1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article A New Hilbert-Type Linear Operator with a Composite Kernel and Its Applications" pot

18 342 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 544,02 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2010, Article ID 393025, 18 pagesdoi:10.1155/2010/393025 Research Article A New Hilbert-Type Linear Operator with a Composite Kernel and Its Applications Wuyi Zhong Department of

Trang 1

Volume 2010, Article ID 393025, 18 pages

doi:10.1155/2010/393025

Research Article

A New Hilbert-Type Linear Operator with

a Composite Kernel and Its Applications

Wuyi Zhong

Department of Mathematics, Guangdong Institute of Education, Guangzhou, Guangdong 510303, China

Correspondence should be addressed to Wuyi Zhong,zwy@gdei.edu.cn

Received 20 April 2010; Accepted 31 October 2010

Academic Editor: Ondˇrej Doˇsl ´y

Copyrightq 2010 Wuyi Zhong This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

A new Hilbert-type linear operator with a composite kernel function is built As the applications, two new more accurate operator inequalities and their equivalent forms are deduced The constant factors in these inequalities are proved to be the best possible

1 Introduction

In 1908, Weyl1 published the well-known Hilbert’s inequality as follows:

if a n , b n ≥ 0 are real sequences, 0 <∞n1 a2

n < ∞ and 0 <∞n1 b2

n <∞, then



n1



m1

a m b n

m  n < π

∞

n1

a2n



n1

b n2

1/2

where the constant factor π is the best possible.

Under the same conditions, there are the classical inequalities2



n0



m0

a m b n

m  n  1 < π

∞

n1

a2n



n1

b2n

1/2



n1



m1

lnm/nam b n

m − n < π2



n1

a2n



n1

b n2

1/2

Trang 2

where the constant factors π and π2 are the best possible also Expression1.2 is called a

more accurate form of1.1 Some more accurate inequalities were considered by 3 5 In 2009, Zhong5 gave a more accurate form of 1.3

Setp, q, s, r as two pairs of conjugate exponents, and p > 1, s > 1, α ≥ 1/2, and a n,

b n ≥ 0, such that 0 <∞n0 n  α p1−λ/r−1 a p n < ∞ and 0 <∞n0 n  α q1−λ/s−1 b q n <∞, then it has



n0



m0

lnm  α/n  αam b n

m  α λ − n  α λ <

∞



n0

n  α p1−λ/r−1 a p n

1/p∞



n0

n  α q1−λ/s−1 b q n

1/q

.

1.4

Letting φx : x  α p1−λ/r−1 , ϕx : x  α q1−λ/s−1 ,  φ p: {a; a  {an}∞n0,a p,φ: {∞

n0 φ n|a n|p}1/p

< ∞},  q

ϕ : {b; b  {bn}∞n0, and b q,ϕ: {∞

n0 ϕ n|b n|q}1/q

< ∞}, the expression1.4 can be rewritten as

Ta, b :∞

n0



m0

lnm  α/n  αam b n

m  α λ − n  α λ < k λ sa p,φ b q,ϕ , 1.5

where T :  φ p →  p

ψ is a linear operator, k λ s  T a p,φ is the norm of the sequence a with

a weight function φ Ta, b is a formal inner product of the sequences Tan:∞m0 lnm 

α /n  αa m /m  α λ − n  α λ  and b.

By setting two monotonic increasing functions ux and vx, a new Hilbert-type inequality, which is with a composite kernel function Kux, vy, and its equivalent are

built in this paper As the applications, two new more accurate Hilbert-type inequalities incorporating the linear operator and the norm are deduced

Firstly, the improved Euler-Maclaurin’s summation formula6 is introduced

Set f ∈ C4m, ∞m ∈ N0 If −1i f i x > 0, f i ∞  0 i  0, 1, 2, 3, 4, then it has



nm

f n <

∞

m

f xdx  1

2f m − 1

12f

m,



nm

f n >

∞

m

f xdx  1

2f m.

1.6

2 Lemmas

Lemma 2.1 Set r, s as a pair of conjugate exponents, s > 1, β ≥ α ≥ e 7/12 , 0 < λ ≤ 1, and define

f

y : 1

ln λ αm  ln λ βy

ln λ/r αm

ln1−λ/sβy y , y ∈ 1, ∞, m ∈ N, 2.1

g

y : 1

ln λ αy  ln λ βn

ln λ/s βn

ln1−λ/rαy y , y ∈ 1, ∞, n ∈ N, 2.2

Trang 3

R λ m, s :

ln β/ ln αm

0

u λ/s−1

1 u λ du−1

2f1  1

12f

R λ n, r :

ln α/ ln βn

0

u λ/r−1

1 u λ du−1

2g1  1

12g

η λ m, s :

ln β/ ln αm

0

u λ/s−1

1 u λ du−1

Then, it has the following.

1 The functions fy, gy satisfy the conditions of 1.6 It means that

−1i F i

y > 0

F  f, g, y ∈ 1, ∞ ,

F i∞  0 F  f, g, i  0, 1, 2, 3, 4 ,

2.6

2

3

0 < η λ m, s  O 1

ln αm

ρ

ρ > 0, m−→ ∞ . 2.8

Proof 1 For β ≥ α ≥ e 7/12 , y ≥ 1, m ∈ N, 0 < λ ≤ 1, and s > 1, set

f1

y : 1

lnλ αm lnλ βy , f2

y : 1

ln1−λ/sβy , f3

y : 1

It has

f

y  lnλ/r αmf1

y f2

y f3

when y≥ 1 It is easy to find that

−1i f j i

y > 0, f j i∞  0 y ∈ 1, ∞, j  1, 2, 3, i  0, 1, 2, 3, 4 ,

−1i f i

y > 0, f i∞  0 y ∈ 1, ∞, i  0, 1, 2, 3, 4

2.11

Trang 4

Similarly, it can be shown that−1i g i y > 0, g i ∞  0 y ≥ 1, i  0, 1, 2, 3, 4 These

tell us that2.6 holds and the functions fy, gy satisfy the conditions of 1.6

2 Set t  u λ With the partial integration, it has

ln β/ ln αm

0

u λ/s−1

1 u λ du 1

λ

ln β/ ln αm λ

0

t 1/s−1

1 t dt

s λ

ln β/ ln αm λ

0

dt 1/s

1 t

 s

λ

ln β/ ln αm λ/s

1 ln β/ ln αm λ  s

λ

ln β/ ln αm λ

0

t 1/s

1  t2dt

 s

λ

lnλ β

lnλ αm lnλ β

ln αm

ln β

λ/r

λ 1  s

ln β/ ln αm λ

0

dt 1/s1

1  t2

s

λ

lnλ β

lnλ αm lnλ β

ln αm

ln β

λ/r

λ 1  s

ln2λ β

lnλ αm lnλ β 2

ln αm

ln β

λ/r

.

2.12

By2.1, it has

f1 

ln αm

ln β

λ/r

lnλ−1 β

f1 

ln αm

ln β

λ/r

λln 2λ−2 β

lnλ αm lnλ β 2 − 1 − λ/sln λ−2 β

lnλ αm lnλ β − lnλ−1 β

lnλ αm lnλ β



In view of2.12∼2.14, it has

R λ m, s ≥

ln αm

ln β

λ/r

lnλ−1 β

lnλ αm lnλ β −1− λ/s

12 ln β − 7

12 s

λ ln β



 ln2λ β

lnλ αm lnλ β 2



s2

λ 1  s

λ

12ln2β



.

2.15

As ln β ≥ 7/12, s > 1r > 1, and 0 < λ ≤ 1, it has

−1− λ/s

12 ln β − 7

12 s

λ ln β7s

12λ

1− λ

s



12 ln β

1− λ

s





1−λ

s



7s

12 ln β



>

1−λ

s

 7

12 ln β



> 0,

s2

λ 1  s

λ

12ln2β >

s

12ln2β  s

4

3ln2β



> 0.

2.16

It means that R λ m, s > 0 Similarly, it can be shown that R λ n, r > 0 The expression 2.7 holds

Trang 5

3 By 2.5, 2.12, 2.13, and 0 < λ < s, β ≥ e 7/12, it has

η λ m, s ≥ s

λ

lnλ β

lnλ αm lnλ β

ln αm

ln β

λ/r

−1 2

lnλ−1 β

lnλ αm lnλ β

ln αm

ln β

λ/r



ln αm

ln β

λ/r lnλ−1 β

lnλ αmlnλ β

s ln β

λ −1 2



>

ln αm

ln β

λ/r lnλ−1 β

lnλ αm lnλ β

ln β−1 2



> 0,

η λ m, s < 1

λ

ln β/ ln αm λ

0

u 1/s−1 du s

λ

ln β

ln αm

λ/s

.

2.17 The expression2.8 holds, andLemma 2.1is proved

Lemma 2.2 Set r, s as a pair of conjugate exponents, s > 1, β ≥ α ≥ 1/2, and 0 < λ ≤ 1, and

define

f1

y : 1

λ m  α

lny  β/m  α λ

y  β/m  α λ− 1

y  β

m  α

λ/s−1

, y ∈ 0, ∞, m ∈ N0,

g1

y : 1

λ

n  β

lny  α/n  β λ

y  α/n  β λ− 1

y  α

n  β

λ/r−1

, y ∈ 0, ∞, n ∈ N0,

R λ m, s : 1

λ2

β/mα λ

0

ln u

u− 1u 1/s−1 du

1

2f10  1

12f



10,

R λ n, r : 1

λ2

α/nβ λ

0

ln u

u− 1u 1/r−1 du

1

2g10  1

12g



10,

η λ m, s : 1

λ2

β/mα λ

0

ln u

u− 1u 1/s−1 du

1

2f10.

2.18

Then, it has

1 The functions f1y, g1y satisfy the conditions of 1.6 It means that

−1i F i

y > 0

F  f1, g1, y ∈ 0, ∞ ,

F i∞  0 F  f1, g1, i  0, 1, 2, 3, 4 ,

2.19

2

Trang 6

0 < η λ m, s  O 1

m  α

ρ

ρ > 0, m−→ ∞ . 2.21

Proof 1 Letting hu : ln u/u − 1, u  y  β/m  α λ , it can be proved that f1y 

1/λm  αhuu 1/s−1/λsatisfy2.19 as in 5 Similarly, it can be shown that g1y satisfy

2.19 also

2 Setting u0 : β/m  αλ , by u  λy  β/m  α λ−1 1/m  α  λ/y 

β y  β/m  α λ ,u0  λ/βu0, and hu > 0, it has

1

λ2

β/mα λ

0

ln u

u− 1u 1/s−1 du

1

λ2

u0

0

h uu 1/s−1 du

 s

λ2

u0

0

h udu 1/s s

λ2 h u0u 1/s

0 −

u0

0

u 1/s hudu



s

λ2 h u0u 1/s

0 − hu0

u0

0

u 1/s du



 s

λ2 h u0u 1/s

0 − s

s 1hu0u 1/s10



,

2.22

f10  1

λ m  α

lnβ/m  α λ

β/m  α λ− 1

m  α

λ/s−1

 1

λβ h u0u 1/s

0 ,

2.23

f10  1

β2u 1/s0 hu0u0

1

s− 1

λ



h u0



With2.22∼2.24, it has

R λ m, s ≥ hu0u 1/s

0

s

λ2 − 1

12β2

1

s− 1

λ



− hu0u 1/s1

0

s

1 s

1

12β2



By hu0 > 0, hu0 < 0, and β ≥ 1/2, s > 1, 0 < λ ≤ 1, it has

s

λ2 − 1

12β2

1

s− 1

λ



 6βs

2βs − λ − λs − λ

12β22 > 0, s

1 s

1

12β2  12β2s − 1  s

12β21  s 

2s − s  2s− 1

12βλ1  s > 0.

2.26

So R λ m, s > 0 holds Similarly, it can be shown that R λ n, r > 0.

Trang 7

3 In view of 2.22, 2.23, by hu > 0, hu < 0, it has

η λ m, s > hu0u 1/s

0

s

λ2 − 1

2λβ



 hu0u 1/s

0

2βs − λ 2λ2β > 0, 2.27

and by limu→ 0 ln u/u − 1u 1/2s  0, so there exists a constant L > 0, such that |ln u/u −

1u1/2s | < L u ∈ 0, β/m  α λ Then it has

η λ m, s < 1

λ2

β/mα λ

0

ln u

u− 1u 1/s−1 du <

L

λ2

β/mα λ

0

u 1/2s−1 du 2sL

λ2

β

m  α

λ/2s

2.28

It means that2.21 holds The proof forLemma 2.2is finished

3 Main Results

Set λ ∈ R, p > 1,r > 1,p, q, and r, s as two pairs of conjugate exponents Kx, y ≥ 0x, y ∈

0, ∞ × 0, ∞ is a measurable kernel function Both ux and vx are strictly monotonic

increasing differentiable functions in n0, ∞ such that Un0 > 0,U∞  ∞U  u, v Give

some notations as follows:

1

φ x : ux p1−λ/r−1ux1−p,

ϕ x : vx q1−λ/s−1vx1−q,

ψ x :ϕ x1−p vx pλ/s−1 vx x ∈ n0, ∞,

3.1

2 set

 φ p:

a; a  {a n}∞nn0, a p,φ:



nn0

φ n|a n|p

1/p

<

and call  φ p a real space of sequences, where

a p,φ



nn0

φ n|a n|p

1/p

3.3

is called the norm of the sequence with a weight function φ Similarly, the real spaces of sequences

 ϕ q ,  ψ p and the norm b q,ϕcan be defined as well,

Trang 8

3 define a Hilbert-type linear operator T :  p

φ →  p

ψ , for all a ∈  p

φ,

Tan : C n: ∞

mn0

4 for all a ∈  p

φ , b ∈  q

ϕ , define the formal inner product of Ta and b as

Ta, b : ∞

nn0



mn0

K um, vna m



b n ∞

nn0



mn0

K um, vna m b n , 3.5

5 define two weight coefficients ωm, s and ϑn, r as

ω λ m, s : ∞

nn0

K um, vn um λ/r

vn1−λ/sv

n,

ϑ λ n, r : ∞

mn0

K um, vn vn λ/s

um1−λ/ru

m, m, n ≥ n0.

3.6

Then it has some results in the following theorems

Theorem 3.1 Suppose that a n0, Ux/Ux > 0U  u, v , and 0 <

∞

nn0vn/vn1ε ≤ ∞nn0un/un1ε  < ∞ε > 0 If there exists a positive number

k λ , such that

0 < ω λ m, s < k λ , 0 < ϑ λ n, r < k λ m, n ≥ n0, 3.7

k λ

1− O

1

um ρ



then for all a ∈  p

φ and a p,φ > 0, it has the following:

1

Ta  C  {C n}∞nn0 ∈  p

It means that T :  φ p →  p

ψ ,

Trang 9

2 T is a bounded linear operator and

T p,ψ: sup

a∈ p

φ a / θ

Ta p,ψ

where C n , T are defined by3.4, Ta p,ψ  C p,ψ is defined as3.3.

Proof By using H ¨older’s inequality7 and 3.6, 3.7, it has C n≥ 0 and

C n p



mn0

K um, vn



um 1−λ/r/q vn 1/p

vn 1−λ/s/p um 1/q a m



vn 1−λ/s/p um 1/q

um 1−λ/r/q vn 1/p

p



mn0

K um, vn um p−11−λ/r vn

vn1−λ/sum p−1 a p m



×

∞

mn0

K um, vn vn q−11−λ/s um

um1−λ/rvn q−1

p−1



∞

mn0

K um, vn um p−11−λ/r vn

vn1−λ/sum p−1 a p m





ϑ λ n, rϕn

p−1

< k p−1 λ

∞

mn0

K um, vn um p−11−λ/r vn

vn1−λ/sum p−1 a p m

ϕ p−1 n.

3.11

And by ψn  ϕ1−pn, it follows that

Ta p

p,ψ ∞

nn0

ψ nC p

n < k p−1 λ

∞

mn0



nn0

K um, vn um p−11−λ/r vn

vn1−λ/sum p−1 a

p m



 k p−1 λ ∞

mn0

ω λ m, sφma p

m < k p λ a p

p,φ < ∞.

3.12

This means that C  {C n}∞n0 ∈  p

ψ,Ta p,ψ ≤ k λ a p,φ, andT p,ψ ≤ k λ T is a bounded linear

operator

If there exists a constant K < k λ, such thatT p,ψ ≤ K, then for ε > 0, setting a m :

um λ/r−ε/p−1 um, b n : vnλ/s−ε/q−1 vn, it has a  { a m}∞mn0 ∈  p

φ , b  { b n}∞nn0 ∈  q

ϕ, and



T a, b≤ T p,ψ  a p,φ b

q,ϕ ≤ K

∞

mn0

um

um1ε

1/p∞

nn0

vn

vn1ε

1/q

≤ K∞

mn0

um

um1ε.

3.13

Trang 10

But on the other side, by3.8, it has



T a, b ∞

mn0



nn0

K um, vn um λ/r−ε/p−1

vn1−λ/sε/qu

mvn

 ∞

mn0

um

um1ε



nn0

K um, vn um λ/rε/q

vn1−λ/sε/qv

n.

3.14

By the strictly monotonic increase of vx and vn0 > 0, v∞  ∞, there exists n1> n0

such that vn > 1 for all n > n1 So it has

0 <



nn0

K um, vn um λ/rε/q

vn1−λ/sε/qv

n

 um ε/q



nn1

K um, vn um λ/r vn

vn1−λ/sε/q 

n1 −1

nn0

K um, vn um λ/r vn

vn1−λ/sε/q



≤ um ε/q

∞

nn1

K um, vn um λ/r vn

vn1−λ/s 

n1 −1

nn0

K um, vn um λ/r vn

vn1−λ/sε/q



 um ε/q



ω λ m, s − n1−1

nn0

K um, vn um λ/r vn

vn1−λ/s

n1−1

nn0

K um, vn um λ/r vn

vn1−λ/sε/q



.

3.15

The series is uniformly convergent for ε≥ 0, so it has

lim

ε→ 0



nn0

K um, vn um λ/rε/q

vn1−λ/sε/qvn  ω λ m, s 3.16

and for m > n0, there exists ε0> 0, when 0 < ε < ε0, it has



nn

K um, vn um λ/rε/q

vn1−λ/sε/qv

n > ω λ m, s − 1

Trang 11

By3.14 and 3.8, when 0 < ε < ε0, it has



T a, b≥ ∞

mn0

um

um1ε

ω λ m, s − 1

u m



≥ k λ



mn0

um

um1ε 1− O

1

um ρ



k λ u m

"

 k λ



mn0

um

um1ε

⎩1−



mn0

um

um1ε

−1

×



mn0

um

um1ε O

1

um ρ



k λ u m

⎫⎬

.

3.18

In view of3.13 and 3.18, letting ε → 0, it has k λ ≤ K This means that K  k λ; that is,

T p,ψ  k λ.Theorem 3.1is proved

Theorem 3.2 Suppose that p, q and r, s are two pairs of conjugate exponents, r > 1, p > 1,

λ ∈ R Let

f

y : Kλ

u m, v y

λ/r m

v1−λ/s

y



y ,

g

y : Kλ

u

y , v n λ/s n

u1−λ/r

y



y

3.19

Here, u y, vy satisfy the conditions as in Theorem 3.1 Set

R m, s :

vn0/um

0

K λ 1, uu λ/s−1 du− 1

2f n0  1

12f

R n, r :

un0/vn

0

K λ

μ, 1 μ λ/r−1 dμ−1

2g n0  1

12g

η m, s :

vn0/um

0

K λ 1, uu λ/s−1 du−1

If (a) K λ x, y ≥ 0 is a homogeneous measurable kernel function of “λ” degree in R2

, such that

0 < k λ s :

∞

0

(b) functions f y, gy satisfy the conditions of 1.6; that is,

−1i F i

y > 0

y > n0 , F i∞  0 F  f, g, i  0, 1, 2, 3, 4 , 3.24

Trang 12

(c) there exists ρ > 0, such that

R m, s > 0, R n, r > 0, 0 < ηm, s  O

1

u ρ m



then it has

1 if a ∈  p

φ , b ∈  q

ϕ , and a p,φ > 0, b q,ϕ > 0, then

Ta, b  ∞

nn0



mn0

K λ um, vna m b n < k λ sa p,φ b q,ϕ , 3.26

2 if a ∈  p

φ and a p,φ > 0, then

Ta p,ψ

∞

nn0

vn pλ/s−1 vn

∞

mn0

K um, vna m

p1/p

< k λ sa p,φ , 3.27

where inequality 3.27 is equivalent to 3.26 and the constant factor k λ s  k λ r :

#∞

0 K λ u, 1u λ/r−1 du is the best possible.

Proof By3.24, 1.6, it has

∞

n0

f

y dy−1

2f n0 < ω λ m, s  ∞

nn0

K λ um, vn um λ/r

vn1−λ/sv

n

 ∞

nn0

f n <

∞

n0

f

y dy−1

2f n0  1

12f

n0,

3.28

0 < ϑ λ n, r  ∞

mn0

K λ um, vn vn λ/s

um1−λ/ru

m

 ∞

mn

g m <

∞

n

g

y dy−1

2g n0  1

12g

n0.

3.29

...

ψ ,

Trang 9

2 T is a bounded linear operator and< /i>

T... p and the norm b q,ϕcan be defined as well,

Trang 8

3 define a Hilbert-type linear. ..

n > ω λ m, s − 1

Trang 11

By3.14 and 3.8,

Ngày đăng: 21/06/2014, 07:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN