Ibrahim and Maslina Darus School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Bangi 43600, Malaysia Correspondence s
Trang 1Volume 2008, Article ID 390435, 14 pages
doi:10.1155/2008/390435
Research Article
New Classes of Analytic Functions Involving
Generalized Noor Integral Operator
Rabha W Ibrahim and Maslina Darus
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Bangi 43600, Malaysia
Correspondence should be addressed to Maslina Darus, maslina@pkrisc.cc.ukm.my
Received 22 March 2008; Accepted 25 April 2008
Recommended by Jozsef Szabados
The present article investigates new classes of functions involving generalized Noor integral operator Some properties of these functions are studied including characterization and distortion theorems Moreover, we illustrate sufficient conditions for subordination and superordination for analytic functions.
Copyright q 2008 R W Ibrahim and M Darus This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1 Introduction and preliminaries
LetH be the class of functions analytic in U and let Ha, n be the subclass of H consisting of functions of the form fz a a n z n a n1 z n1 · · · Let A be the subclass of H consisting of functions of the form fz z a2z2 · · ·
Denote by D α:A → A the operator defined by
D α: z
where∗ refers to the Hadamard product or convolution Then implies that
D n fz z
z n−1 fzn
n! , n ∈ N0 N ∪ {0}. 1.2
We note that D0fz fz and Dfz zfz The operator D n f is called Ruscheweyh
derivative of nth order of f Noor 1,2 defined and studied an integral operator I n : A → A
analogous to D n f as follows.
Trang 2Let f n z z/1 − z n1 , n ∈ N0, and let f n−1be defined such that
f n z∗f n−1z z
Then
I n fz f n−1z∗fz
z
1 − z n1
−1
Note that I0fz zfz and I1fz fz The operator I n is called the Noor Integral of nth order of f Using 1.3, 1.4, and a well-known identity for D n f, we have
n 1I n fz − nI n1 fz z
I n1 fz
Using hypergeometric functions2F1, 1.4 becomes
I n fz
where2F1a, b; c, z is defined by
2F1a, b; c, z 1 ab
c
z
1! aa 1bb 1
cc 1
z2
For complex parameters
α1, , α q
α j
A j / 0, −1, −2, ; j 1, , q
,
β1, , β p
β
j
B j / 0, −1, −2, ; j 1, , p ,
1.8
the Fox-Wright generalizationqΨp z of the hypergeometric q F p function bysee 3 5
qΨp
⎡
⎢
⎣
α1, A1
, ,
α q , A q
;
z
β1, B1
, ,
β p , B p
;
⎤
⎥
⎦ qΨpα j , A j
1,q;
β j , B j
1,p ; z
:∞
n0
Γα1 nA1
· · · Γα q nA q
Γβ1 nB1
· · · Γβ p nB p
z n
n!
∞
n0
q j1Γα j nA j
p j1
β j nB j
z n
n! ,
1.9
where A j > 0 for all j 1, , q, B j > 0 for all j 1, , p, and 1 p
j1 B j −q
j1 A j ≥ 0 for suitable values|z| For special case, when A j 1 for all j 1, , q, and B j 1 for all j 1, , p,
we have the following relationship:
q F p
α1, , α q ; β1, , β p ; z
ΩqΨp
α j , 1
1,q;
β j , 1
1,p ; z
,
q ≤ p 1; q, p ∈ N0 N ∪ {0}, z ∈ U, 1.10
Trang 3Ω : Γ
β1
· · · Γβ p
Γα1
· · · Γα q
We introduce a functionz qΨp α j , A j1,q;β j , B j1,p ; z−1given by
z qΨp
α j , A j
1,q;
β j , B j
1,p ; z
∗z qΨp
α j , A j
1,q;
β j , B j
1,p ; z−1
1 − z λ1 z ∞
n2
λ 1 n−1
n − 1! z n , λ > −1,
1.12
and obtain the following linear operator:
I λ
α j , A j
1,q;
β j , B j
1,p
fz
z qΨpα j , A j
1,q;
β j , B j
1,p ; z−1
where f ∈ A, z ∈ U, and
z qΨp
α j , A j
1,q;
β j , B j
1,p ; z−1
z ∞
n2
p j1Γβ j n − 1B j
q j1Γα j n − 1A j λ 1 n−1 z n 1.14 For some computation, we have
I λ
α j , A j
1,q;
β j , B j
1,p
fz z
∞
n2
p j1Γβ j n − 1B j
q j1Γα j n − 1A j λ 1 n−1 a n z n , 1.15 wherea nis the Pochhammer symbol defined by
a n Γa n Γa
⎧
⎨
⎩
aa 1 · · · a n − 1, n {1, 2, }. 1.16 From1.15 we have the following result
Lemma 1.1 Let fz ∈ A for all z ∈ U then
i I01, 1 1,1;1, 1/n − 1 1,p fz fz.
ii I11, 1 1,1;1, 1/n − 1 1,p fz zfz.
iii zI λ α j , A j1,q;β j , B j1,p fz λ1I λ1 α j , A j1,q;β j , B j1,p fz−λI λ α j , A j1,q;
β j , B j1,p fz.
In the following definitions, we introduce new classes of analytic functions containing generalized Noor integral operator1.15
Trang 4Definition 1.2 Let fz ∈ A then fz ∈ S μ λ α j , A j1,q;β j , B j1,p if and only if
R
z
I λ
α j , A j
1,q;
β j , B j
1,p fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz
> μ, 0≤ μ < 1, z ∈ U. 1.17
Definition 1.3 Let fz ∈ A then fz ∈ C μ λ α j , A j1,q;β j , B j1,p if and only if
R
z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz
> μ, 0≤ μ < 1, z ∈ U. 1.18
Let F and G be analytic functions in the unit disk U The function F is subordinate to G, written F ≺ G, if G is univalent, F0 G0 and FU ⊂ GU Or given two functions Fz and Gz, which are analytic in U, the function Fz is said to be subordination to Gz in U if there exists a function hz, analytic in U with
h0 0, |hz| < 1 ∀z ∈ U, 1.19 such that
Fz G
hz
Let φ : C2→ C and let h be univalent in U If p is analytic in U and satisfies the
differential subordination φpz, zpz ≺ hz then p is called a solution of the differential subordination The univalent function q is called a dominant of the solutions of the differential subordination, p ≺ q If p and φpz, zpz are univalent in U and satisfy the differential superordination hz ≺ φpz, zpz then p is called a solution of the differential superordination An analytic function q is called subordinant of the solution of the differential superordination if q ≺ p Let Φ be an analytic function in a domain containing fU, Φ0 0
andΦ0 > 0.
The function f ∈ A is called Φ—like if
R
zfz
Φfz
> 0, z ∈ U. 1.21
This concept was introduced by Brickman 6 and established that a function f ∈ A is univalent if and only if f is Φ—like for some Φ.
Definition 1.4 Let Φ be analytic function in a domain containing fU, Φ0 0, Φ0 1,
andΦω / 0 for ω ∈ fU−0 Let qz be a fixed analytic function in U, q0 1 The function
f ∈ A is called Φ—like with respect to q if
zfz
Trang 5In the present paper, we apply a method based on the differential subordination in order
to obtain subordination results involving generalized Noor integral operator for a normalized
analytic function fz z ∈ U
q1z ≺ z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
ΦI λ
α j , A j1,q;
β j , B j
1,p
In order to prove our subordination and superordination results, we need to the following lemmas in the sequel
Definition 1.5see 7 Denote by Q the set of all functions fz that are analytic and injective
on U − Ef, where Ef : {ζ ∈ ∂U : lim z→ζ fz ∞} and are such that fζ / 0 for ζ ∈
∂U − Ef.
Lemma 1.6 see 8 Let qz be univalent in the unit disk U and θ and let φ be analytic in a
domain D containing qU with φw / 0, when w ∈ qU Set Qz : zqzφqz, hz :
θqz Qz Suppose that
1 Qz is starlike univalent in U,
2 Rzhz/Qz > 0 for z ∈ U.
If
θ
pz
zpzφpz
≺ θqz
zqzφqz
then
pz ≺ qz, 1.25
and qz is the best dominant.
Lemma 1.7 9 Let qz be convex univalent in the unit disk U and let ϑ and ϕ be analytic in a
domain D containing qU Suppose that
1 zqzϕqz is starlike univalent in U,
2 R{ϑqz/ϕqz} > 0 for z ∈ U.
If pz ∈ Hq0, 1 ∩ Q, with pU ⊆ D and ϑpz zpzϕz being univalent in U and
ϑ
qz
zqzϕqz
≺ ϑpz
zpzϕpz
then
qz ≺ pz, 1.27
and qz is the best subordinant.
Trang 62 Characterization properties and distortion theorems
In this section, we investigate the characterization properties for the function fz ∈ A
to belong to the classes S μ λ α j , A j1,q;β j , B j1,p and C μ λ α j , A j1,q;β j , B j1,p by obtaining the coefficient bounds Further, we prove the distortion theorems when fz ∈ Sμ
λ α j ,
A j1,q;β j , B j1,p and fz ∈ C μ
λ α j , A j1,q;β j , B j1,p .
Theorem 2.1 Let fz ∈ A Then fz ∈ S μ
λ α j , A j1,q;β j , B j1,p if and only if
∞
n2
H n−1a nμλ 1 n−1−
λ 1 n − λ n ≤ 1 − μ, 0 ≤ μ < 1, 2.1
where
H n−1:
p j1Γβ j n − 1B j
q j1Γα j n − 1A j
Proof Suppose that2.1 holds Then by usingLemma 1.1and for z ∈ U, we have
R
z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz
≤
z
I λ
α j , A j
1,q;
β j , B j
1,p fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz
≤ 1
∞
n2 H n−1a n λ 1 n − λ n
1∞n2 H n−1a n λ 1 n−1
2.3
This last expression is greater than μ, if 2.1 holds this implies that fz ∈ S μ λ α j ,
A j1,q;β j , B j1,p On the other hand, assume that fz ∈ S μ λ α j , A j1,q;β j , B j1,p then
R
z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz
> μ, 2.4
butR{z} ≤ |z| then
z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz
By a computation, we obtain2.1
Corollary 2.2 Let the function fz belong to the class S μ
λ α j , A j1,q;β j , B j1,p Then
H n−1μλ 1 n−1−
λ 1 n − λ n , 0 ≤ μ < 1, 2.6
where H n−1 is defined in2.2.
Trang 7Theorem 2.3 Let fz ∈ A Then fz ∈ C μ
λ α j , A j1,q;β j , B j1,p if and only if
∞
n2
nH n−1a nμλ 1 n−1−
λ 1 n − λ n ≤ 1 − μ, 0 ≤ μ < 1, 2.7
where H n−1 is defined in2.2.
Corollary 2.4 Let the function fz belong to the class C μ
λ α j , A j1,q;β j , B j1,p Then
nH n−1μλ 1 n−1−
λ 1 n − λ n , 0 ≤ μ < 1, 2.8
where H n−1 is defined in2.2.
Theorem 2.5 Let fz ∈ S μ
λ α j , A j1,q;β j , B j1,p , then
fz ≥ |z| − 1 − μ
H1μλ 11−
λ 12− λ2|z|2,
fz ≤ |z| 1 − μ
H1μλ 11−
λ 12− λ2|z|2,
2.9
for z ∈ U where H n−1 is defined in2.2.
Proof If fz ∈ S μ λ α j , A j1,q;β j , B j1,p then in view ofTheorem 2.1, we have
H1μλ 11−
λ 12− λ2∞
n2
a n ≤∞
n2
H n−1a nμλ 1 n−1−
λ 1 n − λ n
≤ 1 − μ.
2.10
This yields
∞
n2
H1μλ 11−
Now
fz ≥ |z| − |z|2∞
n2
a n
H1μλ 11−
λ 12− λ2|z|2.
2.12
Also,
fz ≤ |z| 1 − μ
H1μλ 11−
λ 12− λ2|z|2
Hence the proof is complete
Trang 8Corollary 2.6 Under the hypothesis of Theorem 2.5 , fz is included in a disk with its center at the origin and radius r given by
r 1 1 − μ
H1μλ 11−
In the same way, we can prove the following result
Theorem 2.7 Let fz ∈ C μ
λ α j , A j1,q;β j , B j1,p then
2H1μλ 11−
λ 12− λ2|z|2,
2H1μλ 11−
λ 12− λ2|z|2,
2.15
for z ∈ U where H n−1 is defined in2.2.
Corollary 2.8 Under the hypothesis of Theorem 2.7 , fz is included in a disk with its center at the origin and radius r given by
r 1 1 − μ
2H1μλ 11−
We next study some properties of the classes S μ λ α j , A j1,q;β j , B j1,p and C μ
λ α j , A j1,q;
β j , B j1,p .
Theorem 2.9 Let λ > −1 and 0 ≤ μ1< μ2< 1 Then
S μ2
λ
α j , A j
1,q;
β j , B j
1,p
⊂ S μ1
λ
α j , A j
1,q;
β j , B j
1,p
Proof By usingTheorem 2.1
Theorem 2.10 Let −1 < λ1≤ λ2and 0 ≤ μ < 1 Then
S μ λ1
α j , A j
1,q;
β j , B j
1,p
⊇ S μ λ2α j , A j
1,q;
β j , B j
1,p
Proof By usingTheorem 2.1
Theorem 2.11 Let λ > −1 and 0 ≤ μ1< μ2< 1 Then
C μ2
λ
α j , A j
1,q;
β j , B j
1,p
⊂ C μ1
λ
α j , A j
1,q;
β j , B j
1,p
Proof By usingTheorem 2.3
Theorem 2.12 Let −1 < λ1≤ λ2and 0 ≤ μ < 1 Then
C λ μ1
α j , A j
1,q;
β j , B j
1,p
⊇ C μ
λ2
α j , A j
1,q;
β j , B j
1,p
Proof By usingTheorem 2.3
Trang 93 Sandwich results
By making use of Lemmas 1.6 and 1.7, we prove the following subordination and superordination results
Theorem 3.1 Let qz / 0 be univalent in U such that zqz/qz is starlike univalent in U and
R
1 α
γ qz
zqz
qz −
zqz
qz
> 0, α, γ ∈ C, γ / 0. 3.1
If f ∈ A satisfies the subordination
α
z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
ΦI λ
α j , A j
1,q;
β j , B j
1,p
fz
γ
1z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz −zΦ
I λ
α j , A j
1,q;
β j , B j
1,p
fz
ΦI λ
α j , A j
1,q;
β j , B j
1,p
fz
≺ αqz γzqz
qz ,
3.2
then
z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
ΦI λ
α j , A j
1,q;
β j , B j
1,p
and qz is the best dominant.
Proof Our aim is to applyLemma 1.6 Setting
pz : z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
ΦI λ
α j , A j
1,q;
β j , B j
1,p
Computation shows that
zpz
pz 1 z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz − zΦ
I λ
α j , A j
1,q;
β j , B j
1,p
fz
ΦI λ
α j , A j
1,q;
β j , B j
1,p
fz , 3.5
which yields the following subordination:
αpz γzp
z
pz ≺ αqz γzqz
qz , α, γ ∈ C. 3.6
Trang 10By setting
θω : αω, φω : γ
it can be easily observed that θω is analytic in C and φω is analytic in C \ {0} and that
φω / 0 when ω ∈ C\{0} Also, by letting
Qz zqzφqz
γz qz
qz ,
hz θ
qz
Qz αqz γz qz
qz ,
3.8
we find that Qz is starlike univalent in U and that
R
zhz
Qz
1 α
γ qz
zqz
qz −
zqz
qz
> 0. 3.9 Then the relation3.3 follows by an application ofLemma 1.6
Corollary 3.2 Let the assumptions of Theorem 2.1 hold Then the subordination
α − γ
z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz
γ
1z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz
≺ αqz γzqz
qz ,
3.10
implies
z
I λ
α j , A j
1,q;
β j , B j
1,p fz
I λ
α j , A j
1,q;
β j , B j
1,p
and qz is the best dominant.
Proof By letting Φω : ω.
Corollary 3.3 If f ∈ A and assume that 3.1 holds then
1 z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz ≺ 1 Az
1 Bz
A − Bz
implies
z
I λ
α j , A j
1,q;
β j , B j
1,p
fz
I λ
α j , A j
1,q;
β j , B j
1,p
fz ≺ 1 Az
1 Bz , −1 ≤ B < A ≤ 1, 3.13
and 1 Az/1 Bz is the best dominant.