1. Trang chủ
  2. » Công Nghệ Thông Tin

A textbook of Computer Based Numerical and Statiscal Techniques part 38 potx

10 350 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 108,92 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

7.7 MILNE’S PREDICTOR-CORRECTOR METHODPredictor-Corrector Methods Predictor-Corrector formulae are easily derived but require the previous evaluation of y and y = f x y at a certain nu

Trang 1

k4 =hf x( 0+h y, 0+k3) =0.2 0 0.2 1 0.0198( + )( − )=0.039208

1

6

y =y + k + k + k +k

= +1 10 2+ −( 0.02) (+ −2 0.0198) (+ −0.039208)

6

=1.0000 0.198013−

= 0.9801986 ≅ 0.9802

The exact value of y(0.2) is 0.9802.

Example 3 Solve the equation y′ = +(x y)with y 0 = 1 by Runge-Kutta rule from x = 0 to x = 0.4 with h = 0.1.

Sol Here f x y( ), = +x y h, =0.1, given y0 =1 when x0 =0

We have,

k1=hf x y( 0, 0) =0.1 0 1( + =) 0.1

2 0 , 0 1

k h

k =hf x + y + 

=0.1 0.05 1.05( + ) =0.11

3 0 , 0 2

k h

k =hf x + y + 

=0.1 0.05 1.055( + ) =0.1105

k4 =hf x( 0+h y, 0+k3) =0.1 0.1 1.1105( + ) =0.12105

1 ( 0.1 ) 0 ( 1 2 3 4)

1

6

x

y =y = =y + k + k + k +k

1 1(0.1 0.22 0.2210 0.12105)

6

Similarly for finding y2=y x( =0.2), we get

k1=hf x y( 1 1=0.1)( )0.1 +1.11034=0.121034

2 1 , 1 1

k h

k =hf x + y + 

=0.1 0.15 1.11034 0.660517[ + + ]=0.13208

3 1 , 1 2

k h

k =hf x + y + 

=0.1 0.15 1.11034 0.06604[ + + ]=0.13208

Trang 2

k4 =hf x( 1+h y, 1+k3) =0.1 0.20 1.11034 0.13263[ + + ]=0.14263

1

6

x

y =y = =y + k + k + k +k

1.11034 1 0.121034 2 0.13208 0.13263 0.14429( ) 1.2428

6

Similarly, for finding y3 =y x( =0.3), we get

k1 =hf x y( 2 2)=0.1 0.2( )+1.2428=0.14428

2 2 , 2 1

k h

k =hf x + y + 

=0.1 0.25 132428 0.07214[ + + ]=0.15649

3 2 , 2 2

k h

k =hf x + y + 

=0.1 0.25 1.2428 0.07824[ + + ]=0.15710

k4 =hf x( 2+h y, 2+k3) =0.1 0.30 1.2428 0.15710[ + + ]=0.16999

1

6

x

y =y = =y + k + K + K +k

=0.13997 Similarly, for finding y4 =y x( =0.4), we get

k1 =( )[0.1 0.3 1.3997+ ]=0.16997 ⇒ k1=0.16997

k2=( )[0.1 0.35 1.3997 0.08949+ + ]=0.18347 ⇒ k2 =0.18347

k3 =( )[0.1 0.35 1.3997 0.9170+ + ]=0.18414 ⇒ k3 =0.18414

k4 =( )[0.1 0.4 1.3997 0.18414+ + ]=0.19838 ⇒ k1=0.19838

∴ 4 1.3997 1 0.16997 2 0.18347 0.18414 0.19838( )

6

y4=1.5836 Ans

Example 4 Given dy y x

dx= − with y(0) = 2, find y(0.1) and y(0.2) correct to 4 decimal places.

Sol We have x0=0, y0=2, h=0.1

Then, we get

k1=hf x y( 0, 0) =0.1 2 0( − )=0.2

Trang 3

2 0 , 0 1

k h

k =hf x + y + 

=0.1 2 +0.22 − +0 0.12 =0.205

3 0 , 0 2

k h

k =hf x + y + 

=0.1 2 +0.2052 −0+0.12 =0.20525

k4=hf x( 0+h y, 0+k3) =0.1 2 0.20525 (0 0.1)[ + − + ]=0.210525 Therefore,

0 [ 1 2 3 4]

1

6

y=y + k + k + k +k

= +2 0.2051708=2.2051708

y( )0.1 =2.2052 Corect to 4 decimal places

For y( )0.2 , we have x0 =0.1, y0 =2.2052, we get

k1=hf x y( 0, 0) =0.1 2.2052 0.1( − )=0.21052

2 0 , 0 1

k h

k =hf x + y + 

=0.1 2.2052 +0.210522 −0.1+0.12 =0.216046

3 0 , 0 2

k h

k =hf x + y + 

=0.1 2.2052 +0.2160462 −0.1+0.12 =0.2163223

k4=hf x( 0+h y, 0+k3) =0.1 2.2052 0.2163223 + −(0.1 0.1+ )=0.22215223

1

6

y = + k + k + k +k

=2.2052 0.2162348+

=2.4214 Ans

Example 5 Solve dy 2xy2

dx= − with y(0) = 1 and h = 0.2 on the interval [0.1] using Runge-Kutta

fourth order method.

Trang 4

Sol As per given, we have x0=0, y0=1, h=0.2

k1=hf x y( 0, 0) ( )( )( )2

2 0.2 0 1 0

k h

k =hf x + y + 

( ) 0.2 ( )2

2

k h

k =hf x + y + 

( ) 0.2 ( )2

2 0.2 0.98 0.38416

2

k4 =hf x( 0+h y, 0+k3) = −22 0.2 0.2 0.961584( )( )( )2= −0.0739715 Hence,

( ) 0 [ 1 2 3 4]

1

6

y =y + k + k + k +k

1 1[0 0.08 0.076832 0.0739715] 6

=0.9615328 Now, we have

x1=0.2,y1 =0.9615328,h=0.2, we get

k1 =hf x y( 1, 1) ( )( )( )2

2 0.2 0.2 0.9615328 0.0739636

k h

k =hf x + y + 

= − ( )( )( )2 =

2 0.2 0.3 0.924551 0.1025754

k h

k =hf x + y + 

= – 2(0.2)(0.3)(0.9102451)2 = 0.0994255

k4 = hf(x1 + h, y1 + k3)

( )( )( )2

2 0.2 0.4 0.8621073 0.1189166

Thus,  ( )= + + + + 

1

6

0.9615328 1[ 0.0739636 0.2051508 0.1988510 0.1189166]

6

=0.8620525

Trang 5

Similarly, we can obtained

y( )0.6 =0.7352784

y( )0.8 =0.6097519

y( )1.0 =0.500073 Ans

Example 6 Solve dy yz x,

dx= + dz =xz y+ ;

dx Given that y(0) = 1, z(0) = –1 for y(0.1), z(0.1).

Sol Here, f x y z1( , , )=yz x+

= +

2( , , )

f x y z xz y

h=0.1,x0=0,y0=1,z0= −1

k1=hf x y z1( 0, 0, 0) (=h y z0 0+x0)= −0.1

l1=hf x y z2( 0, 0, 0) (=h x z0 0+y0)=0.1

2 1 0 , 0 1, 0 1

h

k =hfx + y + z + 

=hf1(0.05, 0.95, 0.95− )= −0.08525

2 2 0 , 0 1, 0 1

h

l =hfx + y + z + 

=hf2(0.05, 0.95, 0.95)− = −0.09025

3 1 0 , 0 2, 0 2

h

k =hfx + y + z + 

=hf1(0.05, 0.957375, 0.954875− )= −0.0864173

3 2 0 , 0 2, 0 2

h

l =hfx + y + z + 

=hf2(0.05, 0.957375, 0.954875− = −0.0864173

k4 = hf1(x0 + h,y0 + h3, z0 + l3) = –0.073048

l4 = hf2(x0 + h, y0 + h3, z0 + l3) = + 0.0822679

=1( 1+2 2+2 3+ 4)= −0.0860637

6

k k k k k

(1 2 3 4)

1

2 2 0.0907823 6

l= l + l + l +l =

y1=y( )0.1 =y0+ = −k 1 0.0860637=0.9139363

z1=z( )0.1 =z0+ = − +k 1 0.0907823= −0.9092176

Trang 6

7.7 MILNE’S PREDICTOR-CORRECTOR METHOD

Predictor-Corrector Methods

Predictor-Corrector formulae are easily derived but require the previous evaluation of y and

( )

y = f x y at a certain number of evenly spaced pivotal point (discrete points of x1 of

x-axis) in the neighbourhood of x0

In general the Predictor-Corrector methods are the methods which require the values of

y at x x n, n−1,x n−2 For computing the value of y at x n+1 A Predictor formula is used to

predict the value of y n+1 Now we discuss Milne’s method which is known as Predictor-Corrector methods

Milne’s Method

The method is a simple and eresonable accurate method of solving the ordinary first order differential equation numerically To solve the differential equation

dy y f x y( ),

dx= =′

by this method we first obtain the approximate value of y n+1 by Predictor formula and then improve the value of y n+1by means of a corrector formula Both these formulas can be derived from the Newton forward interpolation formula as follows:

From Newton’s formula, we have

( )= ( + )= ( )+ ∆ ( )+ ( − )∆ ( )

1

1 2

u u

f x f x uh f x u f x f x

( ) 3 0

( 1)( 2)

1 2 3

u u u

f x

where u x x0,

h

= or x=x0+uh

Putting y′ = f x( ) and y0′ = f x( )0 in the above formula, we get

y′=y′+ ∆ +u y′ − ∆ y′+ − − ∆ y′+ − − − ∆ y

Intergrating (2) from x0 to x0+4h i.e from u=0 to u=4, we get

0 4 0

0

h

x

x

4 0

( 1)( 2)( 3)

] 24

(3 hdu = dx) which gives

0 0

4

x

x h

y + −y =hh′+ ∆ +y′ ∆ y′+ ∆ y′+ ∆ y′

[considering upto fourth differences only]

Using ∆ = −E 1, we get

yy =hy′+ Ey′+ Ey′+ Ey′+ ∆ y′

Trang 7

⇒ [ ] 2

h

This is known as Milne’s predictor formula The corrector formula is obtained by integrating

(2) from x0 to x0 + 2h i.e., from u = 0 to u = 2.

x x h ydx

0

0 + 2

2

y2 – y0 = h y2 2 y 1 y y

3

1 90

0′ + 0′ + 2 0′ 4 0′

L

Using ∆ = −E 1, and simplifying we get

Expression (4) is called Milne’s corrector formula

The general forms of equations (3) and (4) are

4

3

h

3

h

4

3

n

h

and 1 1 [ 1 4 1]

3

h

In terms of f the Predictor formula is

1

4

3

n

h

and the corrector formula is

3

h

Example 7 Tabulate by Milne’s method the numerical solution of dy x y

dx= + with initial conditions

x 0 = 0, y 0 = 1, from x = 0.20 to x = 0.30.

Sol Here y′ = +x y

y′′= +1 y y′ ′′′, =y y′′ ′′′′, =y′′′ ′′′′′,y =y′′′′,

Hence, y0′ =x0+y0 = + =0 1 1

y0′′= + + = + =1 y0′ 1 1 2

y0′′′=y0′′ =2

y′′′′= y′′′′′=

Now taking h=0.05, we get

y1 =1.1026, y2=1.2104, y3 =1.3237

Trang 8

Using Milne’s Predictor formula, we get

4

3

h

y =y + y′−y′+ y

4 0.05

1 2.2052 1.2104 2.6474 1.2428 3

4 0.2 1.2428 1.4428

Using corrector formula, we get

3

h

y =y + y′+ y′ +y

1.1104 1.2104 5.2948 1.4428

3

which is the same as the predicted value

y4=y0.20 =1.2428

and y4′ =1.4428

and putting n = 4, h = 0.05, we get

4

3

h

y =y + y′−y′+ y

4(0.05) 1.0526 2.4208 1.3237 2.8856

3

5 5 5 0.25 1.3181 1.5681

y′ =x +y = + = Using Milne’s corrector formula, we get

5

3

h

y =y + y′+ y′ +y′ 

1.1737 1.3237 5.7712 1.5681

3

which is the same as the predicted value

y5=y0.25=1.3181

and y5′ =1.5681

Again putting n=5, h=0.05 and using Milne’s predictor formula, we get

4

3

h

y =y + y′−y′ + y

4 0.05 1.1104 2.6474 1.4428 3.1362

3

y′ =6 0.3 1.39972 1.6997+ =

which is corrected by

3

h

y =y + y′+ y′ +y

1.2428 1.4428 6.2724 1.6997 1.3997

3

Trang 9

which is same as the predicted value.

y6 =y0.30=1.3997

and y′ =6 1.6997

The result can be put in the tabular form

Example 8 Compute y(2) if y(x) is the solution of dy 1( )

= x + y

dx 2 using Milne Predictor-corrector method Given y 0 = 2, y 0.5 = 2.6336, y 1.0 = 3.595, y 1.5 = 4.968.( ) ( ) ( ) ( )

Sol Here, we have

x = y = 0 ( )

1

0 2 1 2

1 0.5, 1 2.636

1 0.5 2.636 1.568 2

2 1, 2 3.595

1

1 3.595 2.2975 2

3 1.5, 3 4.968

1 1.5 4.968 3.234 2

Using Predictor formula, we get

y4 = y0 + 4

3

h (2f1 – f2 + 2f3) = 2.0 + 4 0 5

3

× (2 × 1.568 – 2.2975 + 2 × 3.234) =6.871 and 4 4 4 ( )

1

2 6.871 4.4335 2

f =x +y = + =

Using corrector formula, we get

4 2 [ 2 4 3 4]

3

h

y =y + f + f +f

3.595 0.5(2.2975 4 3.234 4.4355)

3

=6.873166≈ 6.8732 Thus, corrected 4 1( 4 4) 1( )

2.0 6.8732 4.4366

Again, using Corrector formula, we get

4 2 ( 2 4 3 4)

3

h

y =y + f + f +f

3.595 0.5(2.2975 4 3.234 4.4366)

3

=6.87335 6.8734≈

Trang 10

Example 9 The differential equation dy dx = 1 + y 2 satisfies the following sets of values of x and y.

Sol Firstly, we calculate the following

f0= 1 + y02 = 1

f1= 1 + y12 = 1.0411

f2= 1 + y22 = 1.1787

f3= 1 + y32 = 1.4681 Using Predictor formula, we get

4= 0+4 (2 1− 2+2 3)

3

h

y y f f f

0 4 0.2 2 1.0411( ) 1.1787 2 1.4681( )

3

×

⇒ = + 2 = +( )2 =

4 1 4 1 1.0239 2.0480

Using Corrector formula, we have

4 2 [ 2 4 3 4]

3

h

y =y + f + f +f

0.4228 0.2(1.1787 4 1.4681 2.0480)

3

y( )0.8 =1.0294

The corrected value of

f4= +1 y24 =2.0597 Now, to find f( )1 we use predictor formula such that

y5 = y1 + 4

3

h (2f1 – f3 + 2f4)

= 0.2027 + 4 0 2

3

×

[2(1.1787) – 1.4681 + 2(2.0597)] = 1.5384 and f5 = 1 + y52 = 1 + (1.5384)2 = 3.3667

Finally using corrector formula, we get

5 3 [ 3 4 4 5]

3

h

y =y + f + f +f

0.2( ( ) )

0.6841 1.4681 4 2.0597 3.3667

3

=1.5556733 1.5557=

Ngày đăng: 04/07/2014, 15:20

TỪ KHÓA LIÊN QUAN