1. Trang chủ
  2. » Ngoại Ngữ

Sat - MC Grawhill part 27 pot

10 390 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 224,74 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Here they are: Rate formula Chapter 9, Lesson 4: Distance or work = rate × time Average arithmetic mean formulas Chapter 9 Lesson 2: Average = Sum = average × number of things Slope for

Trang 1

SAT Practice 4: Simplifying Problems

1. If 3y − 4z = 6 and 2y + z = 10, then y − 5z =

(A) 12

(B) 6

(C) 4

(D) 0

(E) −4

2. If a + b = 3, a + c = 5, and b + c = −6, then

a + b + c =

(A) 4

(B) 2

(C) 1

(D) 0

(E) −1

3. If and , what is the

value of ?

(A)

(B)

(C)

(D) 2

(E) 8

5

3

3

5

1

2

b

c

a c c

+ = 5

a b

b

+ = 3

Questions 4 and 5 pertain to the following

definition:

For all non-zero real numbers k, let .

4. Which of the following is equivalent to

^3 − ^2?

(A) (B) (C) ^1 (D) (E) ^2

5. Other than 0, what is the only value of k for which ^^k is undefined?

^6 5

∧5 6

∧1 6

k= −

k

1

2 3 4 5 7 8 9 6

1 0 2 3 4 5 7 8 9 6

1 0 2 3 4 5 7 8 9 6

1 0 2 3 4 5 7 8 9 6

Trang 2

4 D Begin by simplifying ^3 − ^2 by substitution:

But be careful not to pick (A) because

Notice that the choices must be evaluated first be-fore we can see which one equals 1/6 Notice that choice (D) is

5 1 Begin by simplifying ^^k by substitution:

Yikes! That doesn’t look simple! But think about

it: why is it that k can’t be 0? Because division

by 0 is undefined, and k is in a denominator But

notice that is also in a denominator, so can’t be 0, either!

Solving:

Add :

Multiply by k: k≠ 1 Then check by noticing that ^^1 is undefined:

^^1 = ^(1 − 1/1) = ^0 = 1 − 1/0, and 1/0 is undefined

1−1

k

1

k

1− ≠1 0

k

1−1k

1−1

k

∧∧ =∧⎛⎝⎜ − ⎞⎠⎟ = −

k

k

k

∧6 5 1 5 6 1 6.= − =

∧1 6 1 6= − = −5

∧1 6

∧3−∧2= −(1 1 3)− −(1 1 2)=2 3 1 2 1 6− =

Concept Review 4

1 −2n − (6 − 5n) − n = −2n − 6 + 5n − n = 2n − 6

2

3

4

5

6 Substitute y = 1 − x into 2y + x = 5 to get

2(1 − x) + x = 5

x x6 = ×x x3=x4

2

6 2

4 2

10

2

x x x

x

x x

x x

x

x x x

2

4

4 2

x x

x x

x x

2

2

x

x x

x x

x x

x x

( ) ( + )

+

( ) ( − ) = ( ( −−−1) )

Distribute: 2 − 2x + x = 5

Simplify: 2 − x = 5

Multiply by −1: x= −3

7 3 + m + n = n2+ m2

Subtract n and m: 3 = (n2− n) + (m2− m)

Substitute:

Substitute for <4>: = <(1 − 4)2>

Simplify: = <(−3)2>

Simplify: = <9>

Substitute for <9>: = (1 − 9)2

n2 n m2 m

6

3 6

1 2

SAT Practice 4

1 E Subtract the equations: 3y − 4z = 6

2 C Add the equations:

(a + b) + (a + c) + (b + c) = 3 + 5 + −6

Simplify: 2a + 2b + 2c = 2

Divide by 2: a + b + c = 1

3 D Start by simplifying the expressions:

Substituting into the original equations gives

Subtract 1:

Divide the fraction:

Simplify:

Simplify: b

c= 2

a c

b a

× = 2

a cc a b

=4 2

a b

a c

a

b

a c

+ =1 3 and + =1 5

a b b

a b

b b

a b

a c b

a c

c c

a c

+ = + = + + = + = +

1

1

y z

y z

Trang 3

Lesson 5: Connecting to Knowledge

Know What You Need

Some SAT math questions require you to use special formulas or know the definitions of special terms Fortunately, you won’t need to memorize very many formulas (none of that trig stuff, for instance), and some of the most important ones are given to you right on the test!

Reference Information

Every SAT math section gives you this reference information Check it out and use it when you need it.

The arc of a circle measures 360°

Every straight angle measures 180°

The sum of the measures of the angles in a triangle is 180°

Memorize the Key Formulas They DON’T

Give You

It’s awfully nice of the SAT to give you those

formu-las, but those are not quite all you’ll need

Fortu-nately, we can fit the other key formulas on a single

page Here they are:

Rate formula (Chapter 9, Lesson 4):

Distance (or work) = rate × time

Average (arithmetic mean) formulas (Chapter 9

Lesson 2):

Average =

Sum = average × number of things

Slope formula (Chapter 10, Lesson 4):

Slope =

Midpoint formula (Chapter 10, Lesson 4):

Midpoint =

Percent change formula (Chapter 7, Lesson 5):

Percent change = final starting

starting

x1 x2 y1 y2

⎝⎜

⎠⎟

,

rise run

y y

x x

= 2−− 1

2 1

sum number of things

Memorize the Key Definitions

You’ll also want to memorize the definitions of some key terms that show up often:

Mode = the number that appears the most

fre-quently in a set Remember that mode and most both begin with mo (Chapter 9, Lesson 2).

Median = the “middle number” of a set of

numbers when they are listed in order If there are an even number of numbers, the median

is the average of the two middle numbers

(Chapter 9, Lesson 2)

Remainder = the whole number left over when

one whole number has been divided into an-other whole number a whole number of times

(Chapter 7, Lesson 7)

Absolute value = the distance a number is from

0 on the number line (Chapter 8, Lesson 6)

Prime number = an integer greater than 1 that

is divisible only by itself and 1 (Chapter 7,

Lesson 7)

Factor = a number or expression that is part of a product (Product = result of a multiplication.)

r

A = πr2

C = 2 πr

w

h

w h

r

a

2x

x

s

3

2

30°

60°

45 °

45 °

Trang 4

Concept Review 5: Connecting to Knowledge

Write out each formula, theorem, definition, or property

1 The Pythagorean theorem

2 The zero product property

3 The parallel lines theorem

4 The rate formula

5 The average (arithmetic mean) formula

6 The definition of the median

7 The definition of the mode

8 The circumference formula

9 The circle area formula

10 The triangle area formula

Trang 5

SAT Practice 5: Connecting to Knowledge

1. If x is the average (arithmetic mean) of k and 10,

and y is the average (arithmetic mean) of k and

4, what is the average of x and y, in terms of k?

(D) 7k (E) 14k

2. If, on average, x cars pass a certain point on a

highway in y hours, then, at this rate, how many

cars should be expected to pass the same point

in z hours?

Note: Figure not drawn to scale

3. A straight 8-foot board is resting on a rectangular

box that is 3 feet high, as shown in the diagram

above Both the box and the board are resting on a

horizontal surface, and one end of the board rests

on the ground 4 feet from the edge of the box If h

represents the height, in feet, of the other end of

the board from the top of the box, what is h?

x yz

xz

y

z xy

xy z

k+ 7 2

k+14 2

k+14

4

Key formula(s):

Key formula(s):

Key formula(s):

3 feet

4 feet

8 feet

h feet

.

1

2

3

4

5

7

8

6

1

0

2

3

4

5

7

8

6

1

0

2

3

4

5

7

8

6

1 0 2 3 4 5 7 8 6

Trang 6

3 1.8 Key formula: The Pythagorean theorem:

c2= a2+ b2 Key theorem: In similar triangles, cor-responding sides are proportional Notice that the figure has two right triangles, and they are similar The hypotenuse of the bottom triangle is 5 because

32+ 42 = 52 Therefore, the hypotenuse of the top triangle is 8 − 5 = 3 Since the two triangles are similar, the corresponding sides are proportional:

Cross-multiply: 5h = 9

Divide by 5: h = 1.8

3

5=3h

Concept Review 5

1 The Pythagorean theorem: In a right triangle, if

c is the length of the hypotenuse and a and b are

the lengths of the two legs, then c2 = a2 + b2

(Chapter 10, Lesson 3)

2 The zero product property: If a set of numbers has

a product of zero, then at least one of the numbers

is zero Conversely, if zero is multiplied by any

number, the result is zero (Chapter 8, Lesson 5)

3 The parallel lines theorem: If a line cuts through

two parallel lines, then all acute angles formed

are congruent, all obtuse angles formed are

con-gruent, and any acute angle is supplementary to

any obtuse angle (Chapter 10, Lesson 1)

4 The rate formula: distance (or work) = rate × time

(Chapter 9, Lesson 4)

5 The average (arithmetic mean) formula:

Average = sum ÷ number of things (Chapter 9,

Lesson 2)

6 The definition of the median: The “middle num-ber” of a set of numbers when they are listed in order If there are an odd number of numbers, the median is the “middle number,” and if there are

an even number of numbers, it is the average of the two middle numbers (Chapter 9, Lesson 2)

7 The definition of the mode: The number that ap-pears the most frequently in a set (Chapter 9, Lesson 2)

8 The circumference formula: Circumference = 2πr

(Chapter 10, Lesson 5)

9 The circle area formula: Area = πr2(Chapter 10, Lesson 5)

10 The triangle area formula: Area = base × height/2

(Chapter 10, Lesson 5)

SAT Practice 5

1 C Key formula: Average = sum ÷ number of things.

So if x is the average of k and 10, then

And if y is the average of k and 4, then y=

The average of x and y, then, is

2 D Key formulas: Number of cars = rate × time, and

Since x is the number of cars and y is the time in hours, the rate is x/y cars per

hour Using the first formula, then, the number of

cars that would pass in z hours is

You should notice, too, that simply plugging in

values for x, y, and z can make the problem easier

to think about Say, for instance, that x= 10 cars

pass every y = 2 hours In z = 4 hours, then, it

should be clear that 20 cars should pass by

Plug-ging these numbers into the choices, you will see

that (D) is the only one that gives an answer of 20

x y z xz

y

cars per hour hours

rate number of cars

time

k k

k k k k

10

2

4 2

2

10 4

4 4

4

7 2

k+ 4 2

x= +k210

3 feet

4 feet

8 feet

h feet

3 feet

5 feet

Trang 7

Keep Your Options Open

There are often many good ways to solve an

SAT math problem Consider different

strate-gies This gives you a way to check your work

If two different methods give you the same

an-swer, you’re probably right!

Numerical Analysis—Plugging In

Let’s come back to the problem we saw in Lesson 4:

If 3x2+ 5x + y = 8 and x≠ 0, then what is the value

of ?

Back in Lesson 4 we solved this using substitution,

an algebraic method Now we’ll use a numerical method.

Notice that the equation contains two unknowns This

means that we can probably find solutions by guessing

and checking Notice that the equation works if x = 0 and

y = 8 But—darn it—the problem says x≠ 0! No worries—

notice that x = 1 and y = 0 also work (Check and see.)

Now all we have to do is plug those numbers in for x

whole different approach!

“Plugging in” works in two common situations:

when you have more unknowns than equations

and when the answer choices contain

un-knowns Always check that your numbers

sat-isfy the conditions of the problem Then solve

the problem numerically, and write down the

answer If the answer choices contain

un-knowns, plug the values into every choice and

eliminate those that don’t give the right answer

If more than one choice gives the right answer,

plug in again with different numbers

If 3m = mn + 1, then what is the value of m in terms

of n?

(A) n + 1

(B) n− 2

(C)

(D)

(E)

Because the choices contain unknowns, you can

plug in Pick a simple number for m to start, such as 1.

Plugging into the equation gives 3 = n + 1, which has the

2

3+ n

1

3+ n

1

3− n

16 2

16 2 0

16

y

x x

( )

16 2

+

y

x x

solution n = 2 Now notice that the question asks for m,

which is 1 Write that down and circle it Now substitute

2 for n in the choices and see what you get:

(A) 3 (B) 0 (C) 1 (D) 1/5 (E) 2/5 Only (C) gives the right answer

Algebraic Analysis

You can also solve the problem above algebraically:

3m = mn + 1 Subtract mn: 3m − mn = 1

Factor: m(3 − n) = 1

Divide by (3 − n): m =

Testing the Choices

Some SAT math questions can be solved just by

“testing” the choices Since numerical choices are usually given in order, start by testing choice (C) If (C) is too big, then (D) and (E) are too big, also, leaving you with just (A) and (B) This means that you have only one more test to

do, at most, until you find the answer

If 3(2)n+1 – 3(2)n = 24, what is the value of n?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

Here you can take an algebraic or a numerical ap-proach That is, you can solve the equation for n or you

can “test” the choices to see if they work For this les-son, we’ll try the “testing” strategy Since the choices are given in ascending order, we’ll start with the

mid-dle number, (4) Substituting 4 for n gives us 3(2)5– 3(2)4on the left side, which equals 48, not 24 (It’s okay

to use your calculator!) Since that doesn’t work, we

can eliminate choice (C) But since it’s clearly too big,

we can also rule out choices (D) and (E) That’s why

we start with (C)—even if it doesn’t work, we still narrow down our choices as much as possible Now just test ei-ther (A) or (B) Notice that (B) gives us 3(2)4– 3(2)3, which equals 24, the right answer

Now try solving the problem algebraically, and see

if it’s any easier!

1

3− n

Trang 8

Concept Review 6: Finding Alternatives

1 When can a multiple-choice problem be solved by just “testing the choices”?

2 When solving by testing the choices, why is it often best to start with choice (C)?

3 When testing the choices, when is it not necessarily best to start with choice (C)?

4 When can you simplify a multiple-choice question by plugging in values?

5 What are the four steps to solving by plugging in values?

6 Why is it best to understand more than one way to solve a problem?

Trang 9

SAT Practice 6: Finding Alternatives

Try to find at least two different ways of solving each

of the following problems, and check that both

meth-ods give you the same answer

1. If m = 2x − 5 and n = x + 7, which of the

follow-ing expresses x in terms of m and n?

(A)

(B) m − n+2

(C)

(D) m − n+12

(E) 2(m − n+12)

2. Three squares have sides with lengths a, b, and c.

If b is 20% greater than a and c is 25% greater

than b, then by what percent is the area of the

largest square greater than the area of the

small-est square?

(A) 20%

(B) 50%

(C) 75%

(D) 125%

(E) 225%

3. Jim and Ellen together weigh 290 pounds Ellen

and Ria together weigh 230 pounds All three

to-gether weigh 400 pounds What is Ellen’s

weight?

(A) 110 lbs

(B) 120 lbs

(C) 130 lbs

(D) 140 lbs

(E) 170 lbs

m n− +12

2

m n− + 2

2

4. A painter used one-fourth of her paint on one room and one-third of her paint on a second room If she had 10 gallons of paint left after painting the second room, how many gallons did she have when she began?

(A) 19 (B) 24 (C) 28 (D) 30 (E) 50

5. If and 4r = 7t, what is the value of s in terms of t?

(A) 35t

(B) (C) 35t− 4 (D) 31t

(E) 70t

35 4

t

r=5s

Trang 10

test choice (B) next If Ellen weighs 120 pounds, then Jim weighs 290 − 120 = 170 pounds and Ria weighs 230 − 120 = 110 pounds In total, they weigh 120 + 170 + 110 = 400 pounds Bingo! The answer is (B)

Method 2: Use algebra Let e= Ellen’s weight,

j = Jim’s weight, and r = Ria’s weight Translate

the problem into equations: e + j = 290

e + r = 230

e + j + r = 400

Add first two equations: 2e + j + r = 520

Subtract third equation: −(e + j + r = 400)

e= 120

4 Method 1: Use algebra Let x be the number of

gal-lons of paint that she starts with Translate the

problem into an equation: x − (1/4)x − (1/3)x = 10

Multiply by 12/5: x= 24 The answer is (B)

Method 2: Test the choices Look at the problem carefully She uses one-fourth of her paint, then one-third of her paint, and is left with 10 gallons

of paint, a whole number This suggests that she

started with a quantity that is divisible by 3 and 4 Since 24 is divisible by 3 and 4, it’s a good choice

to test One-fourth of 24 is 6, and one-third of 24

is 8 This means she would be left with

24 − 6 − 8 = 10 Bingo!

5 Method 1: Plug in Let s = 35, so r = 35/5 = 7 and

t= 4 (Check that they “fit.”) Since the question

asks for the value of s, write down 35 and circle it.

Plugging these values into the choices gives (A) 140 (B) 35 (C) 136 (D) 124 (E) 280 The answer is (B)

Method 2: Use algebra Solve the first equation

for s: s = 5r Then solve the second equation for r:

r = (7/4)t Then substitute: s = 5(7/4)t = 35t/4.

Concept Review 6

1 There are many situations in which this is

possi-ble, but perhaps the most common is where you’re

asked to find the solution of an equation, and the

choices are ordinary numbers

2 Because the answer choices are usually presented

in numerical order If choice (C) doesn’t work, you

may be able to tell whether it is too big or too

small, and thereby eliminate two other answers as

well This way, you will only need to “test” one

more choice to get the answer

3 When it is not easy to tell whether the choice is

“too big or too small,” or when there is no pattern

to the choices

4 Usually, when the answer choices contain un-knowns or represent ratios of unun-knowns; also when the problem contains more unknowns than equations

5 (1) Check that the values satisfy any given equa-tions or other restricequa-tions, (2) write down the values you are plugging in for each unknown,

(3) solve the problem numerically and write down this number, and (4) plug in the values to every

choice and eliminate those that don’t give the right answer If more than one choice gives the right answer, plug in different numbers

6 Because the two methods can provide a “check” against one another: if they both give the same an-swer, you are almost certainly right!

SAT Practice 6

1 Method 1: The problem asks you to solve for x in

terms of m and n Notice that every choice

con-tains the expression m − n.

By substitution: m − n = (2x − 5) − (x + 7)

Simplify: m − n = x − 12

Add 12: m − n + 12 = x

So the answer is (D)

Method 2: Just plug in simple values for the

un-knowns If x = 1, then m = (2)(1) − 5 = −3 and n =

(1) + 7 = 8 Since the problem asks for x, write

down its value, 1, and circle it Then plug in m=

−3 and n = 8 to every choice, and simplify:

(A) −4.5 (B) −9 (C) 0.5 (D) 1 (E) 2

So the answer is (D)

2 Method 1: Plug in numbers Let a be 100 If b is 20%

greater than a, then b = 120 If c is 25% greater than

b, then c= 150 The area of the largest square, then,

is (150)2 = 22,500, and the area of the smallest

square is (100)2= 10,000 The percent difference is

(22,500 − 10,000)/10,000 = 1.25 = 125% (D)

Method 2: Use algebra b = 1.2a and

c = (1.25)(1.2a) = 1.5a So the area of the smallest

square is a2and the area of the largest square is

(1.5a)2= 2.25a2 Since 2.25a2− a2= 1.25a2, the area

of the bigger square is 125% larger

3 Method 1: Test the choices, starting with (C)

If Ellen weighs 130 pounds, then Jim weighs

290 − 130 = 160 pounds and Ria weighs

230 − 130 = 100 pounds All together, their weight

would be 130 + 160 + 100 = 390 pounds Close,

but too small This means that our guess for

Ellen’s weight is too big (because increasing

Ellen’s weight decreases both Jim and Ria’s

weight by the same amount, for a net decrease).

This lets us eliminate choices (C), (D), and (E)

Since our guess wasn’t far off, it makes sense to

Ngày đăng: 07/07/2014, 13:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN