1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: "Research Article Positive Solutions of Two-Point Right Focal Eigenvalue Problems on Time Scales pdf

15 248 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 545,17 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

To understand the notations used in BVP 1.1, 1.2, we recall some standard defini-tions as follows.. Analogous notations for open and half-open intervals will also be used in the paper..

Trang 1

fference Equations

Volume 2007, Article ID 87818, 15 pages

doi:10.1155/2007/87818

Research Article

Positive Solutions of Two-Point Right Focal

Eigenvalue Problems on Time Scales

Yuguo Lin and Minghe Pei

Received 26 May 2007; Revised 20 July 2007; Accepted 21 September 2007

Recommended by Patricia J Y Wong

We offer criteria for the existence of positive solutions for two-point right focal eigenvalue problems (1)n − p yΔn(t) = λ f (t, y(σ n −1(t)), yΔ(σ n −2(t)), , yΔp −1(σ n − p(t))), t ∈[0, 1]

T,yΔi(0)=0, 0≤ i ≤ p −1,yΔi(σ(1)) =0,p ≤ i ≤ n −1, whereλ > 0, n ≥2, 1≤ p ≤ n −1 are fixed andTis a time scale

Copyright © 2007 Y Lin and M Pei This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

In this paper, we present results governing the existence of positive solutions to the dif-ferential equation on time scales of the form

(1)n − p yΔn(t) = λ f

t, y

σ n −1(t)

, , yΔp −1

σ n − p(t)

, t ∈[0, 1]∩ T (1.1) subject to the two-point right focal boundary conditions

yΔi(0)=0, 0≤ i ≤ p −1,

yΔi

σ(1)

whereλ > 0, p, n are fixed integers satisfying n ≥2, 1≤ p ≤ n −1, 0,1∈ T, with 0< σ(1)

andρ(σ(1)) =1 and f : [0, 1] × R p →Ris continuous

We say thaty(t) is a positive solution of BVP (1.1), (1.2) ify(t) ∈ C nrd[0, 1] is a solution

of BVP (1.1), (1.2) andyΔi(t) > 0, t ∈(0,σ n − i(1)),i =0, 1, , p −1 If, for a particularλ,

Trang 2

BVP (1.1), (1.2) has a positive solution y, then λ is called an eigenvalue and y a

corre-sponding eigenfunction of BVP (1.1), (1.2) We let

E =λ > 0 : BVP (1.1), (1.2) has at least one positive solution

(1.3)

be the set of eigenvalues of BVP (1.1), (1.2)

To understand the notations used in BVP (1.1), (1.2), we recall some standard defini-tions as follows The reader may refer to [1] for an introduction to the subject

(a) LetT be a time scale, that is,Tis a closed subset ofR We assume thatThas the topology that it inherits from the standard topology onR Throughout, for any

a, b (> a), the interval [a, b] is defined as [a, b] = { t ∈ T | a ≤ t ≤ b } Analogous notations for open and half-open intervals will also be used in the paper We also use the notationR[c, d] to denote the real interval { t ∈ R | c ≤ t ≤ d }

(b) Fort < supTands > infT, the forward jump operatorσ and the backward jump

operatorρ are, respectively, defined by

σ(t) =inf

τ ∈ T | τ > t

∈ T, ρ(s) =sup

τ ∈ T | τ < s

We defineσ n(t) = σ(σ n −1(t)) with σ0(t) = t Similar definition is used for ρ n(s).

(c) Fixt ∈ T Let y : T→R We define yΔ(t) to be the number (if it exists) with the

property that givenε > 0, there is a neighborhood U of t such that for all s ∈ U,

y

σ(t)

− y(s)

− yΔ(t)

σ(t) − s< εσ(t) − s. (1.5)

We callyΔ(t) the delta derivative of y(t) Define yΔn(t) to be the delta derivative

ofyΔn −1(t), that is, yΔn(t) =(yΔn −1(t))Δ

(d) IfFΔ(t) = f (t), then we define the integral

t

(e) Ifσ(t) > t, then call the point t right-scattered; while if ρ(t) < t, then say t is

left-scattered Ifσ(t) = t, then call the point t right-dense; while if ρ(t) = t, then say t

is left-dense

Focal boundary value problems have attracted a lot of attention in the recent literature, see [2–7] Recently, many papers have discussed the existence of nonnegative solution of right focal boundary value problem on time scales, see [8–12] Motivated by the works mentioned above, the purpose of this article is to present results which guarantee the existence of one or more positive solutions to BVP (1.1), (1.2)

The paper is outlined as follows InSection 2, we will present some lemmas and defini-tions which will be used later InSection 3, by using Krasnoselskii’s fixed-point theorem

in a cone, we offer criteria for the existence of positive solution of BVP (1.1), (1.2)

Trang 3

2 Preliminary

Definition 2.1 [9] (1) Define the functionh k:T × T→R,k ∈0, 1, , recursively as

h0(t, s) =1 ∀ s, t ∈ T,

h k+1(t, s) =

t

s h k(τ, s) Δτ ∀ s, t ∈ T,k =0, 1, . (2.1)

(2) Define the functiong k:T × T→R,k ∈0, 1, , recursively as

g0(t, s) =1 ∀ s, t ∈ T,

g k+1(t, s) =

t

s g k

σ(τ), s

Δτ ∀ s, t ∈ T,k =0, 1, . (2.2)

(3) Lett i, 1≤ i ≤ n, such that 0 = t1= ··· = t p < t p+1 = ··· = t n = σ(1) Define T i: [0, 1]→R, 0≤ i ≤ n −1 as

T0(t) ≡1,

T i(t) = T i

t : t1, , t i

= t t1 τ1

t2 ··· τ i −1

t i Δτ i ··· Δτ2Δτ1, 1≤ i ≤ n −1. (2.3)

Lemma 2.2 [1] For nonnegative integer n,

h n(t, s) =(1)n g n(s, t), t ∈ T, s ∈ T k n, (2.4)

where

T k =

T \ρ(max T), max T

and T k n

=(T k n −1

)k Further, the functions satisfy the inequalities

h n(t, s) ≥0, g n(t, s) ≥0 ∀ t ≥ s. (2.6) Lemma 2.3 [9] Green’s function of the boundary value problem

(1)n − p yΔn(t) =0, t ∈[0, 1],

yΔi(0)=0, 0≤ i ≤ p −1,

yΔi

σ(1)

=0, p ≤ i ≤ n −1,

(2.7)

may be expressed as

K(t, s) =

(1)n − p

p −1



i =0

T i(t)h n −1− i

0,σ(s)

+ (1)n − p+1 h n −1

t, σ(s)

, t ≤ σ(s),

(1)n − p

p −1



i =0

T i(t)h n −1− i

0,σ(s)

, t ≥ σ(s),

(2.8)

where t ∈[0,σ n (1)] and s ∈ [0, 1].

Trang 4

Lemma 2.4 Let k(t, s) be Green’s function of the equation

(1)n − p yΔn − p+1(t) =0, t ∈0,σ n − p+1(1)

(2.9)

subject to the boundary conditions

yΔi(0)=0, 0≤ i ≤ p −1,

yΔi

σ(1)

Then

L(t) · g n − p

σ(s), 0) ≤ k(t, s) ≤ g n − p

σ(s), 0

, (t, s) ∈0,σ n − p+1(1)

×[0, 1], (2.11)

where

σ n − p+1(1)1, t ∈0,σ n − p+1(1)

Proof It is clear that

k(t, s) = KΔp t −1(t, s)

=

(1)n − p

h n − p

0,σ(s)

− h n − p

t, σ(s)

, t ≤ σ(s),

(1)n − p h n − p

0,σ(s)

=

g n − p

σ(s), 0

− g n − p

σ(s), t

, t ≤ σ(s),

g n − p

σ(s), 0

(2.13)

wheret ∈[0,σ n − p+1(1)] ands ∈[0, 1]

Obviously,

L(t)g n − p



σ(s), 0

≤ g n − p



σ(s), 0

Next, we will prove by induction that fork =1, 2, , and t ≤ σ(s),

L(t)g k

σ(s), 0

≤ g k

σ(s), 0

− g k

σ(s), t

≤ g k

σ(s), 0

Fork =1, we have

g1



σ(s), 0

− g1



σ(s), t

= σ(s) −σ(s) − t

= t ≥ σ n − p+1 t

(1)· σ(s) = L(t)g1



σ(s), 0

We now assume that (2.15) holds for somen ≥1

Trang 5

Letk = n + 1 We can obtain that for σ(s) ≥ t,

g n+1

σ(s), 0

≥ g n+1

σ(s), 0

− g n+1

σ(s), t

=

σ(s)

0 g n

σ(τ), 0

Δτ −

σ(s)

t g n

σ(τ), t

Δτ

=

t

0g n



σ(τ), 0

Δτ + σ(s) t



g n



σ(τ), 0

− g n



σ(τ), t

Δτ

t

0L(t)g n

σ(τ), 0

Δτ + σ(s)

t L(t)g n

σ(τ), 0

Δτ

= L(t)

σ(s)

0 g n

σ(τ), 0

Δτ = L(t)g n+1

σ(s), 0

.

(2.17)

Thus, (2.15) holds by induction Therefore, from (2.14) and (2.15), we get

L(t)g n − p

σ(s), 0

≤ k(t, s) ≤ g n − p

σ(s), 0

(2.18)

Lemma 2.5 Let w(t) be the solution of BVP:

(1)(n − p) uΔn(t) =1, t ∈[0, 1],

uΔi(0)=0, 0≤ i ≤ p −1,

uΔi

σ(1)

=0, p ≤ i ≤ n −1.

(2.19)

Then

0≤ wΔi(t) ≤ g n − p



σ(1), 0

h p − i(t, 0), t ∈0,σ n − i(1)

, 0≤ i ≤ p −1. (2.20)

Proof For σ(s) ≤ t,

g n − p

σ(s), 0

=(1)n − p h n − p

0,σ(s)

= −

0

σ(s)(1)n − p −1 h n − p −1

τ, σ(s)

Δτ

=

σ(s)

0 (1)n − p −1h n − p −1 

τ, σ(s)

Δτ

=

σ(s)

0 g n − p −1



σ(s), τ

Δτ (byLemma 2.2)

≤ g n − p −1

σ(s), 0 t

Δτ = g n − p −1

σ(s), 0

h1(t, 0).

(2.21)

Trang 6

Fort ≤ σ(s),

g n − p

σ(s), 0

− g n − p

σ(s), t

=(1)n − p h n − p

0,σ(s)

(1)n − p h n − p

t, σ(s)

=

σ(s)

0 (1)n − p −1h n − p −1



τ, σ(s)

Δτ −

σ(s)

t (1)n − p −1h n − p −1



τ, σ(s)

Δτ

=

t

0(1)n − p −1 h n − p −1

τ, σ(s)

Δτ =

t

0g n − p −1

σ(s), τ

Δτ (byLemma 2.2)

≤ g n − p −1



σ(s), 0 t

0Δτ = g n − p −1



σ(s), 0

h1(t, 0).

(2.22)

Hence,

0≤ k(t, s) ≤ g n − p −1

σ(s), 0

h1(t, 0), (t, s) ∈0,σ n − p+1(1)

×[0, 1]. (2.23)

By definingw(t) as w(t) = 0σ(1) K(t, s) Δs, t ∈[0,σ n(1)], it is clear that

wΔp −1(t) =

σ(1)

0 k(t, s) Δs, t ∈0,σ n − p+1(1)

Then

0≤ wΔp −1(t) =

σ(1)

0 k(t, s) Δs ≤

σ(1)

0



g n − p −1



σ(s), 0

h1(t, 0)

Δs

= g n − p



σ(1), 0

h1(t, 0).

(2.25)

Further, sincewΔi(0)=0, 0≤ i ≤ p −1, we get

0≤ wΔi(t) ≤ g n − p

σ(1), 0

h p − i(t, 0), t ∈0,σ n − i(1)

, 0≤ i ≤ p −1. (2.26)



Lemma 2.6 [13] Let E be a Banach space, and let C ⊂ E be a cone in E Assume thatΩ1,Ω2

are open subsets of E with 0 ∈Ω1Ω1Ω2, and let T : C ∩(Ω2\Ω1)→ C be a completely continuous operator such that either

(i) Tu u ,u ∈ C ∩ ∂Ω1; Tu u ,u ∈ C ∩ ∂Ω2; or

(ii) Tu u ,u ∈ C ∩ ∂Ω1; Tu u ,u ∈ C ∩ ∂Ω2.

Then, T has a fixed point in C ∩(Ω2\Ω1).

3 Main results

In this section, by usingLemma 2.6, we offer criteria for the existence of positive solution

of BVP (1.1), (1.2)

To begin, we will list the conditions that are needed later as follows In these conditions,

f (t, u1,u2, , u p) is a continuous function such that f : [0, 1] × R[0,)p →R[0,)

(A1) There exists constantε ∈(0, 1) such that

lim

u1 ,u2 , ,u p →∞ min

t ∈[ε,1]

f

t, u1,u2, , u p

Trang 7

(A2) There exists constanta > 0 such that

lim

u p →0+ min

(t,u1 ,u2 , ,u p −1 )∈[0,1]×R[0,a] p −1

f

t, u1,u2, , u p

(A3) f (t, u1,u2, , u p) is nondecreasing in u j for each fixed (t, u1,u2, , u j −1,u j+1,

, u p)

Definition 3.1 Define f ∈ Crd(T:R) to be right-dense continuous if for all t ∈ T, lims → t+f (s) = f (t) at every right-dense point t ∈ T, lims → t − f (s) exists and is finite at

every left-dense pointt ∈ T

LetCrdn([0, 1]) denote the space of functions:

C n

rd



[0, 1]

=y : y ∈ C

0,σ n(1)

, , yΔn −1∈ C

0,σ(1)

,yΔn ∈ Crd



[0, 1]

.

(3.3) LetB = { y ∈ C n

rd([0, 1]) :yΔi(0)=0, 0≤ i ≤ p −2}be a Banach space with the norm

y supt ∈[0, σ n − p+1(1)]| yΔp −1(t) |, and let

C =y ∈ B : yΔp −1(t) ≥ L(t) y ,t ∈0,σ n − p+1(1)

whereL(t) is given inLemma 2.4

It is obvious thatC is a cone in B From yΔi(0)=0, 0≤ i ≤ p −2, it follows that for all

y ∈ C,

h p − i(t, 0)

σ n − p+1(1) y y

Δi

(t) ≤ δ y , i =1, 2, , p −1, (3.5) where

δ : =σ n(1)p −1

Remark 3.2 If u, v ∈ C and uΔp −1(t) ≥ vΔp −1(t), t ∈[0,σ n − p+1(1)], it follows from

uΔi(0)= vΔi(0)=0, 0≤ i ≤ p −2 thatuΔi(t) ≥ vΔi(t), t ∈[0,σ n − i(1)], 0≤ i ≤ p −1.

Let the operatorS : C → B be defined by

(Sy)(t) = λ

σ(1)

0 K(t, s) f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs, t ∈0,σ n(1)

, (Sy)Δp −1(t) = λ

σ(1)

0 k(t, s) f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs, t ∈0,σ n − p+1(1)

.

(3.7)

To obtain a positive solution of BVP (1.1), (1.2), we seek a fixed point of the operator

S in the cone C.

Lemma 3.3 The operator S maps C into C.

Trang 8

Proof FromLemma 2.4, we know that fort ∈[0,σ n − p+1(1)],

(Sy)Δp −1(t) = λ

σ(1)

0 k(t, s) f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs

≤ λ

σ(1)

0 g n − p



σ(s), 0

f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs.

(3.8)

So

σ(1)

0 g n − p

σ(s), 0

f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs, t ∈0,σ n − p+1(1)

.

(3.9) FromLemma 2.4again, it follows that fort ∈[0,σ n − p+1(1)],

(Sy)Δp −1(t) = λ

σ(1)

0 k(t, s) f

s, y

σ n −1(s)

, , yΔp −1(σ n − p(s)

Δs

≥ λ

σ(1)

0 L(t)g n − p

σ(s), 0

f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs

≥ L(t) Sy

(3.10)

Lemma 3.4 The operator S : C → C is completely continuous.

Proof First we will prove that the operator S is continuous Let { y m },y ∈ C be such that

limm →∞ y m − y 0 FromyΔi(0)=0,i =0, 1, , p −2, we have

sup

t ∈[0,σ n − i(1)]

yΔi

m − yΔi  −→0, i =0, 1, , p −1. (3.11) Then, it is easy to see that

ρ m = sup

s ∈[0,1]

f

s, y m

σ n −1(s)

, , y mΔp −1

σ n − p(s)

− f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)  −→0 asm −→ ∞

(3.12)

Hence, we get fromLemma 2.4that fort ∈[0,σ n − p+1(1)],



Sy m

p −1

(t) −(Sy)Δp −1(t)

=

λ

σ(1)

0 k(t, s)

f

s, y m



σ n −1(s)

, , y mΔp −1

σ n − p(s)

− f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs



≤ λρ m

σ(1)

0 k(t, s) Δs ≤ λρ m

σ(1)

0 g n − p

σ(s), 0

Δs −→0

(3.13)

asm →∞ This shows thatS : C → C is continuous.

Trang 9

Next, to show complete continuity, we will apply Arzela-Ascoli theorem LetΩ be a bounded subset ofC and let y ∈ Ω Now there exists L > 0 such that for all y ∈Ω,

supyΔp −1 ≤ L, supyΔi  ≤ δL, i =0, 1, , p −2, (3.14) whereδ is given in (3.6) Let

(s,u1 ,u2 , ,u p)∈[0,1]×R[0,δL] p −1×R[0, L]

f

s, u1,u2, , u p. (3.15)

Clearly, we have fort ∈[0,σ n(1)],

(Sy)(t)  ≤ λM

σ(1)

0 K(t, s) Δs ≤ λM sup

t ∈[0,σ n(1)]

σ(1)

and fort, t ∈[0,σ n(1)],

(Sy)(t) −(Sy)(t ) ≤ λM

σ(1)

0

K(t, s) − K(t ,s)Δs. (3.17)

The Arzela-Ascoli theorem guarantees thatS Ω is relatively compact, so S : C → C is

For anyL > 0, define

r L = L

M L



g n − p+1

σ(1), 01

where

(t,u1 ,u2 , ,u p)∈[0,1]×R[0,δL] p −1×R[0, L]

f

t, u1,u2, , u p



andδ is given in (3.6)

Theorem 3.5 Let ( A1) hold For any λ ∈ R(0,r L ], BVP ( 1.1), (1.2) has at least one positive solution y such that y L.

Proof Let L > 0 be given and let λ ∈ R(0,r L] be fixed We separate the proof into the following two steps

Step 1 Let

Ω1=y ∈ B : y < L

It follows fromLemma 2.4that for ally ∈ ∂Ω1∩ C,

(Sy)Δp −1(t) = λ

σ(1)

0 k(t, s) f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs

≤ λM L

σ(1)

0 g n − p

σ(s), 0

Δs

= λM L · g n − p+1

σ(1), 0

≤ L, t ∈0,σ n − p+1(1)

.

(3.21)

Trang 10

Step 2 From (A1), we know that there existsη > L (η can be chosen arbitrarily large) such

that for all (u1,u2, , u p)∈ R[σ1η, ∞)× R[σ2η, ∞)× ··· × R[σ p η, ∞),

min

t ∈[ε,1]

f

t, u1,u2, , u p

σ(1)

ε g n − p

σ(s), 0

Δs−1

where

σ i = h p − i+1(ε, 0)

σ n − p+1(1), i =1, 2, , p. (3.24) So,

f

t, u1,u2, , u p

σ(1)

ε g n − p

σ(s), 0

Δs−1 η

on [ε, 1] × R[σ1η, ∞)× R[σ2η, ∞)× ··· × R[σ p η, ∞)

UsingLemma 2.4, we know that

(Sy)Δp −1

σ n − p+1(1)

= λ

σ(1)

σ n − p+1(1),s

f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs

≥ λ

σ(1)

ε g n − p

σ(s), 0

Δs ·

σ(1)

ε g n − p

σ(s), 0

Δs−1 η

(3.26)

By lettingΩ2= { y ∈ B : y < η }, we have

Therefore, it follows fromLemma 2.6that BVP (1.1), (1.2) has a solutiony ∈ C such

Theorem 3.6 Let ( A2) hold For any λ ∈ R(0,r L] (L ∈ R(0,a]), BVP (1.1), (1.2) has at least one positive solution y such that 0 < y L.

Proof Let L ∈ R(0,a] be given and let λ ∈ R(0,r L] be fixed Let

Ω3=y ∈ B : y < L

Then fory ∈ C ∩ ∂Ω3, we have fromLemma 2.4that fort ∈[0,σ n − p+1(1)],

(Sy)Δp −1(t) = λ

σ(1)

0 k(t, s) f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs

≤ λM L

σ(1)

g n − p

σ(s), 0

Δs = λM L · g n − p+1

σ(1), 0

≤ L.

(3.29)

Trang 11

From (A2), there existsη, r0whereλη 0σ(1) g n − p(σ(s), 0)L(s) Δs > 1 with r0< L such that

f

t, u1,u2, , u p

on [0, 1]× R[0,δr0]p −1× R[0,r0], whereδ is given in (3.6)

Fory ∈ C and y r0, we have fromLemma 2.4that

(Sy)Δp −1

σ n − p+1(1)

= λ

σ(1)

σ n − p+1(1),s

f

s, y

σ n −1(s)

, , yΔp −1

σ n − p(s)

Δs

≥ λ

σ(1)

0 g n − p

σ(s), 0

ηyΔp −1

σ n − p(s)

Δs

≥ λ

σ(1)

0 g n − p

σ(s), 0

L(s)η y Δs > y r0.

(3.32)

By lettingΩ4= { y ∈ B : y < r0}, we have

Therefore, it follows fromLemma 2.6that BVP (1.1), (1.2) has a solutiony ∈ C such that

Theorem 3.7 Let ( A2) and ( A3) hold Suppose that λ0∈ E ThenR(0,λ0]⊆ E.

Proof Let y0 be the eigenfunction corresponding to the eigenvalue λ0 Then for t ∈

[0,σ n − p+1(1)],

yΔ0p −1(t) = λ0

σ(1)

0 k(t, s) f

s, y0



σ n −1(s)

, , yΔ0p −1

σ n − p(s)

Fromy0∈ C, we have

t

σ n − p+1(1)·y0 ≤ yΔ0p −1(t) ≤y0, t ∈

0,σ n − p+1(1)

We will consider two cases

Case 1 f (t, 0, 0, , 0) ≡0,t ∈[0, 1] Define

K =y ∈ C : 0 ≤ yΔp −1(t) ≤ yΔ0p −1(t), t ∈0,σ n − p+1(1)

... has at least one positive solution y such that y L.

Proof Let L > be given and let λ ∈ R(0,r L] be fixed We separate the proof into the... (L ∈ R(0,a]), BVP (1.1), (1.2) has at least one positive solution y such that < y L.

Proof Let L ∈ R(0,a] be given and let λ ∈... ThenR(0,λ0]⊆ E.

Proof Let y0 be the eigenfunction corresponding to the eigenvalue λ0 Then for t ∈

Ngày đăng: 21/06/2014, 22:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm