonic Functions 372

8.4 Singularities 377

8.4.1 Categorization of Singularities 377

8.4.2 Isolated and Non-Isolated Singularities 381

8.5 Application: Potential Flow 383

8.6 Exercises 388

8.7 Hints 396

8.8 Solutions 399

9 Analytic Continuation 437 9.1 Analytic Continuation 437

9.2 Analytic Continuation of Sums 440

9.3 Analytic Functions Defined in Terms of Real Variables 442

9.3.1 Polar Coordinates 446

9.3.2 Analytic Functions Defined in Terms of Their Real or Imaginary Parts 450

9.4 Exercises 454

9.5 Hints 456

9.6 Solutions 457

10 Contour Integration and the Cauchy-Goursat Theorem 462 10.1 Line Integrals 462

10.2 Contour Integrals 464

10.2.1 Maximum Modulus Integral Bound 466

10.3 The Cauchy-Goursat Theorem 467

Trang 7

10.4 Contour Deformation 469

10.5 Morera’s Theorem 471

10.6 Indefinite Integrals 473

10.7 Fundamental Theorem of Calculus via Primitives 474

10.7.1 Line Integrals and Primitives 474

10.7.2 Contour Integrals 474

10.8 Fundamental Theorem of Calculus via Complex Calculus 475

10.9 Exercises 478

10.10Hints 482

10.11Solutions 483

11 Cauchy’s Integral Formula 493 11.1 Cauchy’s Integral Formula 494

11.2 The Argument Theorem 501

11.3 Rouche’s Theorem 502

11.4 Exercises 505

11.5 Hints 509

11.6 Solutions 511

12 Series and Convergence 525 12.1 Series of Constants 525

12.1.1 Definitions 525

12.1.2 Special Series 527

12.1.3 Convergence Tests 529

12.2 Uniform Convergence 536

12.2.1 Tests for Uniform Convergence 537

12.2.2 Uniform Convergence and Continuous Functions 539

12.3 Uniformly Convergent Power Series 539

12.4 Integration and Differentiation of Power Series 547

12.5 Taylor Series 550

Trang 8

12.5.1 Newton’s Binomial Formula 553

12.6 Laurent Series 555

12.7 Exercises 560

12.7.1 Series of Constants 560

12.7.2 Uniform Convergence 566

12.7.3 Uniformly Convergent Power Series 566

12.7.4 Integration and Differentiation of Power Series 568

12.7.5 Taylor Series 569

12.7.6 Laurent Series 571

12.8 Hints 574

12.9 Solutions 582

13 The Residue Theorem 626 13.1 The Residue Theorem 626

13.2 Cauchy Principal Value for Real Integrals 634

13.2.1 The Cauchy Principal Value 634

13.3 Cauchy Principal Value for Contour Integrals 639

13.4 Integrals on the Real Axis 643

13.5 Fourier Integrals 647

13.6 Fourier Cosine and Sine Integrals 649

13.7 Contour Integration and Branch Cuts 652

13.8 Exploiting Symmetry 655

13.8.1 Wedge Contours 655

13.8.2 Box Contours 658

13.9 Definite Integrals Involving Sine and Cosine 659

13.10Infinite Sums 662

13.11Exercises 666

13.12Hints 680

13.13Solutions 686

Trang 9

IV Ordinary Differential Equations 772

14.1 Notation 773

14.2 Example Problems 775

14.2.1 Growth and Decay 775

14.3 One Parameter Families of Functions 777

14.4 Integrable Forms 779

14.4.1 Separable Equations 780

14.4.2 Exact Equations 782

14.4.3 Homogeneous Coefficient Equations 786

14.5 The First Order, Linear Differential Equation 791

14.5.1 Homogeneous Equations 791

14.5.2 Inhomogeneous Equations 792

14.5.3 Variation of Parameters 795

14.6 Initial Conditions 796

14.6.1 Piecewise Continuous Coefficients and Inhomogeneities 797

14.7 Well-Posed Problems 801

14.8 Equations in the Complex Plane 803

14.8.1 Ordinary Points 803

14.8.2 Regular Singular Points 806

14.8.3 Irregular Singular Points 812

14.8.4 The Point at Infinity 814

14.9 Additional Exercises 816

14.10Hints 819

14.11Solutions 822

14.12Quiz 843

14.13Quiz Solutions 844

Trang 10

15 First Order Linear Systems of Differential Equations 846

15.1 Introduction 846

15.2 Using Eigenvalues and Eigenvectors to find Homogeneous Solutions 847

15.3 Matrices and Jordan Canonical Form 852

15.4 Using the Matrix Exponential 860

15.5 Exercises 865

15.6 Hints 870

15.7 Solutions 872

16 Theory of Linear Ordinary Differential Equations 900 16.1 Exact Equations 900

16.2 Nature of Solutions 901

16.3 Transformation to a First Order System 905

16.4 The Wronskian 905

16.4.1 Derivative of a Determinant 905

16.4.2 The Wronskian of a Set of Functions 906

16.4.3 The Wronskian of the Solutions to a Differential Equation 908

16.5 Well-Posed Problems 911

16.6 The Fundamental Set of Solutions 913

16.7 Adjoint Equations 915

16.8 Additional Exercises 919

16.9 Hints 920

16.10Solutions 922

16.11Quiz 928

16.12Quiz Solutions 929

17 Techniques for Linear Differential Equations 930 17.1 Constant Coefficient Equations 930

17.1.1 Second Order Equations 931

17.1.2 Real-Valued Solutions 935

Trang 11

17.1.3 Higher Order Equations 937

17.2 Euler Equations 940

17.2.1 Real-Valued Solutions 942

17.3 Exact Equations 945

17.4 Equations Without Explicit Dependence on y 946

17.5 Reduction of Order 947

17.6 *Reduction of Order and the Adjoint Equation 948

17.7 Additional Exercises 951

17.8 Hints 957

17.9 Solutions 960

18 Techniques for Nonlinear Differential Equations 984 18.1 Bernoulli Equations 984

18.2 Riccati Equations 986

18.3 Exchanging the Dependent and Independent Variables 990

18.4 Autonomous Equations 992

18.5 *Equidimensional-in-x Equations 995

18.6 *Equidimensional-in-y Equations 997

18.7 *Scale-Invariant Equations 1000

18.8 Exercises 1001

18.9 Hints 1004

18.10Solutions 1006

19 Transformations and Canonical Forms 1018 19.1 The Constant Coefficient Equation 1018

19.2 Normal Form 1021

19.2.1 Second Order Equations 1021

19.2.2 Higher Order Differential Equations 1022

19.3 Transformations of the Independent Variable 1024

19.3.1 Transformation to the form u” + a(x) u = 0 1024

Trang 12

19.3.2 Transformation to a Constant Coefficient Equation 1025

19.4 Integral Equations 1027

19.4.1 Initial Value Problems 1027

19.4.2 Boundary Value Problems 1029

19.5 Exercises 1032

19.6 Hints 1034

19.7 Solutions 1035

20 The Dirac Delta Function 1041 20.1 Derivative of the Heaviside Function 1041

20.2 The Delta Function as a Limit 1043

20.3 Higher Dimensions 1045

20.4 Non-Rectangular Coordinate Systems 1046

20.5 Exercises 1048

20.6 Hints 1050

20.7 Solutions 1052

21 Inhomogeneous Differential Equations 1059 21.1 Particular Solutions 1059

21.2 Method of Undetermined Coefficients 1061

21.3 Variation of Parameters 1065

21.3.1 Second Order Differential Equations 1065

21.3.2 Higher Order Differential Equations 1068

21.4 Piecewise Continuous Coefficients and Inhomogeneities 1071

21.5 Inhomogeneous Boundary Conditions 1074

21.5.1 Eliminating Inhomogeneous Boundary Conditions 1074

21.5.2 Separating Inhomogeneous Equations and Inhomogeneous Boundary Conditions 1076

21.5.3 Existence of Solutions of Problems with Inhomogeneous Boundary Conditions 1077

21.6 Green Functions for First Order Equations 1079

21.7 Green Functions for Second Order Equations 1082

Trang 13

21.7.1 Green Functions for Sturm-Liouville Problems 1092

21.7.2 Initial Value Problems 1095

21.7.3 Problems with Unmixed Boundary Conditions 1098

21.7.4 Problems with Mixed Boundary Conditions 1100

21.8 Green Functions for Higher Order Problems 1104

21.9 Fredholm Alternative Theorem 1109

21.10Exercises 1117

21.11Hints 1123

21.12Solutions 1126

21.13Quiz 1164

21.14Quiz Solutions 1165

22 Difference Equations 1166 22.1 Introduction 1166

22.2 Exact Equations 1168

22.3 Homogeneous First Order 1169

22.4 Inhomogeneous First Order 1171

22.5 Homogeneous Constant Coefficient Equations 1174

22.6 Reduction of Order 1177

22.7 Exercises 1179

22.8 Hints 1180

22.9 Solutions 1181

23 Series Solutions of Differential Equations 1184 23.1 Ordinary Points 1184

23.1.1 Taylor Series Expansion for a Second Order Differential Equation 1188

23.2 Regular Singular Points of Second Order Equations 1198

23.2.1 Indicial Equation 1201

23.2.2 The Case: Double Root 1203

23.2.3 The Case: Roots Differ by an Integer 1206

Trang 14

23.3 Irregular Singular Points 1216

23.4 The Point at Infinity 1216

23.5 Exercises 1219

23.6 Hints 1224

23.7 Solutions 1225

23.8 Quiz 1248

23.9 Quiz Solutions 1249

24 Asymptotic Expansions 1251 24.1 Asymptotic Relations 1251

24.2 Leading Order Behavior of Differential Equations 1255

24.3 Integration by Parts 1263

24.4 Asymptotic Series 1270

24.5 Asymptotic Expansions of Differential Equations 1272

24.5.1 The Parabolic Cylinder Equation 1272

25 Hilbert Spaces 1278 25.1 Linear Spaces 1278

25.2 Inner Products 1280

25.3 Norms 1281

25.4 Linear Independence 1283

25.5 Orthogonality 1283

25.6 Gramm-Schmidt Orthogonalization 1284

25.7 Orthonormal Function Expansion 1287

25.8 Sets Of Functions 1288

25.9 Least Squares Fit to a Function and Completeness 1294

25.10Closure Relation 1297

25.11Linear Operators 1302

25.12Exercises 1303

25.13Hints 1304

Trang 15

25.14Solutions 1305

26 Self Adjoint Linear Operators 1307 26.1 Adjoint Operators 1307

26.2 Self-Adjoint Operators 1308

26.3 Exercises 1311

26.4 Hints 1312

26.5 Solutions 1313

27 Self-Adjoint Boundary Value Problems 1314 27.1 Summary of Adjoint Operators 1314

27.2 Formally Self-Adjoint Operators 1315

27.3 Self-Adjoint Problems 1318

27.4 Self-Adjoint Eigenvalue Problems 1318

27.5 Inhomogeneous Equations 1323

27.6 Exercises 1326

27.7 Hints 1327

27.8 Solutions 1328

28 Fourier Series 1330 28.1 An Eigenvalue Problem 1330

28.2 Fourier Series 1333

28.3 Least Squares Fit 1337

28.4 Fourier Series for Functions Defined on Arbitrary Ranges 1341

28.5 Fourier Cosine Series 1344

28.6 Fourier Sine Series 1345

28.7 Complex Fourier Series and Parseval’s Theorem 1346

28.8 Behavior of Fourier Coefficients 1349

28.9 Gibb’s Phenomenon 1358

28.10Integrating and Differentiating Fourier Series 1358

Trang 16

28.11Exercises 1363

28.12Hints 1371

28.13Solutions 1373

29 Regular Sturm-Liouville Problems 1420 29.1 Derivation of the Sturm-Liouville Form 1420

29.2 Properties of Regular Sturm-Liouville Problems 1422

29.3 Solving Differential Equations With Eigenfunction Expansions 1433

29.4 Exercises 1439

29.5 Hints 1443

29.6 Solutions 1445

30 Integrals and Convergence 1470 30.1 Uniform Convergence of Integrals 1470

30.2 The Riemann-Lebesgue Lemma 1471

30.3 Cauchy Principal Value 1472

30.3.1 Integrals on an Infinite Domain 1472

30.3.2 Singular Functions 1473

31 The Laplace Transform 1475 31.1 The Laplace Transform 1475

31.2 The Inverse Laplace Transform 1477

31.2.1 ˆf (s) with Poles 1480

31.2.2 ˆf (s) with Branch Points 1484

31.2.3 Asymptotic Behavior of ˆf (s) 1488

31.3 Properties of the Laplace Transform 1489

31.4 Constant Coefficient Differential Equations 1492

31.5 Systems of Constant Coefficient Differential Equations 1495

31.6 Exercises 1497

31.7 Hints 1504

Trang 17

31.8 Solutions 1507

32 The Fourier Transform 1539 32.1 Derivation from a Fourier Series 1539

32.2 The Fourier Transform 1541

32.2.1 A Word of Caution 1544

32.3 Evaluating Fourier Integrals 1545

32.3.1 Integrals that Converge 1545

32.3.2 Cauchy Principal Value and Integrals that are Not Absolutely Convergent 1548

32.3.3 Analytic Continuation 1550

32.4 Properties of the Fourier Transform 1552

32.4.1 Closure Relation 1552

32.4.2 Fourier Transform of a Derivative 1553

32.4.3 Fourier Convolution Theorem 1554

32.4.4 Parseval’s Theorem 1557

32.4.5 Shift Property 1559

32.4.6 Fourier Transform of x f(x) 1559

32.5 Solving Differential Equations with the Fourier Transform 1560

32.6 The Fourier Cosine and Sine Transform 1562

32.6.1 The Fourier Cosine Transform 1562

32.6.2 The Fourier Sine Transform 1563

32.7 Properties of the Fourier Cosine and Sine Transform 1564

32.7.1 Transforms of Derivatives 1564

32.7.2 Convolution Theorems 1566

32.7.3 Cosine and Sine Transform in Terms of the Fourier Transform 1568

32.8 Solving Differential Equations with the Fourier Cosine and Sine Transforms 1569

32.9 Exercises 1571

32.10Hints 1578

32.11Solutions 1581

Trang 18

33 The Gamma Function 1605

33.1 Euler’s Formula 1605

33.2 Hankel’s Formula 1607

33.3 Gauss’ Formula 1609

33.4 Weierstrass’ Formula 1611

33.5 Stirling’s Approximation 1613

33.6 Exercises 1618

33.7 Hints 1619

33.8 Solutions 1620

34 Bessel Functions 1622 34.1 Bessel’s Equation 1622

34.2 Frobeneius Series Solution about z = 0 1623

34.2.1 Behavior at Infinity 1626

34.3 Bessel Functions of the First Kind 1628

34.3.1 The Bessel Function Satisfies Bessel’s Equation 1629

34.3.2 Series Expansion of the Bessel Function 1630

34.3.3 Bessel Functions of Non-Integer Order 1633

34.3.4 Recursion Formulas 1636

34.3.5 Bessel Functions of Half-Integer Order 1639

34.4 Neumann Expansions 1640

34.5 Bessel Functions of the Second Kind 1644

34.6 Hankel Functions 1646

34.7 The Modified Bessel Equation 1646

34.8 Exercises 1650

34.9 Hints 1655

34.10Solutions 1657

Trang 19

V Partial Differential Equations 1680

35.1 Exercises 1682

35.2 Hints 1683

35.3 Solutions 1684

36 Classification of Partial Differential Equations 1685 36.1 Classification of Second Order Quasi-Linear Equations 1685

36.1.1 Hyperbolic Equations 1686

36.1.2 Parabolic equations 1691

36.1.3 Elliptic Equations 1692

36.2 Equilibrium Solutions 1694

36.3 Exercises 1696

36.4 Hints 1697

36.5 Solutions 1698

37 Separation of Variables 1704 37.1 Eigensolutions of Homogeneous Equations 1704

37.2 Homogeneous Equations with Homogeneous Boundary Conditions 1704

37.3 Time-Independent Sources and Boundary Conditions 1706

37.4 Inhomogeneous Equations with Homogeneous Boundary Conditions 1709

37.5 Inhomogeneous Boundary Conditions 1710

37.6 The Wave Equation 1713

37.7 General Method 1716

37.8 Exercises 1718

37.9 Hints 1734

37.10Solutions 1739

Trang 20

38 Finite Transforms 1821

38.1 Exercises 1825

38.2 Hints 1826

38.3 Solutions 1827

39 The Diffusion Equation 1831 39.1 Exercises 1832

39.2 Hints 1834

39.3 Solutions 1835

40 Laplace’s Equation 1841 40.1 Introduction 1841

40.2 Fundamental Solution 1841

40.2.1 Two Dimensional Space 1842

40.3 Exercises 1843

40.4 Hints 1846

40.5 Solutions 1847

41 Waves 1859 41.1 Exercises 1860

41.2 Hints 1866

41.3 Solutions 1868

42 Similarity Methods 1888 42.1 Exercises 1892

42.2 Hints 1893

42.3 Solutions 1894

43 Method of Characteristics 1897 43.1 First Order Linear Equations 1897

43.2 First Order Quasi-Linear Equations 1898

Ngày đăng: 06/08/2014, 01:21

TỪ KHÓA LIÊN QUAN