1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

kennelly aurthur tables of complex hyperbolic and cicular functions

244 291 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Tables of Complex Hyperbolic and Circular Functions
Tác giả A. E. Kennelly
Trường học Harvard University
Chuyên ngành Electrical Engineering
Thể loại Thesis
Năm xuất bản 1921
Thành phố Cambridge
Định dạng
Số trang 244
Dung lượng 15,28 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TABLES OF COMPLEX HYPERBOLICAND CIRCULAR FUNCTIONS ÆTHERFORCE... HYPERBOLIC SINES, sinh pIS r1.4 i-S 45 ÆTHERFORCE... TABLE HYPERBOLIC SINES, sinh p/5 r/% CONTINUED45 ÆTHERFORCE... HYPER

Trang 1

OXFORDUNIVERSITY PRESS

1921

ÆTHERFORCE

Trang 2

Second edition, February, 1021

ÆTHERFORCE

Trang 3

have nothithertobeenpublished,exceptover a veryrestricted range They have

importantapplications in electricalengineering For instance,it ispossiblewith

Although the principalapplicationof these functions at the present time isin

to a numberof workers, both inmathematical andpracticalfields; and

particu-larlytoMessrs C L Bouton, W.Duddell, E V Huntington,F.B Jewett, John

A. E K.

January,1914.

I

J These areactually extensionsof the tablesI to VIalready incorporated. Ithas

volumeratherthanto recasttheoriginal tables insuch a manneras to includethe

electrical engineering to which complex hyperbolic functions may be

Trang 4

TABLE OF CONTENTS

PAGE

/_y 5 45 to 90 2

H. HYPERBOLIC COSINES, cosh(P/5) =r fa . " " " " 8

HI HYPERBOLIC TANGENTS, tanh(P/S) = rfy_ " " " " 14

IV CORRECTING FACTOR ^^ . " " " " 20 a V CORRECTING FACTOR ^-? " " " " 26 (7 VL FUNCTIONS OF SEMI-IMAGINARIES /(p745) 32

VII HYPERBOLIC SINES, sinh(x +iq) =u + w 42

VIII HYPERBOLIC COSINES, cosh(x +iq) =u +iv 58

IX HYPERBOLIC TANGENTS, tanh(x+iq) = +iv 74

X HYPERBOLIC SINES, sinh(x +iq) = r /_y_ 90

XL HYPERBOLIC COSINES, cosh(x+iq) = r /_y_ 106

XII HYPERBOLIC TANGENTS, tanh(* + </) =r /_y_ 122

XIII FUNCTIONS OF 4 +iq. f(4+iq)=u+iv . 138

f(4+iq) =r/7 139

XIV. SEMI-EXPONENTIALS and logio (~ XV REAL HYPERBOLIC FUNCTIONS /(x +io) = u +io 144

XVI. SUBDIVISIONS OF A DEGREE 150

EXPLANATORY TEXT 151

XVH. HYPERBOLIC SINES sinh(p/6) = r/r 5o to 45 214

XVIII HYPERBOLIC COSINES cosh(p/5) = r/r "" " " 216

XIX. HYPERBOLIC TANGENTS tanh(p/) = r[y_ "" " " 218

XX. CORRECTING FACTOR s - " " " " 220

XXI. CORRECTING FACTOR " " " " 222

a XXII FUNCTIONS OF SEMI-IMAGINARIES /(P/45) . 224

XXIII HYPERBOLIC FUNCTION FORMULAS 226

ÆTHERFORCE

Trang 5

TABLES OF COMPLEX HYPERBOLIC

AND CIRCULAR FUNCTIONS

ÆTHERFORCE

Trang 6

TABLE I. HYPERBOLIC SINES, sinh (p/S) r

Trang 7

TABLE I. HYPERBOLIC SINES, sinh =r

Trang 8

TABLE I. HYPERBOLIC SINES, sinh (pIS) r

1.4 i-S

45

ÆTHERFORCE

Trang 9

TABLE HYPERBOLIC SINES, sinh (p/5) r/% CONTINUED

45

ÆTHERFORCE

Trang 10

TABLE I. HYPERBOLIC SINES, sinh (p

45

ÆTHERFORCE

Trang 11

ÆTHERFORCE

Trang 12

TABLE II. HYPERBOLIC COSINES, cosh (p/5) r

/_y

0-3 0.445

ÆTHERFORCE

Trang 13

TABLE II. HYPERBOLIC COSINES, cosh (p/8) r

45

ÆTHERFORCE

Trang 14

TABLE HYPERBOLIC COSINES, cosh (p/5) r

1.445

Trang 15

TABLE HYPERBOLIC COSINES.

ÆTHERFORCE

Trang 16

TABLE II. HYPERBOLIC COSINES, cosh (p{8) r/_V CONTINUED

45

ÆTHERFORCE

Trang 17

TABLE HYPERBOLIC COSINES, cosh (p /5) r/T CONTINUED

2.6 2.7

2.945

ÆTHERFORCE

Trang 18

TABLE III. HYPERBOLIC TANGENTS, tanh (p[$) r

Trang 19

TABLE HYPERBOLIC TANGENTS, tanh (p 5) r/j CONTINUED

45

ÆTHERFORCE

Trang 20

TABLE III. HYPERBOLIC TANGENTS, tanh(pIS) r y. CONTINUED

45

ÆTHERFORCE

Trang 21

TABLE III. HYPERBOLIC TANGENTS, tanh (p

/8) =r /. CONTINUED

45

ÆTHERFORCE

Trang 22

TABLE III. HYPERBOLIC TANGENTS, tanh(p[S) r

45

ÆTHERFORCE

Trang 23

TABLE III. HYPERBOLIC TANGENTS, tanh

ÆTHERFORCE

Trang 24

ÆTHERFORCE

Trang 26

ÆTHERFORCE

Trang 27

1.6 1.7

ÆTHERFORCE

Trang 28

1ABLE IV.

2.1

ÆTHERFORCE

Trang 32

ÆTHERFORCE

Trang 34

ÆTHERFORCE

Trang 36

FUNCTIONS OF SEMI-IMAGINARIES /(p/4) =rfa

ÆTHERFORCE

Trang 38

FUNCTIONS OF SEMI-IMAGINARIES /(p/ 5) = r/y CONTINUED

Sinh Cosh

4-5

ÆTHERFORCE

Trang 39

FUNCTIONS OF SEMI-IMAGINARIES /(p/4s) = r /y. CONTINUED

Sinhandcosh Tanhandcoth Sechandcosech

6.05

ÆTHERFORCE

Trang 40

FUNCTIONS OF SEMI-IMAGINARIES f(p[*) =r CONTINUED

Sinhandcosh Tanhandcoth Sechandcosech

8.30

ÆTHERFORCE

Trang 43

FUNCTIONS OF SEMI-IMAGINARIES. /(p/45JO =

r/jy. CONTINUED

Sinhandcosh Tanhandcoth Sechandcosech

15-05

ÆTHERFORCE

Trang 44

FUNCTIONS OF SEMI-IMAGINARIES.

p Sinhandcosh Tanhandcoth

=r/jy. CONTINUED

Sechandcosech 17.30

ÆTHERFORCE

Trang 46

TABLE VII HYPERBOLIC SINES, sinh (x +iq) u +iv

Trang 47

TABLE VII HYPERBOLIC SINES, sinh (x +iq) u +iv. CONTINUED

x= 0.25 x =

0.3 =0.35 x=0.4 x =0.45

o

ÆTHERFORCE

Trang 48

TABLE VII HYPERBOLIC SINES, sinh (x + iq) u+iv. CONTINUED

x=0.5 =0.55 x=0.6 x=0.65 x=

0.7o

Trang 49

TABLE VII HYPERBOLIC SINES, sinh (x+iq) u +iv. CONTINUED

Trang 50

TABLE VII HYPERBOLIC SINES, sinh(*+iq) u +iv. CONTINUED

Trang 51

TABLE VII HYPERBOLIC SINES, sinh (x +iq) u +iv. CONTINUED

= 1.25 x=

1.3 *= i-35 *=1.4 =

1-45o

ÆTHERFORCE

Trang 52

TABLE VII HYPERBOLIC SINES, sinh (x +iq) = u +iv. CONTINUED

Trang 53

TABLE VII HYPERBOLIC SINES, sinh (x+iq) u +iv, CONTINUED

= i-7S x = 1.8 = 1.85 *=

1.9 x= 1.95o

ÆTHERFORCE

Trang 54

TABLE VII HYPERBOLIC SINES, sinh (*+ig) u +iv. CONTINUED

Trang 55

TABLE VII HYPERBOLIC SINES, sinh(x+iq) u +iv. CONTINUED

q

ÆTHERFORCE

Trang 56

TABLE VII HYPERBOLIC SINES, sinh (x+iq) u + iv. CONTINUED

Trang 57

TABLE VII HYPERBOLIC SINES, sinh (x+iq) u+iv. CONTINUED

Trang 58

TABLE VII HYPERBOLIC SINES, sinh (* +iq) u +iv. CONTINUED

-3.05 x=3.10 =3-iS x =3.20o.o

ÆTHERFORCE

Trang 59

TABLE VII HYPERBOLIC SINES, sinh (x+iq) u +iv. CONTINUED

x=

3-25 x= 3.30 =3-35 x= 3-4 x=3-45

o.o

ÆTHERFORCE

Trang 60

TABLE VII HYPERBOLIC SINES, sinh (x + iq) u +iv. CONTINUED

x =3-50 = 3-55 x=3.60 =3-65 x= 3.70

0.0

ÆTHERFORCE

Trang 61

TABLE VII HYPERBOLIC SINES, sinh (x+ iq) u+iv. CONTINUED

=

3-75 x=3.80 * =

3.85 x =3.90 =3-95o.o

ÆTHERFORCE

Trang 62

TABLE VIII HYPERBOLIC COSINES, cosh(x + iq) u + iv

ÆTHERFORCE

Trang 63

TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u +iv. CONTINUED

Trang 64

TABLE VTII HYPERBOLIC COSINES, cosh (x + iq) u +iv. CONTINUED

Trang 65

TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u + iv. CONTINUED

Trang 66

TABLE VIII HYPERBOLIC COSINES, cosh(x +iq) u +iv. CONTINUED

Trang 67

TABLE VIII HYPERBOLIC COSINES, cosh(* +iq) = u +iv. CONTINUED

9

ÆTHERFORCE

Trang 68

TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u+ iv. CONTINUED

i-55 x= 1.6 x= 1.65 x= 1.7

o

ÆTHERFORCE

Trang 69

TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u +n>. CONTINUED

?

ÆTHERFORCE

Trang 70

TABLE VIII HYPERBOLIC COSINES, cosh(x +iq) u +iv. CONTINUED

9

ÆTHERFORCE

Trang 71

TABLE VIII HYPERBOLIC COSINES, cosh(* +iq) = u +iv. CONTINUED

Trang 72

TABLE VIII HYPERBOLIC COSINES, cosh(x +iq) u + iv. CONTINUED

q

ÆTHERFORCE

Trang 73

TABLE VIII HYPERBOLIC COSINES, cosh(x + iq) = u +iv. CONTINUED

Trang 74

TABLE VIII HYPERBOLIC COSINES, cosh(* + ig) u +iv. CONTINUED

x=3-0 3-S x=3.10 =3-iS = 3.20

o

ÆTHERFORCE

Trang 75

TABLE VIII HYPERBOLIC COSINES, cosh (* +iq) u +iv. CONTINUED

=3-25 x=3.30 =3-35 =3-40 3-45

ÆTHERFORCE

Trang 76

TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u +iv. CONTINUED

=3-50 =3-55 3.60 x=3-65 x=3.70

o

ÆTHERFORCE

Trang 77

TABLE VIII HYPERBOLIC COSINES, cosh (* +iq) = u +iv. CONTINUED

*=3-75 3-80 3-85 x=

3.90 3-95o

ÆTHERFORCE

Trang 78

TABLE IX HYPERBOLIC TANGENTS, tanh(* +iq) u+iv

x=0.05 x =0.15 X=0.2

ÆTHERFORCE

Trang 79

TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) u+ iv. CONTINUED

Trang 80

TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) +w CONTINUED

Trang 81

TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) u+iv. CONTINUED

Trang 82

TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) u +iv. CONTINUED

Trang 83

TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) u+iv. CONTINUED

ÆTHERFORCE

Trang 84

TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) u+iv. CONTINUED

Trang 85

TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) = u +iv. CONTINUED

Trang 86

TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) =u+iv. CONTINUED

Trang 87

TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) u +iv. CONTINUED

Trang 88

TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) u +iv. CONTINUED

Trang 89

TABLE HYPERBOLIC TANGENTS, tanh(x+iq) =u+iv. CONTINUED

x=

2.75 x= 2.80 x= 2.85 = 2.90 x= 2.95

ÆTHERFORCE

Trang 90

TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) =u+iv. CONTINUED

Trang 91

TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) =u+iv. CONTINUED

=3-25 *=3-30 *=3-35 x=3.40 =3-45

o

ÆTHERFORCE

Trang 92

TABLE IX HYPERBOLIC TANGENTS, tanh(*+iq) =u +iv. CONTINUED

Trang 93

TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) u+iv. CONTINUED

3-95o

ÆTHERFORCE

Trang 94

TABLE X HYPERBOLIC SINES, sinh(x+iq) r/y_

x=0.05 x =0.15

o

ÆTHERFORCE

Trang 95

TABLE X HYPERBOLIC SINES, sinh (at+iq) r

=0.25 x=0.3 =0.35 *=0.4 x=0.45

0.25261

ÆTHERFORCE

Trang 96

TABLE X HYPERBOLIC SINES, sinh (x +iq) r CONTINUED

Trang 97

TABLE X HYPERBOLIC SINES, sinh (x+iq) r /y. CONTINUED

ÆTHERFORCE

Trang 98

TABLE X HYPERBOLIC SINES, sinh (* +iq) r/r CONTINUED

ÆTHERFORCE

Trang 99

TABLE X HYPERBOLIC SINES, sinh (x+iq) = r/y CONTINUED

Trang 100

TABLE X HYPERBOLIC SINES, sinh (*+iq) r/V CONTINUED

x =1.50 X= 1.60 x= 1.65 a;= 1.70

o

ÆTHERFORCE

Trang 101

TABLE X HYPERBOLIC SINES, sinh (*+iq) = rfy. CONTINUED

ÆTHERFORCE

Trang 102

TABLE X HYPERBOLIC SINES, sinh(x +iq) r /y. CONTINUED

ÆTHERFORCE

Trang 103

TABLE X HYPERBOLIC SINES, sinh (x+ig) =r

2.3 *= 2.35 x= 2.4 x= 245

ÆTHERFORCE

Trang 104

TABLE X HYPERBOLIC SINES, sinh(x+iq) /y CONTINUED

Trang 105

TABLE X HYPERBOLIC SINES, sinh (x+iq) = r/y CONTINUED

x=

2.75 = 2.85 * = 2.9 x= 2.95

ÆTHERFORCE

Trang 106

TABLE X HYPERBOLIC SINES, sinh (x +iq) =r/y. CONTINUED

ÆTHERFORCE

Trang 107

TABLE X HYPERBOLIC SINES, sinh (x +iq) =r

=3.25 =3-3 =3-35 *=3-4 *=3-45

o

ÆTHERFORCE

Trang 108

TABLE X HYPERBOLIC SINES, sinh (x+iq) = r

Trang 109

TABLE X HYPERBOLIC SINES, sinh (x+iq) = rfy CONTINUED

ÆTHERFORCE

Trang 110

TABLE XI HYPERBOLIC COSINES, cosh(* +ig) r/y

Trang 111

TABLE XI HYPERBOLIC COSINES, cosh (x+ig) rAy. CONTINUED

ÆTHERFORCE

Trang 112

TABLE XI HYPERBOLIC COSINES, cosh (x+iq) r/y CONTINUED

ÆTHERFORCE

Trang 113

TABLE HYPERBOLIC COSINES, cosh(x +iq) = r

x=0.75 = 0.85 x=o.g x=

0.95o

ÆTHERFORCE

Trang 114

TABLE XI HYPERBOLIC COSINES, cosh(at+iq) r/y CONTINUED

Trang 115

TABLE XI HYPERBOLIC COSINES, cosh(x +iq) = r

Trang 116

TABLE XI HYPERBOLIC COSINES, cosh (x+ig) r /y. CONTINUED

x=1.5 =

1-55 x= 1.6 *=1.65 x= 1.7

o

ÆTHERFORCE

Trang 117

TABLE XI HYPERBOLIC COSINES, cosh(* +iq) r/y CONTINUED

ÆTHERFORCE

Trang 118

TABLE XI HYPERBOLIC COSINES, cosh(* +iq) /T CONTINUED

Trang 119

TABLE XI HYPERBOLIC COSINES, cosh(x+iq) =

ÆTHERFORCE

Trang 120

TABLE XL HYPERBOLIC COSINES, cosh (x+iq) r/T CONTINUED

ÆTHERFORCE

Trang 121

TABLE XI HYPERBOLIC COSINES, cosh (x+iq) = r

x = 2.75 x =.2.85 *= 2.9 x= 2.95

9

ÆTHERFORCE

Trang 122

TABLE XL HYPERBOLIC COSINES, cosh(x +iq) r/y CONTINUED

ÆTHERFORCE

Trang 123

TABLE XI HYPERBOLIC COSINES, cosh(* +iq) r y. CONTINUED

=3-25 *'=

3-3 = 3-35 x=3.4 =3-459

ÆTHERFORCE

Trang 124

TABLE XI HYPERBOLIC COSINES, cosh(x +iq) r /y. CONTINUED

ÆTHERFORCE

Trang 125

TABLE XL HYPERBOLIC COSINES, cosh(x+iq) =r

3-95

ÆTHERFORCE

Trang 126

TABLE XII HYPERBOLIC TANGENTS, tanh (x+iq) r

ÆTHERFORCE

Trang 127

TABLE HYPERBOLIC TANGENTS, tanh (x +iq) r

ÆTHERFORCE

Trang 128

TABLE XII HYPERBOLIC TANGENTS, tanh (* +*?) r/y CONTINUED

ÆTHERFORCE

Trang 129

TABLE XII HYPERBOLIC TANGENTS, tanh (x+ig) rAy CONTINUED

x=0.75 x=0.85 x=

o.g x=0.95

ÆTHERFORCE

Trang 130

TABLE XII HYPERBOLIC TANGENTS, tanh(* +iq) =

x= 1.05 *= 1.15

1

ÆTHERFORCE

Trang 131

TABLE XII HYPERBOLIC TANGENTS, tanh(x +iq) =r CONTINUED

ÆTHERFORCE

Trang 132

TABLE XII HYPERBOLIC TANGENTS, tanh(* +iq) r/y CONTINUED

ÆTHERFORCE

Trang 133

TABLE HYPERBOLIC TANGENTS, tanh(* +iq) r

=

1.75 x= 1.8 *= 1.85 *=

1.9 x= 1.959

ÆTHERFORCE

Trang 134

TABLE XII HYPERBOLIC TANGENTS, tanh(* + iq) f CONTINUED

Trang 135

TABLE XII HYPERBOLIC TANGENTS, tanh(*+iq) r/y. CONTINUED

ÆTHERFORCE

Trang 136

TABLE XII HYPERBOLIC TANGENTS, tanh (x+iq) =r

ÆTHERFORCE

Trang 137

TABLE XII HYPERBOLIC TANGENTS, tanh (x +iq)

Trang 138

TABLE XII HYPERBOLIC TANGENTS, tanh(x +iq) = r CONTINUED

ÆTHERFORCE

Trang 139

TABLE HYPERBOLIC TANGENTS, tanh(x+iq) = r % CONTINUED

=3-25 =3-35 *= 3-4 *=3-45

o

ÆTHERFORCE

Trang 140

TABLE XII HYPERBOLIC TANGENTS, tanh(x+iq) r/r CONTINUED

Trang 141

TABLE XII HYPERBOLIC TANGENTS, tanh(x +iq) = r/y CONTINUED

ÆTHERFORCE

Trang 142

TABLE XIII FUNCTIONS OF 4 +ig. f(4 + ?) +

ÆTHERFORCE

Trang 143

TABLE XIII FUNCTIONS OF 4 +iq. /(4 +iq) =r

ÆTHERFORCE

Trang 144

T'ABLE SEMI-EXPONENTIALS, and logw

e* e*

-ÆTHERFORCE

Trang 145

TABLE XIV SEMI-EXPONENTIALS - and loglo (

Trang 146

FABLE XIV SEMI-EXPONENTIALS.

ÆTHERFORCE

Trang 147

TABLE XIV SEMI-EXPONENTIALS - and

X

ÆTHERFORCE

Trang 148

TABLE XV

o.oo

ÆTHERFORCE

Trang 149

TABLE XV

e

ÆTHERFORCE

Trang 150

TABLE XV

e

ÆTHERFORCE

Trang 151

TABLE XV

1.50

ÆTHERFORCE

Trang 152

TABLE XV

e

ÆTHERFORCE

Trang 153

TABLE XV

ÆTHERFORCE

Trang 154

TABLE XVI SUBDIVISIONS OF A DEGREE AUXILIARY TABLE

O.OI

ÆTHERFORCE

Trang 155

EXPLANATORY TEXT

ÆTHERFORCE

Trang 157

EXPLANATORY TEXT

INTRODUCTION

ofacomplexvariable eitherintherectangular coordinateformof that variable (x -f-iy)

circular functions of a complex variable A few formulas are added as aids to the

XIVinclusive,between which, the functions sinh (x+iy),cosh (x+ iy),tanh(x -fiy),

limitsofo and fory. Itis shown, moreover, tobe aneasy matterto extendthe

practic-ablelimits Consequently, interpolation must ordinarilyberesorted to, when three or

moresignificant digitsare neededin theresults Suchinterpolationsrequire an

at mostfour, significant digits may be needed, a separate atlas of 23 large-scale charts,

by inspection

COMPLEX QUANTITIES

funda-mental importance in connection with the Tables,for the assistance ofthose who have

com-plexnumbers For a more comprehensive discussion ofcomplex quantities, the reader

must be referred to special treatises on thesubject.

Ordinary numerical quantities, or the numbers dealt with in ordinary arithmetic,

theleft, to plus infinityon the right, Obeing the zero point Thepointx\. wouldthen

[153]

ÆTHERFORCE

Trang 158

EXPLANATORY TEXT

or, as thevector Ox\; ie., the straightline drawn from the originO to the point x\ and

numbers of arithmetic may be represented geometrically as vectors; but such vectors

Complex quantities, or complex numbers, cannot be completely represented by

movable point withrespect to afixedpoint as origin Thus,in Fig i, the plane XOY

-Y

2 X

FIG 2 Plane Vector 2.236 e"- 106 or

FIG i Complex quantity i+ a designated by 2.236 763 26'.

A complex number may be specified either in rectangular coordinates, or in polar

expres-sion (i +22), where the symbol i signifies measurement along 'the subordinate axis

It is shown in mathematicaltreatises that * = V i. The vector OP\ of Fig. i may

"real" axis, and YOY the "imaginary," axis; so that the ^-component of a complex number becomesthe "real component," andthe^-component the"imaginary

component." The symboli stillstands forthe imaginarycomponent. In mathematics

in this book wenecessarily considercomplex quantitiesfroma broader viewpointthan

component, perpendicularly rotated with respect to the fundamental Xaxis

[154]

ÆTHERFORCE

Trang 159

EXPLANATORY TEXT Complex quantities may also be expressed in polar coordinates, as in Fig 2, where

the fundamental reference axis OX is drawn in the positive direction in the reference

circular radians, in degrees-minutes-seconds, quadrants, or any other recognized unit

the modulusto thesamescale oflinearmeasureasin Fig i, and 63.26'istheargument.

If one and the same complex quantity be expressed both in rectangular and polar

psin5, ;y/a;=tan

2, yz =

i, pz = Vs =

2.236

and82 = 206.34'.

ADDITION OF COMPLEX QUANTITIES

-X

-YFIG 5 Addition of two complex quantities

free end The last named vector is the required sum. Thus, in Fig 5, the complex

ÆTHERFORCE

Trang 160

EXPLANATORY TEXT

to OPi = 2.236/63.26' of Fig. 2, to produce OP = 1.414/135 = p3/8zof Fig. 6.

+ xz + . -f *)(xi +iyj + (xz +iyz) + - + (xn+ fyB ) =

bothitsreal and imaginary components Reversing the sign ofa polar complex

quan-tity means changing itsargument by 180.

Y

o

FIG 7 Complex Subtraction

(i+12)-(-2-*i) 3+*3 =OP

FIG 8 Complex Subtraction, Polar Coordinates

= 4.243/45.

complex addition, isvery easily made onthe drawing board by purely geometric

proc-esses, whether the quantities are rectangular or polar. If, however, the process is to

[156]

ÆTHERFORCE

Trang 161

EXPLANATORY TEXT

MULTIPLICATION OF COMPLEX QUANTITIES

rules of algebra, remembering that i2 = i. Thus

(*i +fyi) (*2+ iyz) = (xixz

-yiy2 ) +i(xiy2+ xz yi) (3)

RECIPROCAL OF A COMPLEX QUANTITY

Trang 162

EXPLANATORY TEXT

V5/63.2 6' VS QUOTIENT OF COMPLEX QUANTITIES

their moduliand the difference of theirarguments Thatis

[158]

ÆTHERFORCE

Trang 163

EXPLANATORY TEXT POWERS AND ROOTS OF COMPLEX QUANTITIES

It willbe evident from the foregoing that

y~p/8/n (9)

CIRCULAR AND HYPERBOLIC FUNCTIONS GEOMETRICALLY COMPARED

REAL CIRCULAR AND HYPERBOLIC FUNCTIONS The geometryof the real circular functions sin x, cos x and tan x relates, as iswell

known, to themotion ofaradiusvectoroveracircle. The geometryofthereal

hyper-bolicfunctions sinhx,cosh x and tanh x relates tothemotion ofaradiusvectorovera

and a circular angle /3, the tangent Ef being always perpendicular to the radius

(1) By the ratio of the circular arc length 5 described during the motion, by the

dfi circularradians,by moving its terminal over an infinitesimally small circular arc ds

(10)

y

the total circularsector and circular angle generated will ofcoursebe:

/ds = ($2 si) = s circularradians (n)

theinitialpositionOA toanypositionsuchasOE,itwillsweepout acircularsectorOEA.

[159]

ÆTHERFORCE

Ngày đăng: 04/06/2014, 12:41

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN