TABLES OF COMPLEX HYPERBOLICAND CIRCULAR FUNCTIONS ÆTHERFORCE... HYPERBOLIC SINES, sinh pIS r1.4 i-S 45 ÆTHERFORCE... TABLE HYPERBOLIC SINES, sinh p/5 r/% CONTINUED45 ÆTHERFORCE... HYPER
Trang 1OXFORDUNIVERSITY PRESS
1921
ÆTHERFORCE
Trang 2Second edition, February, 1021
ÆTHERFORCE
Trang 3have nothithertobeenpublished,exceptover a veryrestricted range They have
importantapplications in electricalengineering For instance,it ispossiblewith
Although the principalapplicationof these functions at the present time isin
to a numberof workers, both inmathematical andpracticalfields; and
particu-larlytoMessrs C L Bouton, W.Duddell, E V Huntington,F.B Jewett, John
A. E K.
January,1914.
I
J These areactually extensionsof the tablesI to VIalready incorporated. Ithas
volumeratherthanto recasttheoriginal tables insuch a manneras to includethe
electrical engineering to which complex hyperbolic functions may be
Trang 4TABLE OF CONTENTS
PAGE
/_y 5 45 to 90 2
H. HYPERBOLIC COSINES, cosh(P/5) =r fa . " " " " 8
HI HYPERBOLIC TANGENTS, tanh(P/S) = rfy_ " " " " 14
IV CORRECTING FACTOR ^^ . " " " " 20 a V CORRECTING FACTOR ^-? " " " " 26 (7 VL FUNCTIONS OF SEMI-IMAGINARIES /(p745) 32
VII HYPERBOLIC SINES, sinh(x +iq) =u + w 42
VIII HYPERBOLIC COSINES, cosh(x +iq) =u +iv 58
IX HYPERBOLIC TANGENTS, tanh(x+iq) = +iv 74
X HYPERBOLIC SINES, sinh(x +iq) = r /_y_ 90
XL HYPERBOLIC COSINES, cosh(x+iq) = r /_y_ 106
XII HYPERBOLIC TANGENTS, tanh(* + </) =r /_y_ 122
XIII FUNCTIONS OF 4 +iq. f(4+iq)=u+iv . 138
f(4+iq) =r/7 139
XIV. SEMI-EXPONENTIALS and logio (~ XV REAL HYPERBOLIC FUNCTIONS /(x +io) = u +io 144
XVI. SUBDIVISIONS OF A DEGREE 150
EXPLANATORY TEXT 151
XVH. HYPERBOLIC SINES sinh(p/6) = r/r 5o to 45 214
XVIII HYPERBOLIC COSINES cosh(p/5) = r/r "" " " 216
XIX. HYPERBOLIC TANGENTS tanh(p/) = r[y_ "" " " 218
XX. CORRECTING FACTOR s - " " " " 220
XXI. CORRECTING FACTOR " " " " 222
a XXII FUNCTIONS OF SEMI-IMAGINARIES /(P/45) . 224
XXIII HYPERBOLIC FUNCTION FORMULAS 226
ÆTHERFORCE
Trang 5TABLES OF COMPLEX HYPERBOLIC
AND CIRCULAR FUNCTIONS
ÆTHERFORCE
Trang 6TABLE I. HYPERBOLIC SINES, sinh (p/S) r
Trang 7TABLE I. HYPERBOLIC SINES, sinh =r
Trang 8TABLE I. HYPERBOLIC SINES, sinh (pIS) r
1.4 i-S
45
ÆTHERFORCE
Trang 9TABLE HYPERBOLIC SINES, sinh (p/5) r/% CONTINUED
45
ÆTHERFORCE
Trang 10TABLE I. HYPERBOLIC SINES, sinh (p
45
ÆTHERFORCE
Trang 11ÆTHERFORCE
Trang 12TABLE II. HYPERBOLIC COSINES, cosh (p/5) r
/_y
0-3 0.445
ÆTHERFORCE
Trang 13TABLE II. HYPERBOLIC COSINES, cosh (p/8) r
45
ÆTHERFORCE
Trang 14TABLE HYPERBOLIC COSINES, cosh (p/5) r
1.445
Trang 15TABLE HYPERBOLIC COSINES.
ÆTHERFORCE
Trang 16TABLE II. HYPERBOLIC COSINES, cosh (p{8) r/_V CONTINUED
45
ÆTHERFORCE
Trang 17TABLE HYPERBOLIC COSINES, cosh (p /5) r/T CONTINUED
2.6 2.7
2.945
ÆTHERFORCE
Trang 18TABLE III. HYPERBOLIC TANGENTS, tanh (p[$) r
Trang 19TABLE HYPERBOLIC TANGENTS, tanh (p 5) r/j CONTINUED
45
ÆTHERFORCE
Trang 20TABLE III. HYPERBOLIC TANGENTS, tanh(pIS) r y. CONTINUED
45
ÆTHERFORCE
Trang 21TABLE III. HYPERBOLIC TANGENTS, tanh (p
/8) =r /. CONTINUED
45
ÆTHERFORCE
Trang 22TABLE III. HYPERBOLIC TANGENTS, tanh(p[S) r
45
ÆTHERFORCE
Trang 23TABLE III. HYPERBOLIC TANGENTS, tanh
ÆTHERFORCE
Trang 24ÆTHERFORCE
Trang 26ÆTHERFORCE
Trang 271.6 1.7
ÆTHERFORCE
Trang 281ABLE IV.
2.1
ÆTHERFORCE
Trang 32ÆTHERFORCE
Trang 34ÆTHERFORCE
Trang 36FUNCTIONS OF SEMI-IMAGINARIES /(p/4) =rfa
ÆTHERFORCE
Trang 38FUNCTIONS OF SEMI-IMAGINARIES /(p/ 5) = r/y CONTINUED
Sinh Cosh
4-5
ÆTHERFORCE
Trang 39FUNCTIONS OF SEMI-IMAGINARIES /(p/4s) = r /y. CONTINUED
Sinhandcosh Tanhandcoth Sechandcosech
6.05
ÆTHERFORCE
Trang 40FUNCTIONS OF SEMI-IMAGINARIES f(p[*) =r CONTINUED
Sinhandcosh Tanhandcoth Sechandcosech
8.30
ÆTHERFORCE
Trang 43FUNCTIONS OF SEMI-IMAGINARIES. /(p/45JO =
r/jy. CONTINUED
Sinhandcosh Tanhandcoth Sechandcosech
15-05
ÆTHERFORCE
Trang 44FUNCTIONS OF SEMI-IMAGINARIES.
p Sinhandcosh Tanhandcoth
=r/jy. CONTINUED
Sechandcosech 17.30
ÆTHERFORCE
Trang 46TABLE VII HYPERBOLIC SINES, sinh (x +iq) u +iv
Trang 47TABLE VII HYPERBOLIC SINES, sinh (x +iq) u +iv. CONTINUED
x= 0.25 x =
0.3 =0.35 x=0.4 x =0.45
o
ÆTHERFORCE
Trang 48TABLE VII HYPERBOLIC SINES, sinh (x + iq) u+iv. CONTINUED
x=0.5 =0.55 x=0.6 x=0.65 x=
0.7o
Trang 49TABLE VII HYPERBOLIC SINES, sinh (x+iq) u +iv. CONTINUED
Trang 50TABLE VII HYPERBOLIC SINES, sinh(*+iq) u +iv. CONTINUED
Trang 51TABLE VII HYPERBOLIC SINES, sinh (x +iq) u +iv. CONTINUED
= 1.25 x=
1.3 *= i-35 *=1.4 =
1-45o
ÆTHERFORCE
Trang 52TABLE VII HYPERBOLIC SINES, sinh (x +iq) = u +iv. CONTINUED
Trang 53TABLE VII HYPERBOLIC SINES, sinh (x+iq) u +iv, CONTINUED
= i-7S x = 1.8 = 1.85 *=
1.9 x= 1.95o
ÆTHERFORCE
Trang 54TABLE VII HYPERBOLIC SINES, sinh (*+ig) u +iv. CONTINUED
Trang 55TABLE VII HYPERBOLIC SINES, sinh(x+iq) u +iv. CONTINUED
q
ÆTHERFORCE
Trang 56TABLE VII HYPERBOLIC SINES, sinh (x+iq) u + iv. CONTINUED
Trang 57TABLE VII HYPERBOLIC SINES, sinh (x+iq) u+iv. CONTINUED
Trang 58TABLE VII HYPERBOLIC SINES, sinh (* +iq) u +iv. CONTINUED
-3.05 x=3.10 =3-iS x =3.20o.o
ÆTHERFORCE
Trang 59TABLE VII HYPERBOLIC SINES, sinh (x+iq) u +iv. CONTINUED
x=
3-25 x= 3.30 =3-35 x= 3-4 x=3-45
o.o
ÆTHERFORCE
Trang 60TABLE VII HYPERBOLIC SINES, sinh (x + iq) u +iv. CONTINUED
x =3-50 = 3-55 x=3.60 =3-65 x= 3.70
0.0
ÆTHERFORCE
Trang 61TABLE VII HYPERBOLIC SINES, sinh (x+ iq) u+iv. CONTINUED
=
3-75 x=3.80 * =
3.85 x =3.90 =3-95o.o
ÆTHERFORCE
Trang 62TABLE VIII HYPERBOLIC COSINES, cosh(x + iq) u + iv
ÆTHERFORCE
Trang 63TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u +iv. CONTINUED
Trang 64TABLE VTII HYPERBOLIC COSINES, cosh (x + iq) u +iv. CONTINUED
Trang 65TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u + iv. CONTINUED
Trang 66TABLE VIII HYPERBOLIC COSINES, cosh(x +iq) u +iv. CONTINUED
Trang 67TABLE VIII HYPERBOLIC COSINES, cosh(* +iq) = u +iv. CONTINUED
9
ÆTHERFORCE
Trang 68TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u+ iv. CONTINUED
i-55 x= 1.6 x= 1.65 x= 1.7
o
ÆTHERFORCE
Trang 69TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u +n>. CONTINUED
?
ÆTHERFORCE
Trang 70TABLE VIII HYPERBOLIC COSINES, cosh(x +iq) u +iv. CONTINUED
9
ÆTHERFORCE
Trang 71TABLE VIII HYPERBOLIC COSINES, cosh(* +iq) = u +iv. CONTINUED
Trang 72TABLE VIII HYPERBOLIC COSINES, cosh(x +iq) u + iv. CONTINUED
q
ÆTHERFORCE
Trang 73TABLE VIII HYPERBOLIC COSINES, cosh(x + iq) = u +iv. CONTINUED
Trang 74TABLE VIII HYPERBOLIC COSINES, cosh(* + ig) u +iv. CONTINUED
x=3-0 3-S x=3.10 =3-iS = 3.20
o
ÆTHERFORCE
Trang 75TABLE VIII HYPERBOLIC COSINES, cosh (* +iq) u +iv. CONTINUED
=3-25 x=3.30 =3-35 =3-40 3-45
ÆTHERFORCE
Trang 76TABLE VIII HYPERBOLIC COSINES, cosh (x +iq) u +iv. CONTINUED
=3-50 =3-55 3.60 x=3-65 x=3.70
o
ÆTHERFORCE
Trang 77TABLE VIII HYPERBOLIC COSINES, cosh (* +iq) = u +iv. CONTINUED
*=3-75 3-80 3-85 x=
3.90 3-95o
ÆTHERFORCE
Trang 78TABLE IX HYPERBOLIC TANGENTS, tanh(* +iq) u+iv
x=0.05 x =0.15 X=0.2
ÆTHERFORCE
Trang 79TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) u+ iv. CONTINUED
Trang 80TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) +w CONTINUED
Trang 81TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) u+iv. CONTINUED
Trang 82TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) u +iv. CONTINUED
Trang 83TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) u+iv. CONTINUED
ÆTHERFORCE
Trang 84TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) u+iv. CONTINUED
Trang 85TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) = u +iv. CONTINUED
Trang 86TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) =u+iv. CONTINUED
Trang 87TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) u +iv. CONTINUED
Trang 88TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) u +iv. CONTINUED
Trang 89TABLE HYPERBOLIC TANGENTS, tanh(x+iq) =u+iv. CONTINUED
x=
2.75 x= 2.80 x= 2.85 = 2.90 x= 2.95
ÆTHERFORCE
Trang 90TABLE IX HYPERBOLIC TANGENTS, tanh(x+iq) =u+iv. CONTINUED
Trang 91TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) =u+iv. CONTINUED
=3-25 *=3-30 *=3-35 x=3.40 =3-45
o
ÆTHERFORCE
Trang 92TABLE IX HYPERBOLIC TANGENTS, tanh(*+iq) =u +iv. CONTINUED
Trang 93TABLE IX HYPERBOLIC TANGENTS, tanh(x +iq) u+iv. CONTINUED
3-95o
ÆTHERFORCE
Trang 94TABLE X HYPERBOLIC SINES, sinh(x+iq) r/y_
x=0.05 x =0.15
o
ÆTHERFORCE
Trang 95TABLE X HYPERBOLIC SINES, sinh (at+iq) r
=0.25 x=0.3 =0.35 *=0.4 x=0.45
0.25261
ÆTHERFORCE
Trang 96TABLE X HYPERBOLIC SINES, sinh (x +iq) r CONTINUED
Trang 97TABLE X HYPERBOLIC SINES, sinh (x+iq) r /y. CONTINUED
ÆTHERFORCE
Trang 98TABLE X HYPERBOLIC SINES, sinh (* +iq) r/r CONTINUED
ÆTHERFORCE
Trang 99TABLE X HYPERBOLIC SINES, sinh (x+iq) = r/y CONTINUED
Trang 100TABLE X HYPERBOLIC SINES, sinh (*+iq) r/V CONTINUED
x =1.50 X= 1.60 x= 1.65 a;= 1.70
o
ÆTHERFORCE
Trang 101TABLE X HYPERBOLIC SINES, sinh (*+iq) = rfy. CONTINUED
ÆTHERFORCE
Trang 102TABLE X HYPERBOLIC SINES, sinh(x +iq) r /y. CONTINUED
ÆTHERFORCE
Trang 103TABLE X HYPERBOLIC SINES, sinh (x+ig) =r
2.3 *= 2.35 x= 2.4 x= 245
ÆTHERFORCE
Trang 104TABLE X HYPERBOLIC SINES, sinh(x+iq) /y CONTINUED
Trang 105TABLE X HYPERBOLIC SINES, sinh (x+iq) = r/y CONTINUED
x=
2.75 = 2.85 * = 2.9 x= 2.95
ÆTHERFORCE
Trang 106TABLE X HYPERBOLIC SINES, sinh (x +iq) =r/y. CONTINUED
ÆTHERFORCE
Trang 107TABLE X HYPERBOLIC SINES, sinh (x +iq) =r
=3.25 =3-3 =3-35 *=3-4 *=3-45
o
ÆTHERFORCE
Trang 108TABLE X HYPERBOLIC SINES, sinh (x+iq) = r
Trang 109TABLE X HYPERBOLIC SINES, sinh (x+iq) = rfy CONTINUED
ÆTHERFORCE
Trang 110TABLE XI HYPERBOLIC COSINES, cosh(* +ig) r/y
Trang 111TABLE XI HYPERBOLIC COSINES, cosh (x+ig) rAy. CONTINUED
ÆTHERFORCE
Trang 112TABLE XI HYPERBOLIC COSINES, cosh (x+iq) r/y CONTINUED
ÆTHERFORCE
Trang 113TABLE HYPERBOLIC COSINES, cosh(x +iq) = r
x=0.75 = 0.85 x=o.g x=
0.95o
ÆTHERFORCE
Trang 114TABLE XI HYPERBOLIC COSINES, cosh(at+iq) r/y CONTINUED
Trang 115TABLE XI HYPERBOLIC COSINES, cosh(x +iq) = r
Trang 116TABLE XI HYPERBOLIC COSINES, cosh (x+ig) r /y. CONTINUED
x=1.5 =
1-55 x= 1.6 *=1.65 x= 1.7
o
ÆTHERFORCE
Trang 117TABLE XI HYPERBOLIC COSINES, cosh(* +iq) r/y CONTINUED
ÆTHERFORCE
Trang 118TABLE XI HYPERBOLIC COSINES, cosh(* +iq) /T CONTINUED
Trang 119TABLE XI HYPERBOLIC COSINES, cosh(x+iq) =
ÆTHERFORCE
Trang 120TABLE XL HYPERBOLIC COSINES, cosh (x+iq) r/T CONTINUED
ÆTHERFORCE
Trang 121TABLE XI HYPERBOLIC COSINES, cosh (x+iq) = r
x = 2.75 x =.2.85 *= 2.9 x= 2.95
9
ÆTHERFORCE
Trang 122TABLE XL HYPERBOLIC COSINES, cosh(x +iq) r/y CONTINUED
ÆTHERFORCE
Trang 123TABLE XI HYPERBOLIC COSINES, cosh(* +iq) r y. CONTINUED
=3-25 *'=
3-3 = 3-35 x=3.4 =3-459
ÆTHERFORCE
Trang 124TABLE XI HYPERBOLIC COSINES, cosh(x +iq) r /y. CONTINUED
ÆTHERFORCE
Trang 125TABLE XL HYPERBOLIC COSINES, cosh(x+iq) =r
3-95
ÆTHERFORCE
Trang 126TABLE XII HYPERBOLIC TANGENTS, tanh (x+iq) r
ÆTHERFORCE
Trang 127TABLE HYPERBOLIC TANGENTS, tanh (x +iq) r
ÆTHERFORCE
Trang 128TABLE XII HYPERBOLIC TANGENTS, tanh (* +*?) r/y CONTINUED
ÆTHERFORCE
Trang 129TABLE XII HYPERBOLIC TANGENTS, tanh (x+ig) rAy CONTINUED
x=0.75 x=0.85 x=
o.g x=0.95
ÆTHERFORCE
Trang 130TABLE XII HYPERBOLIC TANGENTS, tanh(* +iq) =
x= 1.05 *= 1.15
1
ÆTHERFORCE
Trang 131TABLE XII HYPERBOLIC TANGENTS, tanh(x +iq) =r CONTINUED
ÆTHERFORCE
Trang 132TABLE XII HYPERBOLIC TANGENTS, tanh(* +iq) r/y CONTINUED
ÆTHERFORCE
Trang 133TABLE HYPERBOLIC TANGENTS, tanh(* +iq) r
=
1.75 x= 1.8 *= 1.85 *=
1.9 x= 1.959
ÆTHERFORCE
Trang 134TABLE XII HYPERBOLIC TANGENTS, tanh(* + iq) f CONTINUED
Trang 135TABLE XII HYPERBOLIC TANGENTS, tanh(*+iq) r/y. CONTINUED
ÆTHERFORCE
Trang 136TABLE XII HYPERBOLIC TANGENTS, tanh (x+iq) =r
ÆTHERFORCE
Trang 137TABLE XII HYPERBOLIC TANGENTS, tanh (x +iq)
Trang 138TABLE XII HYPERBOLIC TANGENTS, tanh(x +iq) = r CONTINUED
ÆTHERFORCE
Trang 139TABLE HYPERBOLIC TANGENTS, tanh(x+iq) = r % CONTINUED
=3-25 =3-35 *= 3-4 *=3-45
o
ÆTHERFORCE
Trang 140TABLE XII HYPERBOLIC TANGENTS, tanh(x+iq) r/r CONTINUED
Trang 141TABLE XII HYPERBOLIC TANGENTS, tanh(x +iq) = r/y CONTINUED
ÆTHERFORCE
Trang 142TABLE XIII FUNCTIONS OF 4 +ig. f(4 + ?) +
ÆTHERFORCE
Trang 143TABLE XIII FUNCTIONS OF 4 +iq. /(4 +iq) =r
ÆTHERFORCE
Trang 144T'ABLE SEMI-EXPONENTIALS, and logw
e* e*
-ÆTHERFORCE
Trang 145TABLE XIV SEMI-EXPONENTIALS - and loglo (
Trang 146FABLE XIV SEMI-EXPONENTIALS.
ÆTHERFORCE
Trang 147TABLE XIV SEMI-EXPONENTIALS - and
X
ÆTHERFORCE
Trang 148TABLE XV
o.oo
ÆTHERFORCE
Trang 149TABLE XV
e
ÆTHERFORCE
Trang 150TABLE XV
e
ÆTHERFORCE
Trang 151TABLE XV
1.50
ÆTHERFORCE
Trang 152TABLE XV
e
ÆTHERFORCE
Trang 153TABLE XV
ÆTHERFORCE
Trang 154TABLE XVI SUBDIVISIONS OF A DEGREE AUXILIARY TABLE
O.OI
ÆTHERFORCE
Trang 155EXPLANATORY TEXT
ÆTHERFORCE
Trang 157EXPLANATORY TEXT
INTRODUCTION
ofacomplexvariable eitherintherectangular coordinateformof that variable (x -f-iy)
circular functions of a complex variable A few formulas are added as aids to the
XIVinclusive,between which, the functions sinh (x+iy),cosh (x+ iy),tanh(x -fiy),
limitsofo and fory. Itis shown, moreover, tobe aneasy matterto extendthe
practic-ablelimits Consequently, interpolation must ordinarilyberesorted to, when three or
moresignificant digitsare neededin theresults Suchinterpolationsrequire an
at mostfour, significant digits may be needed, a separate atlas of 23 large-scale charts,
by inspection
COMPLEX QUANTITIES
funda-mental importance in connection with the Tables,for the assistance ofthose who have
com-plexnumbers For a more comprehensive discussion ofcomplex quantities, the reader
must be referred to special treatises on thesubject.
Ordinary numerical quantities, or the numbers dealt with in ordinary arithmetic,
theleft, to plus infinityon the right, Obeing the zero point Thepointx\. wouldthen
[153]
ÆTHERFORCE
Trang 158EXPLANATORY TEXT
or, as thevector Ox\; ie., the straightline drawn from the originO to the point x\ and
numbers of arithmetic may be represented geometrically as vectors; but such vectors
Complex quantities, or complex numbers, cannot be completely represented by
movable point withrespect to afixedpoint as origin Thus,in Fig i, the plane XOY
-Y
2 X
FIG 2 Plane Vector 2.236 e"- 106 or
FIG i Complex quantity i+ a designated by 2.236 763 26'.
A complex number may be specified either in rectangular coordinates, or in polar
expres-sion (i +22), where the symbol i signifies measurement along 'the subordinate axis
It is shown in mathematicaltreatises that * = V i. The vector OP\ of Fig. i may
"real" axis, and YOY the "imaginary," axis; so that the ^-component of a complex number becomesthe "real component," andthe^-component the"imaginary
component." The symboli stillstands forthe imaginarycomponent. In mathematics
in this book wenecessarily considercomplex quantitiesfroma broader viewpointthan
component, perpendicularly rotated with respect to the fundamental Xaxis
[154]
ÆTHERFORCE
Trang 159EXPLANATORY TEXT Complex quantities may also be expressed in polar coordinates, as in Fig 2, where
the fundamental reference axis OX is drawn in the positive direction in the reference
circular radians, in degrees-minutes-seconds, quadrants, or any other recognized unit
the modulusto thesamescale oflinearmeasureasin Fig i, and 63.26'istheargument.
If one and the same complex quantity be expressed both in rectangular and polar
psin5, ;y/a;=tan
2, yz =
i, pz = Vs =
2.236
and82 = 206.34'.
ADDITION OF COMPLEX QUANTITIES
-X
-YFIG 5 Addition of two complex quantities
free end The last named vector is the required sum. Thus, in Fig 5, the complex
ÆTHERFORCE
Trang 160EXPLANATORY TEXT
to OPi = 2.236/63.26' of Fig. 2, to produce OP = 1.414/135 = p3/8zof Fig. 6.
+ xz + . -f *)(xi +iyj + (xz +iyz) + - + (xn+ fyB ) =
bothitsreal and imaginary components Reversing the sign ofa polar complex
quan-tity means changing itsargument by 180.
Y
o
FIG 7 Complex Subtraction
(i+12)-(-2-*i) 3+*3 =OP
FIG 8 Complex Subtraction, Polar Coordinates
= 4.243/45.
complex addition, isvery easily made onthe drawing board by purely geometric
proc-esses, whether the quantities are rectangular or polar. If, however, the process is to
[156]
ÆTHERFORCE
Trang 161EXPLANATORY TEXT
MULTIPLICATION OF COMPLEX QUANTITIES
rules of algebra, remembering that i2 = i. Thus
(*i +fyi) (*2+ iyz) = (xixz
-yiy2 ) +i(xiy2+ xz yi) (3)
RECIPROCAL OF A COMPLEX QUANTITY
Trang 162EXPLANATORY TEXT
V5/63.2 6' VS QUOTIENT OF COMPLEX QUANTITIES
their moduliand the difference of theirarguments Thatis
[158]
ÆTHERFORCE
Trang 163EXPLANATORY TEXT POWERS AND ROOTS OF COMPLEX QUANTITIES
It willbe evident from the foregoing that
y~p/8/n (9)
CIRCULAR AND HYPERBOLIC FUNCTIONS GEOMETRICALLY COMPARED
REAL CIRCULAR AND HYPERBOLIC FUNCTIONS The geometryof the real circular functions sin x, cos x and tan x relates, as iswell
known, to themotion ofaradiusvectoroveracircle. The geometryofthereal
hyper-bolicfunctions sinhx,cosh x and tanh x relates tothemotion ofaradiusvectorovera
and a circular angle /3, the tangent Ef being always perpendicular to the radius
(1) By the ratio of the circular arc length 5 described during the motion, by the
dfi circularradians,by moving its terminal over an infinitesimally small circular arc ds
(10)
y
the total circularsector and circular angle generated will ofcoursebe:
/ds = ($2 si) = s circularradians (n)
theinitialpositionOA toanypositionsuchasOE,itwillsweepout acircularsectorOEA.
[159]
ÆTHERFORCE