1. Trang chủ
  2. » Công Nghệ Thông Tin

A textbook of Computer Based Numerical and Statiscal Techniques part 23 pot

10 196 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 97,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Apply Stirling’s formula to find a polynomial of degree four which takes the values of yas given below: x [Ans.. Using Bessel’s formula find the value of y at x = 3.75 for the data given

Trang 1

7 Apply Stirling’s formula to find a polynomial of degree four which takes the values of y

as given below:

x

[Ans 2 4 8 2

1

3u −3u + ]

8 Apply Stirling’s formula to interpolate the value of y at x = 1.91 from the following data: x

y

[Ans 6.7531]

4.5 BESSEL’S

Example 1 Using Bessel’s formula find the value of y at x = 3.75 for the data given below:

Sol Difference table for the given data is as:

2.102

1.215

Here h = 0.5

u = x a h− =3.75 3.50.5− =0.5

Trang 2

Now from Bessel’s formula, we have

1 ( 1)

−  − 

3 f (–1)

5

( 1) ( 2) ( 1) ( 1)( 2)( 1 2) ( 1) ( 1)( 2)

( 2)

f

18.644 20.225 (0.5 0.5)( 1.581) 1.99 2.37

16 9

0 (0.5 1)(0.5)( 0.5)(2.5) 0

2

+

= 19.407 (Approx.)

Example 2 Following table gives the values of e x for certain equidistant values of x Find the value

of e x at x = 0.644 using Bessel’s formula:

x

x

e

1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237

Sol Given h = 0.01, take it origin as 0.64

0.644 0.64 0.004

0.4 0.01 0.01

x a

u

h

u = 0.4

Difference table for the given data is as:

( )

0.61 1.840431

0.018497

0.019445 0.67 1.954237

Trang 3

Bessel’s formula

1 ( 1)

u u

 

− − 

3 f (–1)

5

1 ( 1)( 2) ( 1) ( 2) ( 1) ( 1)( 2)( 1/2)

( 2)

f

1.896481 1.915541 ( 0.1)(0.01906) 0.4( 0.6) 0.000191 0.000189

(0.4)( 0.6)( 0.1)(0.000002) (1.4)(0.4)( 0.6)( 1.6) 0.000001 0.000002

(1.4)(0.4)( 0.6)( 0.1)( 1.6)

( 0.000001) 120

= 1.906011–0.001906 – 0.0000228 + 0.000000008 + 0.000000033 + 1.68 × 10–10

= 1.904082

Example 3 Find the value of y 25 from the following data using Bessel’s formula Data being y 20 =

2854, y 24 = 3162, y 28 = 3544, y 32 = 3992.

Sol The difference table for the data is as:

308

448

25 24 0.25

4

(0.25) ( 0.25) 382 (0.25)( 0.75)

= 3353 – 95.5 – 6.5625 – 0.0625

= 3250.875

Trang 4

Example 4 The pressure p of wind corresponding to velocity v is given by following data Estimate pressure when v = 25.

v P

Sol The difference table for the given data is as:

0.9

3.4

Let origin = 20, h = 10,

25 20 0.5

10

Bessel’s formula for interpolation is:

2

1 ( 1)

u u

 −  −

1

6.4 0 0.16250 0 2

= 3.2 – 0.16250

P25 = 3.03750

Example 5 Probability distribution function values of a normal distribution are given as follows:

x

p x

( ) 0.39104 0.33322 0.24197 0.14973 0.07895

Find the value of p(x) for x = 1.2.

Sol Taking the origin at 1.0 and h = 0.4

x = a + uh 1.2 = 1.0 + u × 0.4

Trang 5

1.2 1.0 1

The difference table is:

5782

7078

Bessel‘s formula is

3

1 ( 1)

−  − 

105f (0.5) =

1 1 1

24197 14973 2 2 2146 99

  − 

  

= 19457.0625

f (0.5) = 0.194570625

Hence, p(1.2) = 0.194570625.

Example 6 Given y 0 , y 1 , y 2 , y 3 , y 4 , y 5 (fifth difference constant), prove that

1 2

1 25(c b) 3(a c)

where a = y 0 + y 5 , b = y 1 + y 4 , c = y 2 + y 3

Sol Put u= 12 in bessel’s formula, we get

y = y +y − ∆ y + ∆ y− + ∆ y− + ∆ y

Shifting origin to 2, we have

2

y = y +y − ∆ y + ∆ y + ∆ y + ∆ y

c

Trang 6

1 2

c

c

1 2

25( ) 3( )

2 256

c

Example 7 If third differences are constant, prove that

x 2

+ = + − ∆ + ∆ · Sol Put u=12 in Bessel’s formula, we get

2

y = y +y − ∆ y + ∆ yShifting the origin to x.

2

x

+ = + − ∆ + ∆

Example 8 Given that:

x

f x

Apply Bessel’s formula to find the value of f(9).

Sol Taking the origin at 8, h = 2,

9 = 8 + 2u or u = 1

2 The difference table is:

15293

10353

Trang 7

Bessel’s formula is

1

1 ( 1)

u

u u

−  − 

1

 

4

1/2

y

1/2

10 y =71078.27344

y1/2 =7.107827344

Hence, f(9) = 7.107827344

Example 9 Find a polynomial for the given data using Bessel’s formula f(2) = 7, f(3) = 9, f(4) =

12, f(5) = 16.

Sol Let us take origin as 3 therefore,

u = x – 3

2

4

Bessel’s formula:

u

P P

u u u

  + − × +

=

2

3

u

=

9

2 2

u

u

Trang 8

Put u = x – 3

y =

2

( 3) 5

( 3) 9

x

x

2 xx+ +2 x− +

y = 1 2 1 6

2x −2x+ Ans

PROBLEM SET 4.6

1 Find y (0.543) from the following values of x and y:

x

y x

[Ans 6.303]

2 Apply Bessel’s formula to find the value of y2.73 from the data given below:

2.5 0.4938, 2.6 0.4953, 2.7 0.4965, 2.8 0.4974

2.9 0.4981, 3.0 0.4987

[Ans 0.496798]

3 Find y25 by using Bessel’s interpolation formula from the data:

20 24, 24 32, 28 35, 32 40

[Ans 32.9453125]

4 Apply Bessel’s formula to evaluate y62.5 from the data:

x

x

y

[Ans 7957.1407]

5 Apply Bessel’s formula to obtain the value of f (27.4) from the data:

x

f x

[Ans 3.649678336]

6 Apply Bessel’s formula to find the value of f(12.2) from the following data:

( ) 0 0.19146 0.34634 0.43319 0.47725 0.49379 0.49865

x

f x

[Ans 0.39199981]

Trang 9

7 Apply Bessel’s interpolation formula, show that tan160° = 0.2867, Given that:

tan 0 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774

x

x

8 Apply Bessel’s formula to find a polynomial of degree 3 from the data:

x y

x

u + u + u+ u= −

]

9 From the following table find the value of f (0.5437) by Gauss and Bessel’s formula:

( ) 0.529244 0.537895 0.546464 0.554939 0.663323 0.571616 0.579816

x

f x

[Ans 0.558052]

10 Apply Bessel’s formula to obtain a polynomial of degree three:

x

f x

[Ans

3

x

4.6 LAPLACE EVERETTS

Example 1 Find the value of f(27.4) from the following table:

u

f x

Sol Here, u = 27.4 27.0 0.4,

1

origin is at 27.0 h = 1

Also, w = 1 – u = 0.6

Trang 10

Difference table is:

4

154

115

By Laplace Everett’s formula,

f (0.4) = (1.4)(0.4)( 0.6) (2.4)(1.4 (0.4)( 0.6)( 1.6))

( ) { (1.6)(0.6)( 0.4) (2.6)(1.6)(0.6)( 0.4)( 1.4) }

= 3649.678336

Hence f (27.4) = 3649.678336.

Example 2 Using Laplace Everett’s formula, find f(30), if f(20) = 2854, f(28) = 3162, f(36) = 7088, f(44) = 7984.

Sol Take origin at 28, h = 8

28 + 8u = 30 u = 0.25

Also, w = 1 – u = 1 – 25 = 0.75

Ngày đăng: 04/07/2014, 15:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w