Trong các phương pháp hóa lý và sinh học đang được áp dụng để xử lý nước từ các trại giống, phương pháp lọc sinh học có nhiều ưu điểm do chi phí thấp, xử lý môi trường hiệu quả và an toà
Trang 1DỤNG CHO LỌC SINH HỌC ĐỂ XỬ LÝ NƯỚC NUÔI THỦY SẢN HOÀN LƯU
I Mở đầu
Một trong những khó khăn lớn của các trại sản xuất
giống hải sản là hiện tượng con giống chết hàng loạt
trong thời gian ngắn do bị nhiễm bệnh hoặc do thay nước
có thành phần hóa lý không phù hợp Thực tế cho đến nay vẫn chưa có mô hình xử lý nước thật sự hiệu quả để tái sử dụng nước cho trại giống ở nước ta mặc dù việc này hoàn toàn có khả năng thực hiện được và nhiều nước trên thế giới đã tiến hành Trong các phương pháp hóa lý
và sinh học đang được áp dụng để xử lý nước từ các trại giống, phương pháp lọc sinh học có nhiều ưu điểm do chi phí thấp, xử lý môi trường hiệu quả và an toàn
Hiện nay, chỉ có rất ít trại giống ở nước ta sử dụng công nghệ lọc sinh học nhưng hiệu quả ứng dụng không cao
do trong quá trình vận hành các trại chưa tuân thủ
nghiêm ngặt các công đoạn của quy trình xử lý Lọc sinh học rất dễ trở thành con dao hai lưỡi nếu các điều kiện về tuần hoàn nước, pH, hàm lượng DO và vật liệu lọc không thích hợp cho vi sinh vật bám dính
Trong phạm vi bài báo này, chúng tôi chỉ đề cập tới
nghiên cứu lựa chọn vật liệu cố định thích hợp cho vi sinh vật bám dính như một trong những khâu quan trọng của hệ lọc sinh học
II.Vật liệu và phương pháp nghiên cứu
1 Vật liệu
- Ba loại chất mang để thử nghiệm là lô nhựa, sỏi nhẹ và
Trang 2san hô
- Nước dùng nuôi thuỷ sản lấy từ Trạm Quý Kim, Hải Phòng, độ mặn 15 %o có bổ sung thêm (NH4)2SO4- 0,11 g/l; K2HPO4- 0,013 g/l; đường saccharosa - 0,06 g/l; sắt - EDTA - 0,1 m/l
2 Phương pháp
- Xác định pH và t0C bằng máy đo pH-320 WTW-Ðức,
DO bằng máy đo ôxy 330- Ðức, và N-NH+4, N-NO-2, N-NO-3 theo tài liệu Standard methods for examination
of water and wastewater (American Public Health
Association)
- Ðể so sánh thử nghiệm hiệu quả của các chất mang khác nhau, chúng tôi sử dụng hệ lọc sinh học gồm một cột lọc tầng sôi và một cột lọc nhỏ giọt đối với mỗi chất mang (hình 1) Trong quá trình thí nghiệm, bơm liên tục nước ở bể nuôi vào đáy cột lọc tầng sôi, đồng thời bổ sung khí nén nhằm cấp thêm ôxy cho vi khuẩn sống
trong hệ thống lọc chìm sinh học Trong cột lọc tầng sôi, nước được vận chuyển từ dưới lên trên rồi phun lên chất mang của cột lọc nhỏ giọt Khi nước chảy liên tục trong
hệ thống, trên bề mặt của chất mang sẽ dần dần hình
thành màng sinh học bao gồm các vi khuẩn hiếu khí, tuỳ tiện và kỵ khí
- Ðánh giá hiệu quả của chất mang thông qua hiệu quả chuyển hóa N-NH+4, N-NO-2, N-NO-3
III Kết quả và thảo luận
1 So sánh hiệu quả của quá trình nitrat hoá ở cột lọc sinh học có chất mang là lô nhựa, sỏi nhẹ và san hô
Tiến hành thí nghiệm ở nhiệt độ khoảng 15,8 - 25,80C;
pH 7,36 - 8,95 và DO 5,33 - 7,56 mg/l Ðây là điều kiện tương đối thuận lợi cho hệ vi sinh vật trong cột lọc sinh
Trang 3Bảng1: Biến động của NH+4, NO-2, NO-3 trong quá trình xử lý nước nuôi thuỷ sản bằng cột lọc sinh học có các chất mang khác nhau
Chất mang
Mẫ
u
phâ
n
tích
NH+
4
%
giả
m
N
O-2
N
O-3
NH+
4
% giả
m
NO-2
4
% giả
m
NO-2
NO-3
1 26,1
0,4
8
0,5
6
35,2
3,20 30,0
2 23,1
6
11,2
6
1,2
0
0,9
0
25,7
8
26,8
6,90 14,3
2
52,2
6
10,0
3 19,8
0
24,1
3
1,3
6
0,4
6
23,8
0
32,4
2,89 12,8
2
57,2
6
10,4
4 18,8
0
27,9
6
0,3
8
0,9
8
20,2
0
42,6
5,26 10,0
0
66,6
6
10,5
5 12,9
6
50,3
4
0,3
5
0,6
78,0
3,50 9,30 69,0
0
10,6
6
9,80 62,4
5
0,7
1
0,2
87,8
11,1
8
20,8
11,1
7
5,70 78,1
6
0,1
2
0,9
91,4
13,0
6
16,6
0
20,1
9
13,0
8
5,32 79,6
1
0,6
7
0,4
99,1
9,73 3,90 81,2
5
15,6
0
11,7
8
9 32,4
0,2
5
0,3
2
30,9
13,8
5
2,00 1,45 93,0
2
34,2
0
12,9
0
10 23,3
0
28,0
8
0,2
3
0,3
81,2
2
15,1
0
4,40 22,9
60,2
0
14,9
0
11 15,7 51,50,2 0,1 5,33 82,714,16,60 10,2 55,562,524,9
Trang 40 4 2 3 5 0 0 1 6 0
12 11,6
6
64,0
1
0,7
7
0,1
84,1
1
18,8
0
3,85 3,46 84,9
1
78,6
0
30,4
0
13 11,0
4
65,9
2
0,2
0
0,4
89,1
2
14,9
7
3,80 0,50 97,8
1
85,2
14
9,20 71,6
0
0,1
0
0,0
98,1
5
20,2
0
5,18 22,4
51,3
0
12,3
0
15 25,7
1,3
0
0,2
98,5
1
16,7
0
4,21 12,8
5
42,6
3
25,1
0
20,8
5
16 19,4
0
24,5
1
0,4
3
0,1
23,9
0
2,00 0,28 98,7
5
21,9
5
33,3
0
17 17,3
9
32,3
3
0,4
6
0,2
58,6
9
30,6
0
5,20 27,8
41,8
0
39,2
0
18 16,7
8
34,7
0
0,5
5
0,4
99,1
5
33,5
0
11,4
68,1
2
46,7
0
50,8
0
19 15,7
0
38,9
1
0,5
2
1,2
4
15,8
44,6
0
6,04 1,10 96,0
4
60,9
0
93,3
0
20 13,6
3
46,9
6
1,0
5
0,3
6
10,0
7
36,2
6
52,0
0
4,92 18,1
56,3
0
110,
6
21 11,0
0
57,1
9
0,5
5
0,9
69,9
3
66,0
0
10,2
54,6
9
59,5
0
133,
7
22 10,7
5
58,1
7
0,2
3
1,0
98,4
1
70,0
0
12,0
94,0
3
61,6
0
125,
8
* Ghi chú: Thời điểm bổ sung NH+4 ứng với % giảm là 0,00 trong bảng
Nhận xét:
- Lô nhựa:
Trong quá trình thí nghiệm, đã bổ sung NH4 làm 3 đợt với lượng NH4 ban đầu biến động từ 26 - 32 mg/l Kết quả trình bày trên bảng 1 cho thấy hiệu quả giảm NH4
Trang 5NO3- lại sinh ra rất ít ( NO2-= 0,10 - 1,36 mg/l; NO3- = 0,05 - 1,24 mg/l)
- Sỏi nhẹ:
Ðã bổ sung NH4 làm 4 đợt Kết quả cho thấy hiệu quả giảm NH4 trung bình cho cả 4 đợt là 75,25%, tăng
27,48% so với cột lọc sinh học có chất mang là lô nhựa Tuy nhiên, hiệu quả chuyển hoá NO2- và NO3- còn chưa tốt
- San hô:
Ðã bổ sung NH4- làm 6 đợt Kết quả cho thấy hiệu quả giảm NH4 trung bình 70,75%, tăng 22,98% so với cột lọc có chất mang là lô nhựa Tuy nhiên, hiệu quả chuyển hoá NO2- và NO3- trong môi trường hầu như không đạt yêu cầu
Từ những đánh giá trên, đã chọn sỏi nhẹ là chất mang cho thí nghiệm tiếp theo mặc dù khả năng chuyển hoá NO-2 và NO-3 chưa tốt vì: sỏi nhẹ cho hiệu quả ôxy hoá NH+4 cao nhất; là vật liệu có diện tích bề mặt đặc trưng lớn trên một đơn vị thể tích; là vật liệu rất dễ mua với giá thành hạ Ðồng thời, có thể nâng cao hiệu suất loại bỏ NO-2 và NO-3 bằng việc hoàn thiện cột lọc nhỏ giọt và thay đổi tốc độ phun nước để có thời gian lưu hợp lý, tạo điều kiện cho vi sinh vật bám dính tốt trên bề mặt của sỏi
2.Thí nghiệm xử lý amôn bằng cột lọc sinh học có chất mang là sỏi nhẹ
Trong thí nghiệm này, hệ lọc sinh học vẫn gồm cột lọc tầng sôi và cột lọc nhỏ giọt, nhưng cấu trúc của cột lọc nhỏ giọt có thay đổi Theo dõi thí nghiệm liên tục trong thời gian 60 ngày, duy trì các điều kiện cần thiết cho hoạt động của cột lọc Ðưa amôn vào môi trường dưới dạng
Trang 6NH4Cl nồng độ 2 mg/l và bổ sung liên tục theo kết quả phân tích
Nhận xét:
Thời gian khởi động của cột lọc sinh học khoảng 3 tuần
Từ ngày thứ 22 trở đi, tốc độ nitrat hoá đã nhanh hơn nhiều Chỉ sau 24 giờ đã đạt hiệu quả oxy hóa NH+4 từ
31 - 58% Sau 48 giờ xử lý, hiệu quả giảm đạt từ 85 - 90% Ðiều này chứng tỏ sau thời gian chạy khởi động, lượng vi khuẩn Nitrosomonas sp đã ổn định và cho hiệu quả giảm amôn khá tốt
Do sinh khối Nitrobacter sp còn quá ít ở giai đoạn đầu nên lượng NO-2 trong môi trường đã tăng nhanh sau 8 ngày thí nghiệm ( 84,50 - 70 mg/l) Ðến ngày thứ 25, khi lượng vi khuẩn Nitrobacter sp trong cột lọc đã phát triển mạnh và ổn định, việc chuyển hoá NO-2 đã diễn ra
nhanh và hàm lượng NO-2 chỉ dao động ở mức từ 0,1 - 0,79 mg/l
Trong quá trình thí nghiệm, đã duy trì hàm lượng NO-3 ở khoảng thích hợp từ 0,61 - 21,2 mg/l Kết quả thí nghiệm phần nào đã chứng minh rằng việc thay đổi cấu trúc của cột lọc nhỏ giọt, cùng với việc phun đều lên toàn bộ chất mang đã tạo điều kiện thuận lợi cho màng sinh học hình thành trên bề mặt của các viên sỏi, tạo điều kiện tốt cho các vi khuẩn yếm khí thực hiện quá trình khử nitrat
IV Kết luận
1- Hệ lọc sinh học bao gồm cột lọc tầng sôi và cột lọc nhỏ giọt với chất mang khác nhau cho hiệu quả xử lý amôn trung bình khác nhau: lô nhựa đạt 47,77%; sỏi nhẹ đạt 75,25%; san hô đạt 70,75% Kết quả thí nghiệm cho thấy sử dụng sỏi nhẹ làm vật liệu cố định vi sinh vật
trong hệ lọc có triển vọng nhất
2- Hệ lọc sinh học với cột lọc tầng sôi và cột lọc nhỏ giọt
Trang 7khá tốt với hiệu quả ôxy hoá amôn sau 48 giờ đạt từ 85 - 90%; Hiệu quả chuyển hoá NO-2, NO-3 cao, đạt hàm lượng NO-2 trong môi trường ở mức 0,1 - 0,79 mg/l; NO-3 ở mức 0,61 - 21,2 mg/l
Tài liệu tham khảo
1- Menasveta P., A.W Fast, S Piyatitivorakul, S
Rungsupa 1991 An
Improved, closed seawater Recirculation Maturation
System for Giant Tiger Prawn (Penaeus monodon
Fabricius) Aquacultural Engineering 10: 173-181
2- Menasveta P., Aranyakanonda P., Rungsupa, S & Moree, N 1989 Maturation and larviculture of penaeid Prawns in closed recirculating seawater system
Aquacultural Engineering, 8: 357-368
3- Rogers, G.L., Klemetson, S.L 1985 Ammonia
removal in selected aquaculture water reuse biofilters Aquacultural Engineering 4: 135-154
4- Borendeur, J 1989 Fixed-biofilm reactors aplied to waste water treatment and aquacultural water
recirculating systems Ph.D Dissertation Univ
Wageningen The Netherlands, 171 pp
5- Nguyễn Việt Thắng 1996 Lọc sinh học- hướng sử dụng trong sản xuất giống và nuôi tôm NXB Nông
nghiệp T/p Hồ Chí Minh, 39 trang