1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

GIÁO TRÌNH MARKETING NGHIÊN CỨU - PHẦN 18 pptx

49 441 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 49
Dung lượng 1,99 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Relationships Between Two Variables • Nonmonotonic: two variables are associated, but only in a very general sense; don’t know “direction” of relationship, but we do know that the presen

Trang 1

Determining and Interpreting Associations

Among Variables

Trang 2

Associative Analyses

• Associative analyses: determine

where stable relationships exist

between two variables

• Examples

– What methods of doing business are

associated with level of customer satisfaction? – What demographic variables are associated

with repeat buying of Brand A?

– Is type of sales training associated with sales performance of sales representatives?

– Are purchase intention scores of a new product associated with actual sales of the product?

Trang 3

Relationships Between Two

Variables

• Relationship: a consistent, systematic

linkage between the levels or labels for

two variables

• “Levels” refers to the characteristics of

description for interval or ratio scales…the level of temperature, etc.

• “Labels” refers to the characteristics of

description for nominal or ordinal scales, buyers v non-buyers, etc.

• As we shall see, this concept is important

Trang 4

Relationships Between Two

Variables

• Nonmonotonic: two variables are

associated, but only in a very general sense; don’t know “direction” of

relationship, but we do know that the presence (or absence) of one variable

is associated with the presence (or

absence) of another

• At the presence of breakfast, we shall

have the presence of orders for coffee.

• At the presence of lunch, we shall have the absence of orders for coffee.

Trang 5

Nonmonotonic Relationship

Trang 6

– Increasing

– Decreasing

• Shoe store managers know that there is

an association between the age of a child and shoe size The older a child, the

larger the shoe size The direction is

increasing, though we only know general direction, not actual size.

Trang 7

Monotonic Increasing

Relationship

Trang 8

Relationships Between Two

Variables

• Linear: “straight-line” association

between two variables

• Here knowledge of one variable will yield knowledge of another variable

• “100 customers produce $500 in

revenue at Jack-in-the-Box” (p 525)

Trang 9

Relationships Between Two

Variables

• Curvilinear: some smooth curve

pattern describes the association

• Example: Research shows that job

satisfaction is high when one first

starts to work for a company but goes down after a few years and then back

up after workers have been with the same company for many years This would be a U-shaped relationship

Trang 10

Characterizing Relationships

Between Variables

1 Presence: whether any systematic

relationship exists between two

variables of interest

2 Direction: whether the relationship

is positive or negative

3 Strength of association: how strong

the relationship is: strong?

moderate? weak?

• Assess relationships in the order

shown above

Trang 11

• Cross-tabulation table: four types of

numbers in each cell

– Frequency

– Raw percentage

– Column percentage

Trang 13

Cross-Tabulations

Trang 14

Ch 18 14

Cross-Tabulations

• When we have two nominal-scaled

variables and we want to know if

they are associated, we use

cross-tabulations to examine the

relationship and the Chi-Square test

to test for presence of a systematic

relationship

• In this situation: two variables, both with nominal scales, we are testing for a nonmonotonic relationship

Trang 15

Chi-Square Analysis

• Chi-square (X2) analysis: is the

examination of frequencies for two

nominal-scaled variables in a tabulation table to determine whether the variables have a significant

cross-relationship

• The null hypothesis is that the two

variables are not related

• Observed and expected frequencies:

Trang 16

• Example: Let’s suppose we want to know if there is a relationship

between studying and test

performance and both of these

variables are measured using

nominal scales…

Trang 17

– The column percentages table or

– The raw percentages table

Trang 18

Did You St udy f or t he Test ? * How Did You Perf orm on t he

Test ? Crosst abulat ion

Did You Study for the Test?

Trang 19

• Do you “see” a relationship? Do you “see” the

“presence” of studying with the “presence” of passing? Do you “see” the “absence” of

passing with the presence of not studying?

• Congratulations! You have just “seen” a

Did You St udy f or t he Test ? * How Did You Perf orm on t he

Test ? Crosst abulat ion

Did You Study

for the Test?

Trang 21

• But while we can “see” this

association, how do we know there

is the presence of a systematic

association? In other words, is this

association statistically significant?

Would it likely appear again and

again if we sampled other students?

• We use the Chi-Square test to tell us

if nonmonotonic relationships are

really present

Trang 22

• Using SPSS, commands are

ANALYZE, DESCRIPTIVE

STATISTICS, CROSSTABS and

within the CROSSTABS dialog box, STATISTICS, CHI-SQUARE

Trang 23

Chi-Square Analysis

• Chi-square analysis: assesses

nonmonotonic associations in tabulation tables and is based upon differences between observed and

cross-expected frequencies

• Observed frequencies: counts for

each cell found in the sample

• Expected frequencies: calculated on the null of “no association” between the two variables under examination

Trang 24

Chi-Square Analysis

• Computed Chi-Square values:

Trang 25

Chi-Square Analysis

• The chi-square distribution’s shape

changes depending on the number of degrees of freedom

• The computed chi-square value is

compared to a table value to

determine

statistical

significance

Trang 26

Ch 18 26

Chi-Square Analysis

• How do I interpret a Chi-square result?

– The chi-square analysis yields the

probability that the researcher would find evidence in support of the null hypothesis

if he or she repeated the study many, many times with independent samples.

– If the P value is < or = to 0.05, this means there is little support for the null

hypothesis (no association) Therefore,

we have a significant association…we have the PRESENCE of a systematic relationship between the two variables.

Trang 27

Chi-Square Analysis

• Read the P value (Asympt Sig) across from Pearson Chi-Square Since the P value is <0.05, we have a

Chi- Square Test s

39.382b 1 000 35.865 1 000 34.970 1 000

.000 000 100

Pearson Chi- Square

Trang 28

Chi-Square Analysis

• How do I interpret a Chi-square result?

– A significant chi-square result means the researcher should look at the

cross-tabulation row and column percentages to “see” the association pattern

– SPSS will calculate row, column, (or both) percentages for you See the CELLS box at the bottom of the

CROSSTABS dialog box

Trang 29

Chi-Square Analysis

• Look at the ROW %’s: 92% of those

who studied passed; almost 70% of

those who didn’t study failed “See” the

Did You St udy f or t he Test ? * How Did You Perf orm on t he Test ? Crosst abulat ion

Did You Study

for the Test?

Trang 30

Presence, Direction and

Strength

• Presence? Yes, our Chi-Square was

significant This means that the pattern

we observe between studying/not

studying and passing/failing is a

systematic relationship if we ran our

study many, many times

• Direction? Nonmonotonic relationships

do not have direction…only presence and absence

Trang 31

Presence, Direction and

Strength

• Strength? Since the Chi-Square only tells us presence, you must judge the strength by looking at the pattern

Don’t you think there is a “strong”

relationship between study/not

studying and passing/failing?

Trang 32

When can you use Crosstabs and

Trang 35

Correlation Coefficients and

Covariation

• The correlation coefficient: is an

index number, constrained to fall

between the range of −1.0 and +1.0

• The correlation coefficient

communicates both the strength and the direction of the linear relationship between two metric variables

Trang 36

Ch 18 36

Correlation Coefficients and

Covariation

• The amount of linear relationship

between two variables is

communicated by the absolute size

of the correlation coefficient

• The direction of the association is

communicated by the sign (+, -) of

the correlation coefficient

• Covariation: is defined as the amount

of change in one variable

systematically associated with a

change in another variable

Trang 37

Measuring the Association Between Interval- or Ratio-Scaled Variables

• In this case, we are trying to assess

presence, direction and strength of a

monotonic relationship

• We are aided in doing this by using:

• Using SPSS, commands are

ANALYZE, CORRELATE,

BIVARIATE

Pearson Product Moment Correlation

Trang 38

Correlation Coefficients and

Covariation

• Covariation can be examined with

use of a scatter diagram

Trang 39

Pearson Product Moment

Correlation Coefficient (r)

• Presence? Determine if there is a

significant association The P value should be examined FIRST! If it is

significant, there is a significant

association If not, there is no

association

• Direction? Look at the coefficient Is

it positive or negative?

Trang 40

Pearson Product Moment

Correlation Coefficient (r)

• Strength? The correlation coefficient (r) is a number ranging from -1.0 to +1.0 the closer to 1.00 (+ or -), the stronger the association There are

“rules of thumb”…

Trang 41

Rules of Thumb Determining

Strength of Association

• A correlation coefficient’s size indicates the

strength of association between two

variables.

• The sign (+ or -) indicates the direction of

Trang 42

Pearson Product Moment

Trang 43

Pearson Product Moment

– Correlations will not detect

non-linear relationships between

Trang 44

• When there is NO association, the P value for the Pearson r will be >0.05.

Trang 45

• When there IS association, the P value for the Pearson r will be < or =0.05.

• Examples: negative association between sales force rewards and turnover; positive association between length of sales force training and sales.

Trang 46

Ch 18 46

Example

• What items are associated with

preference for a waterfront view

among restaurant patrons?

– Are preferences for unusual entrées,

simple décor, and unusual desserts associated with preference for

waterfront view while dining?

– Since all of these variables are scaled we can run a Pearson

interval-Correlation to determine the association between each variable with the

preference for waterfront view.

Trang 47

• Using SPSS, commands are

ANALYZE, CORRELATE,

BIVARIATE

Trang 48

Ch 18 48

• The output shows presence, direction and strength of the association

• Do you see any managerial

significance to these associations?

Trang 49

Concluding Remarks on Associative Analyses

• Researchers will always test the null hypothesis of NO relationship or no correlation

• When the null hypothesis is rejected, then the researcher may have a

managerially important relationship to share with the manager

Ngày đăng: 28/07/2014, 19:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm