Hindawi Publishing CorporationJournal of Inequalities and Applications Volume 2009, Article ID 851360, 10 pages doi:10.1155/2009/851360 Research Article Some New Hilbert’s Type Inequalit
Trang 1Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2009, Article ID 851360, 10 pages
doi:10.1155/2009/851360
Research Article
Some New Hilbert’s Type Inequalities
1 Department of Information and Mathematics Sciences, College of Science,
China Jiliang University, Hangzhou 310018, China
2 Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
Correspondence should be addressed to Chang-Jian Zhao,chjzhao@163.com
Received 25 December 2008; Accepted 24 April 2009
Recommended by Peter Pang
Some new inequalities similar to Hilbert’s type inequality involving series of nonnegative terms are established
Copyrightq 2009 C.-J Zhao and W.-S Cheung This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction
In recent years, several authors 1 10 have given considerable attention to Hilbert’s type inequalities and their various generalizations In particular, in1, Pachpatte proved some new inequalities similar to Hilbert’s inequality11, page 226 involving series of nonnegative terms The main purpose of this paper is to establish their general forms
2 Main Results
In1, Pachpatte established the following inequality involving series of nonnegative terms
Theorem A Let p ≥ 1, q ≥ 1, and let {am } and {b n } be two nonnegative sequences of real numbers
defined for m 1, , k, and n 1, , r, where k, r are natural numbers Let A m m s1 a s and
B nn
t1 b t Then
k
m1
r
n1
A p m B q n
m n ≤ C
p, q, k, r
k
m1
k − m 1a m A p−1 m 2
1/2
×
r
n1
r − n 1b n B q−1 n 2
1/2
,
2.1
Trang 2Cp, q, k, r 1
We first establish the following general form of inequality2.1
Theorem 2.1 Let p ≥ 1, q ≥ 1, t > 0, and 1/α 1/β 1, α > 1 Let {a m1, ,m n }, and {b n1, ,n n}
be positive sequences of real numbers defined for m i 1, 2, , k i , and n i 1, 2, , r i , where
k i , r i i 1, , n are natural numbers Let A m1, ,m n m1
s1 1· · ·m n
s n1a s1, ,s n , and B n1, ,n n
n1
t1 1· · ·n n
t n1b t1, ,t n Then
k1
m1 1
· · · k n
m n1
r1
n1 1
· · ·r n
n n1
αβt1/β A p m1, ,m n B n q1, ,n n
m1· · · m n β n1· · · n n αt
≤ Lk1, , k n , r1, , r n , p, q, α, β
×
k1
m1 1· · · k n
m n1
n j1
k j − m j 1a m1, ,m n A p−1 m1, ,m nβ
1/β
×
⎛
⎝r1
n1 1
· · ·r n
n n1
n
j1
r j − n j 1b n1, ,n n B n q−11, ,n nα
⎞
⎠
1/α
,
2.3
where
Lk1, , k n , r1, , r n , p, q, α, β pqk1· · · k n1/α r1· · · r n1/β 2.4
Proof By using the following inequalitysee 12:
n
1
m1 1
· · · n n
m n1
z m1, ,m n
p
≤ pn1
m1 1
, ,n n
m n1
z m1, ,m n
m
1
k1 1
· · ·m n
k n1
z k1, ,k n
p−1
, 2.5
wherep ≥ 1 is a constant, and z m1, ,m n ≥ 0, m i 1, 2, , k i,i 1, 2, , n, we obtain
A p m1, ,m n ≤ pm1
s1 1
· · ·m n
s n1
a s1, ,s n A p−1 s1, ,s n 2.6
Similarly, we have
B n q1, ,n n ≤ qn1
t1 1
· · ·n n
t n1
b t1, ,t n B q−1 t1, ,t n 2.7
Trang 3Journal of Inequalities and Applications 3 From2.6 and 2.7, using H¨older’s inequality 13 and the elementary inequality:
a1/α b1/β≤ a
αt1/β t1/α β b , 2.8 where 1/α 1/β 1, α > 1, b > 0, a > 0, and t > 0, we have
A p m i , ,m n B q n i , ,n n ≤ pq
m
1
s1 1
· · ·m n
s n1
a s1, ,s n A p−1 s1, ,s n
n
1
t1 1
· · ·n n
t n1
b t1, ,t n B t q−11, ,t n
≤ pqm1, , m n1/α
m
1
s1 1
· · ·m n
s n1
a s1, ,s n A p−1 s1, ,s nβ
1/β
× n1, , n n1/β
n
1
t1 1
· · ·n n
t n1
b t1, ,t n B q−1 t1, ,t nα
1/α
≤ pq
m1· · · m n
αt1/β n1· · · n n t1/α
β
m
1
s1 1
· · ·m n
s n1
a s1, ,s n A p−1 s1, ,s n
β 1/β
×
n
1
t1 1
.n n
t n1
b t1, ,t n B q−1 t1, ,t nα
1/α
.
2.9
Dividing both sides of2.9 by m1· · · m n β n1· · · n n αt/αβt1/β , summing up over n ifrom
1 tor i i 1, 2, , n first, then summing up over m ifrom 1 tok i i 1, 2, , n, using again
H ¨older’s inequality, then interchanging the order of summation, we obtain
k1
m1 1
· · · k n
m n1
r1
n1 1
· · ·r n
n n1
αβt1/β A p m1, ,m n B n q1, ,n n
m1· · · m n β n1· · · n n αt
≤ pq
⎧
⎨
⎩
k1
m1 1
· · · k n
m n1
m
1
s1 1
· · ·m n
s n1
a s1, ,s n A p−1 s1, ,s n
β 1/β⎫
⎬
⎭
×
⎧
⎨
⎩
r1
n1 1
· · ·r n
n n1
n
1
t1 1
· · ·n n
t n1
b t1, ,t n B q−1 t1, ,t nα
1/α⎫⎬
⎭
≤ pqk1· · · k n1/α
k
1
m1 1
· · · k n
m n1
m
1
s1 1
· · ·m n
s n1
a s1, ,s n A p−1 s1, ,s nβ
1/β
× r1· · · r n1/β
k
1
n1
· · ·r n
n 1
n
1
t1
· · ·n n
t1
b t1, ,t n B t q−11, ,t nα
1/α
Trang 4Lk1, , k n , r1, , r n , p, q, α, β
×
k
1
s1 1
· · ·k n
s n1
a s1, ,s n A p−1 s1, ,s nβ
k
1
m1s1
· · · k n
m n s n
1 1/β
×
r
1
t1 1
· · ·r n
t n1
b t1, ,t n B q−1 t1, ,t nα
r
1
n1t1
· · · r n
n n t n
1 1/α
Lk1, , k n , r1, , r n , p, q, α, β
×
⎧
⎨
⎩
k1
s1 1
· · ·k n
s n1
n
j1
k j − s j 1a s1, ,s n A p−1 s1, ,s n
β⎫⎬
⎭
1/β
×
⎧
⎨
⎩
r1
t1 1
· · ·r n
t n1
n j1
r j − t j 1b t1, ,t n B t q−11, ,t nα
⎫
⎬
⎭
1/α
Lk1, , k n , r1, , r n , p, q, α, β
×
⎧
⎨
⎩
k1
m1 1
· · · k n
m n1
n j1
k j − m j 1a m1, ,m n A p−1 m1, ,m nβ
⎫
⎬
⎭
1/β
×
⎧
⎨
⎩
r1
n1 1
· · ·r n
n n1
n
j1
r j − n j 1b n1, ,n n B n q−11, ,n nα
⎫
⎬
⎭
1/α
.
2.10 This completes the proof
Remark 2.2 Taking α β n j 2, 2.3 becomes
k1
m1
k2
m2 1
r
1
n1 1
r2
n2 1
A p m1,m2B q n1,n2
m1m2t −1/2 n1n2t1/2
≤ 1
2pqk1k2r1r2
k
1
m1
k2
m2 1
k1− m1 1k2− m2 1a m1,m2A p−1 m1,m22
1/2
×
r
1
n1
r2
n2 1
r1− n1 1r2− n2 1b n1,n2B n p−11,n22
1/2
.
2.11
Takingt 1, and changing {a m1,m2}, {b n1,n2}, {A m1,m2}, and {B n1,n2} into {a m }, {b n }, {A m }, and {B n }, respectively, and with suitable changes, 2.11 reduces to Pachpatte 1, inequality1
In1, Pachpatte also established the following inequality involving series of nonneg-ative terms
Trang 5Journal of Inequalities and Applications 5
Theorem B Let {am }, {b n }, A m , B n be as defined in Theorem A Let {p m } and {q n } be positive
sequences for m 1, , k, and n 1, , r, where k, r are natural numbers Define P m m
s1 p s , and Q n n t1 q t Let φ and ψ be real-valued, nonnegative, convex, submultiplicative functions defined onR 0, ∞ Then
k
m1
r
n1
φA m ψB n
m n ≤ Mk, r
k
m1
k − m 1
p m φ
a
m
p m
2 1/2
×
r
n1
r − n 1
q n φ
b
n
q n
2 1/2
,
2.12
where
Mk, r 1
2
k
m1
φP m
P m
2 1/2 r
n1
φQ n
Q n
2 1/2
Inequality2.12 can also be generalized to the following general form
Theorem 2.3 Let {a m1, ,m n }, {b n1, ,n n }, α, β, t, A m1, ,m n , and B n1, ,n n be as defined in Theorem 2.1 Let {p m1, ,m n } and {q n1, ,n n } be positive sequences for m i 1, 2, , k i , and n i 1, 2, , r i i
1, 2, , n Define P m1, ,m n m1
s1 1· · ·m n
s n1p s1, ,s n , and Q n1, ,n n n1
t1 1· · ·n n
t n1q t1, ,t n Let φ and ψ be real-valued, nonnegative, convex, submultiplicative functions defined on R 0, ∞.
Then
k1
m1 1
· · · k n
m n1
r1
n1 1
· · ·r n
n n1
αβt1/β φA m1, ,m n ψB n1, ,n n
m1· · · m n β n1· · · n n αt
≤ Mk1, , k n , r1, , r n , α, β
×
⎧
⎨
⎩
k1
m1 1
· · · k n
m n1
n j1
k j − m j 1p m1, ,m n φ a m1, ,m n
p m1, ,m n
β⎫⎬
⎭
1/β
×
⎧
⎨
⎩
r1
n1 1
· · ·r n
n n1
n
j1
r j − n j 1q n1, ,n n ψa b n1, ,n n
q n1, ,m n
α⎫
⎬
⎭
1/α
,
2.14
where
Mk1, , k n , r1, , r n , α, β
k
1
m1 1
· · · k n
m n1
φP m1, ,m n
P m1, ,m n
α 1/α r
1
n1 1
· · ·r n
n n1
ψQ n1, ,n n
Q n1, ,n n
β 1/β
. 2.15
Trang 6Proof By the hypotheses, Jensen’s inequality, and H ¨older’s inequality, we obtain
φA m1, ,m n φ
P m1, ,m n
m1
s1 1 .m n
s n1p s1, ,s n
a s1, ,s n /p s1, ,s n
m1
s1 1· · ·m n
s n1p s1, ,s n
≤ φP m1, ,m n φ
m1
s1 1· · ·m n
s n1p s1,··· ,s na s1, ,s n /p s1, ,s n
m1
s1 1· · ·m n
s n1p s1, ,s n
≤ φP m1, ,m n
P m1, ,m n
m1
s1 1
· · ·m n
s n1
p s1, ,s n φ a s1, ,s n
p s1, ,s n
≤ φP m1, ,m n
P m1, ,m n m1· · · m n1/α
m
1
s1 1
· · ·m n
s n1
p s1, ,s n φ a s1, ,s n
p s1, ,s n
β 1/β
.
2.16
Similarly,
φB n1, ,n n ≤ φQ n1, ,n n
Q n1, ,n n n1· · · n n1/β
n
1
n1 1
· · ·n n
n n1
q t1, ,t n ψ b t1, ,t n
q t1, ,t n
α 1/α
. 2.17
By2.16 and 2.17, and using the elementary inequality:
a1/α b1/β≤ a
αt1/β t1/α β b , 2.18
where 1/α 1/β 1, α > 1, b > 0, a > 0, and t > 0, we have
φA m1, ,m n φB n1, ,n n ≤
m1· · · m n
αt1/β n1· · · n n t1/α
β
× φP m1, ,m n
P m1, ,m n
m
1
s1 1
· · ·m n
s n1
p s1, ,s n φ a s1, ,s n
p s1, ,s n
β 1/β
× φQ n1, ,n n
Q n1, ,n n
n
1
t1 1
.n n
t n1
q t1, ,t n ψ b t1, ,t n
q t1, ,t n
α 1/α
.
2.19
Trang 7Journal of Inequalities and Applications 7 Dividing both sides of2.19 by m1· · · m n β n1· · · n n αt/αβt1/β , and summing up over n i
from 1 tor i i 1, 2, , n first, then summing up over m ifrom 1 tok i i 1, 2, , n, using
again inverse H ¨older’s inequality, and then interchanging the order of summation, we obtain
k1
m1 1
· · · k n
m n1
r1
n1 1
· · ·r n
n n1
αβt1/β φA m1, ,m n ψB n1, ,n n
m1 m n β n1 n n αt
≤ k1
m1 1
. k n
m n1
⎛
⎝φP m1, ,m n
P m1, ,m n
m
1
s1 1
· · ·m n
s n1
p s1, ,s n φ a s1, ,s n
p s1, ,s n
β 1/β⎞
⎠
×r1
n1 1
· · ·r n
n n1
⎛
⎝φQ n1, ,n n
Q n1, ,n n
n
1
n1 1
· · ·n n
n n1
q t1, ,t n ψ b t1, ,t n
q t1, ,t n
α 1/α⎞
⎠
≤
k
1
m1 1
· · · k n
m n1
φP m1, ,m n
P m1, ,m n
α 1/α
×
k
1
m1 1
· · · k n
m n1
m
1
s1 1
· · ·m n
s n1
p s1, ,s n φ a s1, ,s n
p s1, ,s n
β 1/β
×
r
1
n1 1
· · ·r n
n n1
ψQ n1, ,n n
Q n1, ,n n
β 1/β
×
r
1
n1 1
· · ·r n
n n1
n
1
t1 1
· · ·n n
t n1
q t1, ,t n ψ b t1, ,t n
q t1, ,t n
α 1/α
Mk1, , k n , r1, , r n , α, β
×
⎧
⎨
⎩
k1
m1 1
· · · k n
m n1
n
j1
k j − m j 1p m1, ,m n φ a m1, ,m n
p m1, ,m n
β⎫⎬
⎭
1/β
×
⎧
⎨
⎩
r1
n1 1
· · ·r n
n n1
n j1
r j − n j 1q n1, ,n n ψ b n1, ,n n
q n1, ,m n
α⎫⎬
⎭
1/α
.
2.20 The proof is complete
Trang 8Remark 2.4 Taking α β n j 2, 2.14 becomes
k1
m1
k2
m2 1
r
1
n1 1
r2
n2 1
φA m1,m2ψB n1,n2
m1m2t −1/2 n1n2t1/2
≤ Mk1, k2, r1, r2
×
k
1
m1
k2
m2 1
k1− m1 1k2− m2 1
p m1,m2φ a m1, ,m n
p m1, ,m n
2 1/2
×
r
1
n1
r2
n2 1
r1− n1 1r2− n2 1
q n1,n2ψ b n1, ,n n
q n1, ,n n
2 1/2
,
2.21
where
Mk1, k2, r1, r2
k
1
m1 1
k2
m2 1
φP m1,m2
P m1,m2
2 1/2 r
1
n1 1
r2
n2 1
ψQ n1,n2
Q n1,n2
2 1/2
. 2.22
Takingt 1, and changing {a m1,m2}, {b n1,n2}, {A m1,m2}, and {B n1,n2} into {a m }, {b n }, {A m }, and {B n }, respectively, and with suitable changes, 2.21 reduces to Pachpatte 1, Inequality 7
Theorem 2.5 Let {am1, ,m n }, {b n1, ,n n }, {p m1, ,m n }, {q n1, ,n n }, P m1, ,m n , and Q n1, ,n n , α, β, t, be as defined in Theorem 2.3 Define
A m1, ,m n P 1
m1, ,m n
m1
s1 1
· · ·m n
s n1
p s1, ,s n a s1, ,s n ,
B n1, ,n2 Q 1
n1, ,n n
n1
t1 1
· · ·n n
t n1
q t1, ,t n b t1, ,t n ,
2.23
for m i 1, 2, , k i , and n i 1, 2, , r i i 1, 2, , n, where k i , r i i 1, , n are natural
numbers Let φ and ψ be real-valued, nonnegative, convex functions defined on R 0, ∞ Then
k1
m1 1
· · · k n
m n1
r1
n1 1
· · ·r n
n n1
αβt1/β P m1, ,m n Q n1, ,n n φA m1, ,m n ψB n1, ,n n
m1· · · m n β n1· · · n n αt
k1· · · k n1/α r1· · · r n1/β
×
⎧
⎨
⎩
k1
m1 1
· · · k n
m n1
n
j1
k j − m j 1p m1, ,m n φa m1, ,m nβ
⎫
⎬
⎭
1/β
×
⎧
⎨
⎩
r1
n1 1
· · ·r n
n n1
n
j1
r j − n j 1q n1, ,n n ψb n1, ,n nα
⎫
⎬
⎭
1/α
.
2.24
Trang 9Journal of Inequalities and Applications 9
Proof By the hypotheses, Jensen’s inequality, and H ¨older’s inequality, it is easy to observe
that
φA m1, ,m n φ
1
P m1, ,m n
m1
s1 1
· · ·m n
s n1
p s1, ,s n a s1, ,s n
≤ P 1
m1, ,m n
m1
s1 1
· · ·m n
s n1
p s1, ,s n φa s1, ,s n
≤ P 1
m1, ,m n
m1· · · m n1/α
m
1
s1 1
· · ·m n
s n1
p s1, ,s n φa s1, ,s nβ
1/β
,
2.25
ψB n1, ,n n ψ
1
Q n1, ,n n
n1
t1 1
· · ·n n
t n1
q t1, ,t n b t1, ,t n
≤ Q 1
n1, ,n n
n1
t1 1
· · ·n n
t n1
q t1, ,t n ψb t1, ,t n
≤ Q 1
n1, ,n n
n1· · · n n1/β
n
1
t1 1
· · ·n n
t n1
q t1, ,t n ψb t1, ,t nα
1/α
.
2.26
Proceeding now much as in the proof of Theorems2.1and2.3, and with suitable modifica-tions, it is not hard to arrive at the desired inequality The details are omitted here
Remark 2.6 In the special case where j 1, t 1, α β 2, and n 1,Theorem 2.5reduces to the following result
Theorem C Let {a m }, {b n }, {p m }, {q n }, P m , Q n be as defined in Theorem B Define A m
1/P mm
s1 p s a s , and B n 1/Q nn
t1 q t b t for m 1, , k, and n 1, , r, where k, r are natural numbers Let φ and ψ be real-valued, nonnegative, convex functions defined on R 0, ∞.
Then
k
m1
r
n1
P m Q n φA m ψB n
1
2kr1/2
k
m1
k − m 1p m φa m2
1/2
×
r
n1
r − n 1q n ψb n2
1/2
.
2.27
This is the new inequality of Pachpatte in [ 1 , Theorem 4].
Remark 2.7 Taking j 1, t 1, p m 1, q n 1, α β 2, and n 1 inTheorem 2.5, and in view
ofP m m, Q n n, we obtain the following theorem.
Trang 10Theorem D Let {am }, {b n } be as defined in Theorem A Define A m 1/mm s1 a s , and B n
1/nn
t1 b t , for m 1, , k, and n 1, , r, where k, r are natural numbers Let φ and ψ be real-valued, nonnegative, convex functions defined on R 0, ∞ Then
k
m1
r
n1
mn
m n φA m ψB n ≤ 1
2kr1/2
k
m1
k − m 1φa m2
1/2
×
r
n1
r − n 1ψb n2
1/2
.
2.28
This is the new inequality of Pachpatte in [ 1 , Theorem 3].
Acknowledgments
Research is supported by Zhejiang Provincial Natural Science Foundation of ChinaY605065, Foundation of the Education Department of Zhejiang Province of China20050392 Research
is partially supported by the Research Grants Council of the Hong Kong SAR, ChinaProject
no HKU7016/07P and a HKU Seed Grant forBasic Research
References
1 B G Pachpatte, “On some new inequalities similar to Hilbert’s inequality,” Journal of Mathematical
Analysis and Applications, vol 226, no 1, pp 166–179, 1998.
2 G D Handley, J J Koliha, and J E Peˇcari´c, “New Hilbert-Pachpatte type integral inequalities,”
Journal of Mathematical Analysis and Applications, vol 257, no 1, pp 238–250, 2001.
3 M Gao and B Yang, “On the extended Hilbert’s inequality,” Proceedings of the American Mathematical
Society, vol 126, no 3, pp 751–759, 1998.
4 K Jichang, “On new extensions of Hilbert’s integral inequality,” Journal of Mathematical Analysis and
Applications, vol 235, no 2, pp 608–614, 1999.
5 B Yang, “On new generalizations of Hilbert’s inequality,” Journal of Mathematical Analysis and
Applications, vol 248, no 1, pp 29–40, 2000.
6 W Zhong and B Yang, “On a multiple Hilbert-type integral inequality with the symmetric kernel,”
Journal of Inequalities and Applications, vol 2007, Article ID 27962, 17 pages, 2007.
7 C.-J Zhao, “Inverses of disperse and continuous Pachpatte’s inequalities,” Acta Mathematica Sinica,
vol 46, no 6, pp 1111–1116, 2003
8 C.-J Zhao, “Generalization on two new Hilbert type inequalities,” Journal of Mathematics, vol 20, no.
4, pp 413–416, 2000
9 C.-J Zhao and L Debnath, “Some new inverse type Hilbert integral inequalities,” Journal of
Mathematical Analysis and Applications, vol 262, no 1, pp 411–418, 2001.
10 G D Handley, J J Koliha, and J Peˇcari´c, “A Hilbert type inequality,” Tamkang Journal of Mathematics,
vol 31, no 4, pp 311–315, 2000
11 G H Hardy, J E Littlewood, and G P´olya, Inequalities, Cambridge University Press, Cambridge, UK,
1934
12 J N´emeth, “Generalizations of the Hardy-Littlewood inequality,” Acta Scientiarum Mathematicarum,
vol 32, pp 295–299, 1971
13 E F Beckenbach and R Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.
F., Band 30, Springer, Berlin, Germany, 1961