1. Trang chủ
  2. » Khoa Học Tự Nhiên

ĐỀ THI TOÁN APMO (CHÂU Á THÁI BÌNH DƯƠNG)_ĐỀ 2 ppsx

1 207 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 45,89 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

XIV Asian Pacific Mathematics OlympiadMarch 2002 Time allowed: 4 hours No calculators are to be used Each question is worth 7 points Problem 1.. When does equality hold?. Problem 2.. Let

Trang 1

XIV Asian Pacific Mathematics Olympiad

March 2002

Time allowed: 4 hours

No calculators are to be used

Each question is worth 7 points

Problem 1

Let a1, a2, a3, , a n be a sequence of non-negative integers, where n is a positive integer Let

A n= a1+ a2+ · · · + a n

Prove that

a1!a2! a n ! ≥ (bA n c!) n ,

where bA n c is the greatest integer less than or equal to A n , and a! = 1 × 2 × · · · × a for a ≥ 1 (and 0! = 1).

When does equality hold?

Problem 2

Find all positive integers a and b such that

a2+ b

b2− a and

b2+ a

a2− b

are both integers

Problem 3

Let ABC be an equilateral triangle Let P be a point on the side AC and Q be a point on the side AB so that both triangles ABP and ACQ are acute Let R be the orthocentre of triangle ABP and S be the orthocentre

of triangle ACQ Let T be the point common to the segments BP and CQ Find all possible values of 6 CBP

and6 BCQ such that triangle T RS is equilateral.

Problem 4

Let x, y, z be positive numbers such that

1

x+

1

y +

1

z = 1.

x + yz + √ y + zx + √ z + xy ≥ √ xyz + √ x + √ y + √ z.

Problem 5

Let R denote the set of all real numbers Find all functions f from R to R satisfying:

(i) there are only finitely many s in R such that f (s) = 0, and

(ii) f (x4+ y) = x3f (x) + f (f (y)) for all x, y in R.

Ngày đăng: 05/08/2014, 10:21

w