vi6t hp phuong trinh Maxwell trong chdn kh6ng dang vi ph6n vi cho ui6t y nghia vft lf tirng phuong trlnh 2.. xudt phat tir phuong trinh divE = L trongchdn kh6ng, h6y x6y dung phuong tri
Trang 1E4i Hgc Su Ph4m TpHCM
Khoa Vft Lf
pd rni lin r
M6n: EiQn DQng Lgc ThdiGian: 120 phrit
Cdu l: DiQn tir trudng (3il)
l vi6t hp phuong trinh Maxwell trong chdn kh6ng (dang vi ph6n) vi cho ui6t y nghia vft lf tirng phuong trlnh
2 xudt phat tir phuong trinh divE = L trongchdn kh6ng, h6y x6y dung phuong
trinh tuong tu trong mdi trudng
"r,
jntU
3 Ldy vi du tl6 chfng t6 rliQn tir trudng ld mQt dang t6n tgi cria vflt ch6t
Cdu2: Sdng tliin tir tg do (2rt)
l Thgc ti6n ndo cho thdy ring tliQn tir trudng c6 th6 t6n t4i rtQc lfp phdn tich ngin gqn di5 d6 chung minh
2 Tir hQ phuong trinh Maxwell, hdy chring minh lugn di6m tr6n bing c6ch giai hQ
,;' ,-^,+*- nllu*q1g trinh Maxwell'
: gdu 3: Eipn Th6 vn NEng Luflrg itiQn trudng cfra qui cAu tich
ttiQn (3iI) MQt qui cAu b6n kinh R, tich dien dAu theo th6 tich, mat dO p = const, hQ s6 diQn mQi
b6n trong vd ngoii qui cAu dAu ld a.
l Tim phf;n UO eien thti tr6n todn kh6ng gian
2 Tinh diQn dung cta quA cAu
3, Tfnh ndng lugng diQn trulng cira qui ciu
cdu 4: Moment tir vi cim {'ng tir cia qufr cAu tich iliQn xoay (2rI) MQt m{t cAu b6n kfnh a, tich ttiQn dAu v6i t6ng <liQn tich ln e eua cAu xoay quanh trsc cfia n6 v6i vfln t6c g5c Z
l Tinh vecto moment tir cira qui cAu
2 Tfnh Vecto c6m ring tt t?i tem mflt cAu.
' Thf sinh kh6ng clugc sri dpng tdi liQu
'Ci6m thi kh6ng gi6ithfch dA thi
-LT' .l-f€il ,1