1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Handbook of Corrosion Engineering Episode 2 Part 14 ppt

40 300 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Handbook of Corrosion Engineering Episode 2 Part 14 ppt
Trường học Rochester Institute of Technology
Chuyên ngành Corrosion Engineering
Thể loại lecture presentation
Năm xuất bản 2023
Thành phố Rochester
Định dạng
Số trang 40
Dung lượng 294,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TABLE E.6 Wrought-Bronzes—Standard Designations for Wrought Bronzes Composition as Maximum % Unless Indicated as RangePart 4.. TABLE E.6 Wrought-Bronzes—Standard Designations for Wrought

Trang 1

TABLE E.6 Wrought-Bronzes—Standard Designations for Wrought Bronzes (Composition as Maximum % Unless Indicated as Range

Part 4 Copper-aluminum alloys (aluminum bronzes)

Trang 2

Part 5 copper-silicon alloys (silicon bronzes)

Part 4 Copper-aluminum alloys (aluminum bronzes)

Trang 3

TABLE E.6 Wrought-Bronzes—Standard Designations for Wrought Bronzes (Composition as Maximum % Unless Indicated as Range

or Minimum) (Continued)

Part 6 Other copper-zinc alloys

Trang 4

TABLE E.7 Wrought Copper-Nickel Alloys—Standard Designations for Wrought Copper-Nickel Alloys (Composition as Maximum %

Unless Indicated as Range or Minimum)

C72420 Rem 0.02 7–1.2 0.2 13.5–16.5 0.1 3.5–5.5 1.0–2.0Al, 50Cr, 15Si .05Mg, 15S, 01P, 05C

Trang 5

TABLE E.8 Wrought Nickel-Silvers—Standard Designations for Wrought Nickel-Silver Alloys (Composition

as Maximum % Unless Indicated as Range or Minimum)

Trang 6

TABLE E.9 Cast Coppers and High Coppers—Standard Designations for Cast Coppers and High Coppers (Composition as Maximum

% Unless Indicated as Range or Minimum)

Trang 7

TABLE E.10 Cast Brasses

Part 1 Copper-tin-zinc and copper-tin-zinc-lead alloys (red and leaded red brasses)

Trang 8

Part 4 Manganese bronze and leaded manganese bronze alloys (high-strength and leaded high-strength yellow brasses)

Trang 11

TABLE E.11 Cast Bronzes (Continued)

Part 5 Copper-aluminum-iron and copper-aluminum-iron-nickel alloys (aluminum bronzes)

Trang 12

TABLE E.12 Cast Copper-Nickel-Iron Alloys (Copper-Nickels)

Trang 13

TABLE E.13 Chemical Compositions of Nickel-, Nickel-Iron-, and Cobalt-Base Alloys

Trang 14

TABLE E.13 Chemical Compositions of Nickel-, Nickel-Iron-, and Cobalt-Base Alloys (Continued)

Trang 15

TABLE E.13 Chemical Compositions of Nickel-, Nickel-Iron-, and Cobalt-Base Alloys (Continued)

Trang 16

TABLE E.13 Chemical Compositions of Nickel-, Nickel-Iron-, and Cobalt-Base Alloys (Continued)

Trang 17

TABLE E.14 Refractory Metals—Typical Analysis of Refractory Metals

Element Max % Mo Max % Ta Max % Nb Max % W

Trang 18

TABLE E.15 Austenitic Stainless Steels—Standard Designations for Austenitic Stainless Steels (Composition as Maximum in %

Unless Indicated as Range or Minimum)

Trang 19

TABLE E.15 Austenitic Stainless Steels—Standard Designations for Austenitic Stainless Steels (Composition as Maximum in %

Unless Indicated as Range or Minimum) (Continued)

Trang 20

TABLE E.16 Ferritic Stainless Steels—Nominal Chemical Composition (%) of Ferritic Stainless Steels (Maximum Unless Noted

Trang 21

TABLE E.17 Martensitic Stainless Steels—Nominal Chemical Composition (%) of Martensitic Stainless Steels (Maximum Unless

Trang 22

TABLE E.18 Nominal Compositions of First- and Second-Generation Duplex Stainless Steels

Trang 23

TABLE E.19 Compositions of Precipitation-Hardening (PH) Stainless Steels

MartensiticS13800 PH13-8Mo 0.05 0.10 0.10 12.25–13.25 7.5–8.5 2.0–2.5 0.0l 0.008 0.90–1.35 Al, 0.0l N

V, 0.0015 B

Trang 24

Chemical Compositions of Engineering Alloys 1099

TABLE E.20 Nominal Chemical Composition (%) of Cast

Heat-Resistant Stainless Steels

Trang 25

TABLE E.21 Titanium—Nominal Chemical Composition of Commercial Titanium Alloys

Trang 26

Thermodynamic Data

and E-pH Diagrams

The tables and graphics in this appendix describe the

thermodynam-ic behavior of the following metals when exposed to pure water at 25 and 60°C:

Tables F.1 to F.6 contain the basic thermodynamic values for each

species, solid or ionic, considered for the construction of the E-pH

dia-grams The graphics were obtained with a publicly available software system that has been used throughout the book to calculate different equilibrium systems.15The basic calculations were detailed in Sec D.2, Chemical Thermodynamics The relations between the free energy of the species considered and the associated equations are evaluated with the data presented in Tables F.1 to F.6 and the following equations The

free energy (G0) of a substance for which heat capacity data are able can be calculated as a function of temperature using Eq (F.1).

T1 T2

Trang 27

1102 Appendix F

TABLE F.1 Species Considered for the Cr-H 2 O System and Their Thermodynamic Data

G0 (298 K), S0

(298 K), Species Jmol1 Jmol1 A B 103 C 105

0 (298 K,

Cr2 176,146 104.6 146.44 0.13 0.00166

Cr3  215,476 307.52 370.28 0.13 0.00166Cr(OH)2  430,950 68.62 110.46 0.13 0.00166Cr(OH)2 632,663 144.77 165.69 0.13 0.00166CrO4  727,849 50.21 92.05 0.37 0.0055HCrO4  764,835 184.1 205.02 0.37 0.0055CrO2 535,929 96.23 117.15 0.37 0.0055CrO3 603,416 238.49 175.73 0.37 0.0055

TABLE F.2 Pure Species Considered for the Cu-H 2 O System and Their Thermodynamic Data

G0(298 K), S0(298 K), Species Jmol1 Jmol1 A B 103 C 105

Cu 50,626 12.6 33.52 0.13 0.00166

Cu2  65,689 207.2 249.04 0.13 0.00166Cu(OH) 129,704 41.89 20.97 0.13 0.00166

Cu2(OH)2  280,328 98.22 140.06 0.13 0.00166

Cu3 303,340 401.8 464.56 0.13 0.00166HCuO2  258,571 96.38 117.3 0.37 0.0055CuO2 183,678 98.22 56.38 0.37 0.0055CuO 112,550 96.38 117.3 0.37 0.0055

Trang 28

Thermodynamic Data and E-pH Diagrams 1103

TABLE F.3 Pure Species Considered for the Fe-H 2 O System and Their

Thermodynamic Data

G0 (298 K), S0

(298 K), Species Jmol1 Jmol1 A B 103 C 105

(298 K), Species Jmol1 Jmol1 A B 103 C 105

0 (298 K),

Mn2  228,028 115.478 157.34 0.13 0.00166Mn(OH) 405,011 37.656 58.576 0.13 0.00166

Mn3 82,006.4 378.652 441.41 0.13 0.00166HMnO2  507,101 62.76 83.68 0.37 0.0055MnO4 447,270 212.1288 233.05 0.37 0.0055MnO  500,825 100.416 142.256 0.37 0.0055

Trang 29

1104 Appendix F

TABLE F.5 Pure Species Considered for the Ni-H 2 O System and Their Thermodynamic Data

G0 (298 K), S0

(298 K), Species Jmol1 Jmol1 A B 103 C 105

0(298 K),

Jmol1 a b

Ni2  46,442 201.3 243.14 0.13 0HNiO2  349,218 62.76 41.84 0.37 0.01

TABLE F.6 Pure Species Considered for the Ni-H 2 O System and Their Thermodynamic Data

G0 (298 K), S0

(298 K), Species Jmol1 Jmol1 A B 103 C 105

Jmol1 a b

Zn2 147,280 207.2 249.04 0.13 0.00166Zn(OH) 329,438 41.89 20.97 0.13 0.00166HZnO2 464,227 96.38 117.3 0.37 0.0055ZnO  389,424 98.22 56.38 0.37 0.0055

Trang 30

For pure substances, i.e., solids, liquids, and gases, the heat capacity

Cp is expressed as an empirical function of the absolute temperature [Eq (F.2)].

Cp A  BT  CT2 (F.2) For ionic substances, one has to use another method, such as that proposed by Criss and Cobble in 1964,16to obtain the heat capacity, pro- vided that the temperature does not rise above 200°C The expression of the ionic capacity [Eq (F.3)] makes use of absolute entropy values and

the parameters a and b contained in Tables F.1 to F.6.

Cp (4.186a  b0

(298 K)) (T2 298.16) / ln   (F.3)

By combining Eq (F.2) or (F.3) with Eq (F.1), one can obtain the free energy [Eq (F.4)] at a given temperature by using the fundamental data contained in Tables F.1 to F.6.

Gt0 G0

(298 K) (CpS0

(298 K)) (T2 298.16)

 T2ln   Cp (F.4) Table F.7 provides an index for the thermodynamic data of the species

considered, the equations possible, and associated E-pH diagrams at

two temperatures, 25 and 60°C.

4 Duby, P., The Thermodynamic Properties of Aqueous Inorganic Copper Systems,

INCRA Monograph IV, New York, The International Copper Research Association,1977

5 Le, H H., and Ghali, E., Interpretation des diagrammes E-pH du système Fe-H2O

en relation avec la fragilisation caustique des aciers, Journal of Applied

8 Biernat, R J., and Robins, R G., High-Temperature Potential/pH Diagrams for the

Iron-Water and Iron-Water-Sulphur Systems, Electrochimica Acta, 17:1261–1283

(1972)

9 Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston,

Tex., NACE International, 1974

T2

 298.16

T2

 298.16

Thermodynamic Data and E-pH Diagrams 1105

Trang 31

10 Macdonald, D D., The Thermodynamics and Theoretical Corrosion Behavior of

Manganese in Aqueous Systems at Elevated Temperatures, Corrosion Science,

16:482 (1976).

11 Macdonald, D D., The Thermodynamics of Metal-Water Systems at Elevated

Temperatures, Part 4, The Nickel-Water System, AECL-4139, Pinawa, Canada,

Whiteshell Nuclear Research Establishment, 1972

12 Chen, C M., and Theus, G J., Chemistry of Corrosion-Producing Salts in Light

Water Reactors, NP-2298, Palo Alto, Calif., Electric Power Research Institute, 1982.

13 Cowan, R L., and Staehle, R W., The Thermodynamics and Electrode Kinetic

Behavior of Nickel in Acid Solution in the Temperature Range 25° to 300°C, Journal

of the Electrochemical Society, 118:557–568 (1971).

14 Pan, P., and Tremaine, P R., Thermodynamics of Aqueous Zinc: Standard PartialMolar Heat Capacities and Volumes of Zn2(aq) from 10 to 55°C, Geochimica et

Cosmochimica Acta, 58:4867–4874 (1994).

15 Roberge, P R., KTS-Thermo (2.01), Kingston, Canada, Kingston Technical Software,

1998

16 Criss, C M., and Cobble, J W., The Thermodynamic Properties of High

Temperature Aqueous Solutions, Journal of the American Chemical Society,

86:5385–5393 (1964).

1106 Appendix F

TABLE F.7 Index to Thermodynamic Data, Equilibrium, and

Associated E-pH Diagrams for Important Engineering Metals

Element Equations Temperature, °C FigureChromium (Data Table F.1)

Hydrated state Table F.8 25 F.1

Copper (Data Table F.2)

Hydrated state Table F.10 25 F.5

Iron (Data Table F.3)

Hydrated state Table F.12 25 F.9

Nickel (Data Table F.5)

Hydrated state Table F.15 25 F.15

Trang 32

Thermodynamic Data and E-pH Diagrams 1107

TABLE F.8 Possible Reaction in the Cr-H 2 O System

between the Species Most Stable in Wet Conditions

Trang 34

Thermodynamic Data and E-pH Diagrams 1109

TABLE F.10 Possible Reactions in the Cu-H 2 O

System between the Species Most Stable in Wet

TABLE F.11 Possible Reactions in the Cu-H 2 O System

between the Species Most Stable in Dry conditions

Trang 35

TABLE F.12 Possible Reactions in the Fe-H 2 O System between the Species Most Stable in Wet Conditions

Trang 36

Thermodynamic Data and E-pH Diagrams 1111

TABLE F.14 Possible Reactions in the Mn-H 2 O System

Trang 37

1112 Appendix F

TABLE F.15 Possible Reactions in the Ni-H 2 O System between the Species Most Stable in Wet Conditions

Trang 38

Thermodynamic Data and E-pH Diagrams 1113

TABLE F.17 Possible Reactions in the Zn-H 2 O System

1 1.5

Figure F.1 Potential-pH equilibrium diagram for the chromium-water

sys-tem at 25°C considering the hydrated oxide forms

Trang 40

sys-Thermodynamic Data and E-pH Diagrams 1115

3-Figure F.4 Potential-pH equilibrium diagram for the chromium-water

sys-tem at 60°C considering the dry oxide forms

1 1.5

Figure F.5 Potential-pH equilibrium diagram for the copper-water system

at 25°C considering the hydrated oxide forms

Ngày đăng: 05/08/2014, 09:20

TỪ KHÓA LIÊN QUAN