1. Trang chủ
  2. » Khoa Học Tự Nhiên

Số nguyên Gauss potx

3 249 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 531,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Số nguyên Gauss Một số nguyên Gauss là một số phức với phần thực và phần ảo đều là các số nguyên.. Tập các số nguyên Gauss là một miền nguyên, thường được ký hiệu là Z[i].. Các số nguyê

Trang 1

Số nguyên Gauss

Một số nguyên Gauss là một số phức với phần thực và phần ảo đều là

các số nguyên Tập các số nguyên Gauss là một miền nguyên, thường

được ký hiệu là Z[i]

Các số nguyên Gauss là các điểm nguyên trên mặt phẳng phức

Như vậy, các số nguyên Gauss là tập hợp

Chuẩn của số nguyên Gauss là số tự nhiên xác định bằng

N(a + bi) = a2 + b2

Chuẩn có tính chất nhân, nghiã là

N(z·w) = N(z)·N(w)

Đơn vị của Z[i] là tất cả các phần tử có chuẩn bằng 1, nghĩa là gồm các phần tử

1, −1, i và −i

Trang 2

Nếu g là số Gauss, thì các số sau được gọi là số liên kết (tiếng Anh là

associate)với nó:

g, -g, ig, -ig

Số nguyên tố Gauss

Các phần tử nguyên tố của Z[i] cũng được gọi là các số nguyên tố

Gauss Số nguyên tố Gauss không thể có ước nào khác ngoài các đơn vị

của Z[i] và các liên kết của nó Nói một cách khác, số nguyên Gauss g

nguyên tố khi và chỉ khi g không thể phân tích thành tích của các số

nguyên Gauss p và q với chuẩn |p|>1 và |q|>1

Một số nguyên Gauss a+bi được gọi là số nguyên tố nếu và chỉ nếu nó

thỏa mãn một trong các tiêu chuẩn sau:

a=0 và |b| là số nguyên tố có dạng 4k+3;

b=0 và |a| là số nguyên tố có dạng 4k+3;

a và b đều khác 0 và a2 + b2 là một số nguyên tố

Một vài số nguyên tố thông thường (đôi khi để phân biệt, chúng được gọi là các "số nguyên tố hữu tỷ") không phải là các số nguyên tố Gauss;

chẳng hạn 2 = (1 + i)(1 − i) và 5 = (2 + i)(2 − i) Các số nguyên tố hữu tỷ

đồng dư với 3 (mod 4) là số nguyên tố Gauss; còn các số nguyên tố hữu

tỷ đồng dư 1 (mod 4) thì không Đó là vì số nguyên tố dạng 4k + 1 luôn

có thể viết dưới dạng tổng của hai bình phương (định lý Fermat về tổng của hai số chính phương), do đó ta có

p = a2 + b2 = (a + bi)(a − bi)

Nếu chuẩn của số nguyên Gauss z là một số nguyên tố, thì z cũng là số nguyên tố Gauss, vì mọi ước không tầm thường của z cũng là ước không tầm thường của chuẩn Chẳng hạn 2 + 3i là một số nguyên tố Gauss vì

chuẩn của nó là 4 + 9 = 13

Phép chia Euclid

Trang 3

Cho 2 số nguyên Gauss a và b, khi đó tồn tại các số nguyên q và r sao cho:

a = b.q + r với N(r)<N(b)

Ví dụ:

Cho các số nguyên Gauss:

a = − 36 + 242i

b = 50i + 50i

,

ta cần xác định số nguyên Gauss q gần với thương nhất

Trong hình vẽ bên, trên mặt phẳng số phức, thương được biểu thị bằng một chấm đen, nằm trong ô vuông độ dài đơn vị với 4 đỉnh là

4 số nguyên Gauss, ô vuông này được tô màu đỏ nâu nhạt Do

khoảng cách giữa điểm và q không quá 1, giá trị của q chỉ có thể

là số nguyên Gauss biểu thị bởi 4 đỉnh này

Ta vẽ 4 đường tròn bán kính đơn vị nhận 4 đỉnh trên làm tâm (các đường tròn này tô màu xanh nhạt) Nếu điểm nằm trong đường

tròn nào thì q có thể nhận giá trị tại tâm đường tròn đó

Ngày đăng: 21/06/2014, 21:20

TỪ KHÓA LIÊN QUAN

w