Tiêu chuẩn AASHTO LRFD Bridge Design Specifications 9th Edition 2020, phần 1-4. Section 1: IntroductionSection 2: General Design and Location FeaturesSection 3: Loads and Load Factors Section 4: Structural Analysis and Evaluation
Trang 2555 12th Street, NW, Suite 1000 Washington, DC 20004 202-624-5800 phone/202-624-5806 fax www.transportation.org
Cover photos: Top: Stan Musial Veterans Memorial Bridge at sunset, with the St Louis, MO city skyline in the distance Photo provided by Missouri Department of Transportation Bottom: Segment K, Shreveport, LA Segment K is a portion of the 36-mile I-49 Corridor which is a four- lane Interstate highway with a 4 ft inside shoulder and a 10 ft outside shoulder from the Arkansas state line to the Port of NOLA Photo provided by PCL Civil Constructors, Inc.
© 2020 by the American Association of State Highway and Transportation Officials All rights reserved Duplication is a violation of applicable law.
Trang 3555 12th Street, NW, Suite 1000 Washington, DC 20004
EXECUTIVE COMMITTEE
2019–2020
OFFICERS:
PRESIDENT: Patrick McKenna, Missouri*
VICE PRESIDENT: Victoria Sheehan, New Hampshire*
SECRETARY-TREASURER: Scott Bennett, Arkansas
EXECUTIVE DIRECTOR: Jim Tymon, Washington, D C.
Trang 4AASHTO C OMMITTEE ON B RIDGES AND S TRUCTURES , 2019
JOSEPH L HARTMANN, Federal Highway Administration, LDLV
CALIFORNIA, Thomas A Ostrom,
Gedmund Setberg, Dolores Valls
COLORADO, Michael Collins, Stephen Harelson,
Jessica Martinez
CONNECTICUT, Timothy D Fields, Mary E Baker
DELAWARE, Jason N Hastings, Jason Arndt,
Craig A Stevens
DISTRICT OF COLUMBIA, Konjit C “Connie”
Eskender, Donald L Cooney, Richard Kenney
FLORIDA, Sam Fallaha, William Potter,
Jeff A Pouliotte
GEORGIA, Bill DuVall, Douglas D Franks,
Steve Gaston
HAWAII, James Fu, Kevin Murata, John Williams
IDAHO, Matthew M Farrar
ILLINOIS, Carl Puzey, Tim A Armbrecht,
KANSAS, Karen Peterson
KENTUCKY, Bart Asher, Andy Barber,
Marvin Wolfe
LOUISIANA, Zhengzheng “Jenny” Fu, Artur
D’Andrea, Chris Guidry
MAINE, Wayne L Frankhauser, Jeff S Folsom,
NEVADA, Jessen Mortensen, Troy MartinNEW HAMPSHIRE, Robert Landry, David L ScottNEW JERSEY, Eddy Germain,
Xiaohua “Hannah” ChengNEW MEXICO, Shane Kuhlman, Kathy Crowell,Jeff C Vigil
NEW YORK, Richard Marchione, Brenda Crudele,Ernest Holmberg
NORTH CAROLINA, Brian Hanks, Scott Hidden,Girchuru Muchane
NORTH DAKOTA, Jon D Ketterling,Jason R Thorenson
OHIO, Timothy J Keller, Alexander B.C Dettloff,Jeffrey E Syar
OKLAHOMA, Steven J Jacobi, Walter L Peters,Tim Tegeler
OREGON, Albert Nako, Tanarat PotisukPENNSYLVANIA, Thomas P Macioce,Richard Runyen, Louis J RuzziPUERTO RICO, (Vacant)
RHODE ISLAND, Georgette K Chahine,Keith Gaulin
SOUTH CAROLINA, Terry B Koon, Hongfen Li,Jeff Sizemore
SOUTH DAKOTA, Steve Johnson, Dave Madden,Todd S Thompson
TENNESSEE, Ted A Kniazewycz
Trang 5Jamie F Farris
UTAH, Carmen E.L Swanwick,
Cheryl Hersh Simmons, Rebecca Nix
VERMONT, Kristin M Higgins, Jim Lacroix
VIRGINIA, Kendal R Walus, Prasad L Nallapaneni,
Andrew M Zickler
WASHINGTON STATE, Mark A Gaines,
Tony M Allen, Bijan Khaleghi
WEST VIRGINIA, Tracy W Brown, Ahmed Mongi
WISCONSIN, Scot Becker, Bill C Dreher,
U.S COAST GUARD, Kamal Elnahal
U.S DEPARTMENT OF AGRICULTURE—
FOREST SERVICE, John R Kattell
v
Trang 6The first broadly recognized national standard for the design and construction of bridges in the United States waspublished in 1931 by the American Association of State Highway Officials (AASHO), the predecessor to AASHTO Withthe advent of the automobile and the establishment of highway departments in all of the American states dating back tojust before the turn of the century, the design, construction, and maintenance of most U.S bridges was the responsibility ofthese departments and, more specifically, the chief bridge engineer within each department It was natural, therefore, thatthese engineers, acting collectively as the AASHTO Highway Subcommittee on Bridges and Structures (now theCommittee on Bridges and Structures), would become the author and guardian of this first bridge standard.
This first publication was entitled D D SHFLILFD LR IR L D L H D , FL H DO F H It quicklybecame the H IDF R national standard and, as such, was adopted and used by not only the state highway departments butalso other bridge-owning authorities and agencies in the United States and abroad Rather early on, the last three words ofthe original title were dropped and it has been reissued in consecutive editions at approximately four-year intervals eversince as D D SHFLILFD LR IR L D L H , with the final 17th edition appearing in 2002
The body of knowledge related to the design of highway bridges has grown enormously since 1931 and continues to
do so Theory and practice have evolved greatly, reflecting advances through research in understanding the properties ofmaterials, in improved materials, in more rational and accurate analysis of structural behavior, in the advent of computersand rapidly advancing computer technology, in the study of external events representing particular hazards to bridges such
as seismic events and stream scour, and in many other areas The pace of advances in these areas has, if anything, stepped
up in recent years
In 1986, the Subcommittee submitted a request to the AASHTO Standing Committee on Research to undertake anassessment of U.S bridge design specifications, to review foreign design specifications and codes, to consider designphilosophies alternative to those underlying the Standard Specifications, and to render recommendations based on theseinvestigations This work was accomplished under the National Cooperative Highway Research Program (NCHRP), anapplied research program directed by the AASHTO Standing Committee on Research and administered on behalf ofAASHTO by the Transportation Research Board (TRB) The work was completed in 1987, and, as might be expected with
a standard incrementally adjusted over the years, the Standard Specifications were judged to include discernible gaps,inconsistencies, and even some conflicts Beyond this, the specification did not reflect or incorporate the most recentlydeveloping design philosophy, load-and-resistance factor design (LRFD), a philosophy which has been gaining ground inother areas of structural engineering and in other parts of the world such as Canada and Europe
From its inception until the early 1970s, the sole design philosophy embedded within the Standard Specifications wasone known as working stress design (WSD) WSD establishes allowable stresses as a fraction or percentage of a givenmaterial’s load-carrying capacity, and requires that calculated design stresses not exceed those allowable stresses.Beginning in the early 1970s, WSD began to be adjusted to reflect the variable predictability of certain load types, such asvehicular loads and wind forces, through adjusting design factors, a design philosophy referred to as load factor design(LFD)
A further philosophical extension results from considering the variability in the properties of structural elements, insimilar fashion to load variabilities While considered to a limited extent in LFD, the design philosophy of load-and-resistance factor design (LRFD) takes variability in the behavior of structural elements into account in an explicit manner.LRFD relies on extensive use of statistical methods, but sets forth the results in a manner readily usable by bridgedesigners and analysts
Starting with the Eighth Edition of the L H H L SHFLILFD LR , interim changes to theSpecifications were discontinued, and new editions are published on a three-year cycle Changes are balloted andapproved by at least two-thirds of the members of the Committee on Bridges and Structures AASHTO members includethe 50 State Highway or Transportation Departments, the District of Columbia, and Puerto Rico Each member has onevote The U.S Department of Transportation is a non-voting member
Orders for Specifications may be placed by visiting the AASHTO Store, store.transportation.org; calling the AASHTOPublication Sales Office toll free (within the U.S and Canada), 1-800-231-3475; or mailing to P.O Box 933538, Atlanta,
GA 31193-3538 A free copy of the current publication catalog can be downloaded from the AASHTO Store
Trang 7The Committee would also like to thank John M Kulicki, Ph.D., and his associates at Modjeski and Masters for theirvaluable assistance in the preparation of the AASHTO LRFD Bridge Design Specifications.
Trang 85 , 2 21 1 6
The L H H L SHFLILFD LR , Ninth Edition contains the following 15 sections and
an index:
1 Introduction
2 General Design and Location Features
3 Loads and Load Factors
4 Structural Analysis and Evaluation
11 Abutments, Piers, and Walls
12 Buried Structures and Tunnel Liners
13 Railings
14 Joints and Bearings
15 Design of Sound Barriers
“Eq 2.” The same convention applies to figures and tables Starting with this edition, these objects are identified by theirwhole nomenclature throughout the text, even within their home articles This change was to increase the speed andaccuracy of electronic production (i.e., CDs and downloadable files) with regard to linking citations to objects
Please note that the AASHTO materials standards (starting with M or T) cited throughout the LRFD Bridge DesignSpecifications can be found in D D SHFLILFD LR IR D SR D LR D H LDO D H R RI D SOL D
H L adopted by the AASHTO Highway Subcommittee on Materials The individual standards are also available asdownloads on the AASHTO Store, https://store.transportation.org Unless otherwise indicated, these citations refer to thecurrent edition ASTM materials specifications are also cited and have been updated to reflect ASTM’s revisedcoding system, i.e., spaces removed between the letter and number
Trang 96800 5 2 6 ,216
The revisions included in the L H H L SHFLILFD LR , Ninth Edition affect the following sections:
1 Introduction
3 Loads and Load Factors
4 Structural Analysis and Evaluation
5 Concrete Structures
6 Steel Structures
8 Wood Structures
10 Foundations
11 Walls, Abutments, and Piers
12 Buried Structures and Tunnel Liners
15 Design of Sound Barriers
Trang 105.10.4.35.10.8.2.55.10.8.5.15.10.8.5.25.12.3.2.1
5.12.9.5.25.14.15.14.45.15
6.10.116.10.11.16.10.11.1.16.10.11.2.26.10.11.2.4b6.10.11.36.10.11.3.16.10.11.3.36.116.11.1.16.11.3.26.11.56.11.6.2.16.11.8.2.26.11.8.36.12.16.12.1.16.12.1.2.16.12.1.2.26.12.1.2.36.12.1.2.3a6.12.1.2.3b6.12.1.2.46.12.26.12.2.16.12.2.2.26.12.2.2.2a6.12.2.2.2b6.12.2.2.2c
6.12.2.2.2d6.12.2.2.2e6.12.2.2.2f6.12.2.2.2g6.12.2.2.36.12.2.2.4a6.12.2.2.4b6.12.2.2.4c6.12.2.2.4d6.12.2.2.4e6.12.2.2.56.12.2.3.36.12.3.2.26.13.2.3.26.13.2.56.13.2.76.13.2.96.13.2.10.26.13.2.116.13.3.66.13.3.76.13.6.1.3a6.13.6.1.3b6.13.6.1.3c6.13.6.1.46.14.2.46.14.4.16.14.4.26.14.4.3
6.14.4.46.14.4.56.14.4.66.16.16.16.26.16.4.16.17A6A6.1A6.2.1A6.2.2A6.3.3C6.4C6.4.4C6.4.7C6.5.1C6.5.2D6.2.1D6.3.1E6.1E6.1.1E6.1.2E6.1.3E6.1.4E6.1.5E6.1.5.1E6.1.5.2
HOHWHG UWLFOHV
6.12.1.2.3c
Trang 11D HG UWLFOHV
The following Articles in Section 8 contain changes or additions to the specifications, the commentary, or both:8.2
8.4.1.1.4 8.4.1.2.18.4.1.2.2 8.4.1.2.38.4.1.3.1 8.4.4.98.13 8.14HOHWHG UWLFOHV
No Articles were deleted from Section 8
10.6.2.4.2b10.6.2.4.2c10.6.2.4.410.6.3.1.2a10.6.3.1.2c10.6.3.2.1
10.6.3.510.7.2.110.7.3.110.7.810.8.3.5.1b10.8.3.5.2b
10.9.3.5.410.10
11.10.5.211.10.5.611.10.6.111.10.6.211.10.6.2.111.10.6.2.1a11.10.6.2.1b11.10.6.2.1c11.10.6.2.1d11.10.6.2.1e11.10.6.2.211.10.6.3.2
11.10.6.4.111.10.6.4.2a11.10.6.4.2b11.10.6.4.3b11.10.6.4.4a11.10.6.4.4b11.10.7.211.10.7.311.10.7.411.10.811.10.10.111.10.10.2
11.10.10.311.10.1111.11.4.611.1211.12.7.211.12.911.13A11.5.3B11.1B11.2B11.3
HOHWHG UWLFOHV
xi
Trang 1212.10.2.112.10.4.3.112.12.2.112.12.3.5
12.12.3.10.2b12.16A12
Trang 13TABLE OF CONTENTS
1-i
1.1—SCOPE OF THE SPECIFICATIONS 1-11.2—DEFINITIONS 1-21.3—DESIGN PHILOSOPHY 1-31.3.1—General 1-31.3.2—Limit States 1-31.3.2.1—General 1-31.3.2.2—Service Limit State 1-41.3.2.3—Fatigue and Fracture Limit State 1-41.3.2.4—Strength Limit State 1-41.3.2.5—Extreme Event Limit States 1-51.3.3—Ductility 1-51.3.4—Redundancy 1-61.3.5—Operational Importance 1-71.4—REFERENCES 1-7
Trang 14This page intentionally left blank.
Trang 15SECTION 1
INTRODUCTION
Commentary is opposite the text it annotates
The provisions of these Specifications are intended for
the design, evaluation, and rehabilitation of both fixed and
movable highway bridges Mechanical, electrical, and
special vehicular and pedestrian safety aspects of movable
bridges, however, are not covered Provisions are not
included for bridges used solely for railway, rail-transit, or
public utilities For bridges not fully covered herein, the
provisions of these Specifications may be applied, and
augmented with additional design criteria where required
These Specifications are not intended to supplant
proper training or the exercise of judgment by the
Designer, and state only the minimum requirements
necessary to provide for public safety The Owner or the
Designer may require the sophistication of design or the
quality of materials and construction to be higher than the
minimum requirements
The concepts of safety through redundancy and
ductility and of protection against scour and collision are
emphasized
The design provisions of these Specifications employ
the Load and Resistance Factor Design (LRFD)
methodology The factors have been developed from the
theory of reliability based on current statistical knowledge
of loads and structural performance
Methods of analysis other than those included in
previous Specifications and the modeling techniques
inherent in them are included, and their use is encouraged
Seismic design shall be in accordance with either the
provisions in these Specifications or those given in the
AASHTO Guide Specifications for LRFD Seismic Bridge
Design
The commentary is not intended to provide a complete
historical background concerning the development of these
or previous Specifications, nor is it intended to provide a
detailed summary of the studies and research data
reviewed in formulating the provisions of the
Specifications However, references to some of the
research data are provided for those who wish to study the
background material in depth
The commentary directs attention to other documents
that provide suggestions for carrying out the requirements
and intent of these Specifications However, those
documents and this commentary are not intended to be a
part of these Specifications
Construction specifications consistent with these
design specifications are the AASHTO LRFD Bridge
Construction Specifications Unless otherwise specified,
the Materials Specifications referenced herein are the
AASHTO Standard Specifications for Transportation
Materials and Methods of Sampling and Testing
The term “notional” is often used in these Specifications to indicate an idealization of a physicalphenomenon, as in “notional load” or “notional resistance.” Use of this term strengthens the separation of
an engineer's “notion” or perception of the physical world
in the context of design from the physical reality itself The term “shall” denotes a requirement for compliance with these Specifications
The term “should” indicates a strong preference for agiven criterion
The term “may” indicates a criterion that is usable, butother local and suitably documented, verified, andapproved criteria may also be used in a manner consistentwith the LRFD approach to bridge design
Trang 16Bridge—Any structure having an opening not less than 20.0 ft that forms part of a highway or that is located over or under
a highway
Collapse—A major change in the geometry of the bridge rendering it unfit for use
Component—Either a discrete element of the bridge or a combination of elements requiring individual designconsideration
Design—Proportioning and detailing the components and connections of a bridge
Design Life—Period of time on which the statistical derivation of transient loads is based, which is 75 years for theseSpecifications
Ductility—Property of a component or connection that allows inelastic response
Engineer—Person responsible for the design of the bridge and/or review of design-related field submittals such as erectionplans
Evaluation—Determination of load-carrying capacity of an existing bridge
Extreme Event Limit States—Limit states relating to events such as earthquakes, ice load, and vehicle and vessel collision,with return periods in excess of the design life of the bridge
Factored Load—The nominal loads multiplied by the appropriate load factors specified for the load combinationunder consideration
Factored Resistance—The nominal resistance multiplied by a resistance factor
Fixed Bridge—A bridge with a fixed vehicular or navigational clearance
Force Effect—A deformation, stress, or stress resultant (i.e., axial force, shear force, or torsional or flexural moment)caused by applied loads, imposed deformations, or volumetric changes
Limit State—A condition beyond which the bridge or component ceases to satisfy the provisions for which it was designed.Load and Resistance Factor Design (LRFD)—A reliability-based design methodology in which force effects caused byfactored loads are not permitted to exceed the factored resistance of the components
Load Factor—A statistically-based multiplier applied to force effects accounting primarily for the variability of loads, thelack of accuracy in analysis, and the probability of simultaneous occurrence of different loads, but also related to thestatistics of the resistance through the calibration process
Load Modifier—A factor accounting for ductility, redundancy, and the operational classification of the bridge
Model—An idealization of a structure for the purpose of analysis
Movable Bridge—A bridge with a variable vehicular or navigational clearance
Multiple-Load-Path Structure—A structure capable of supporting the specified loads following loss of a main carrying component or connection
load-Nominal Resistance—Resistance of a component or connection to force effects, as indicated by the dimensions specified inthe contract documents and by permissible stresses, deformations, or specified strength of materials
Trang 17Regular Service—Condition excluding the presence of special permit vehicles, wind exceeding 55 mph, and extremeevents, including scour.
Rehabilitation—A process in which the resistance of the bridge is either restored or increased
Resistance Factor—A statistically-based multiplier applied to nominal resistance accounting primarily for variability ofmaterial properties, structural dimensions and workmanship, and uncertainty in the prediction of resistance, but alsorelated to the statistics of the loads through the calibration process
Service Life—The period of time that the bridge is expected to be in operation
Service Limit States—Limit states relating to stress, deformation, and cracking under regular operating conditions.Strength Limit States—Limit states relating to strength and stability during the design life
1.3—DESIGN PHILOSOPHY
1.3.1—General
Bridges shall be designed for specified limit states to
achieve the objectives of constructibility, safety, and
serviceability, with due regard to issues of inspectability,
economy, and aesthetics, as specified in Article 2.5
C1.3.1The limit states specified herein are intended toprovide for a buildable, serviceable bridge, capable ofsafely carrying design loads for a specified lifetime.Regardless of the type of analysis used, Eq 1.3.2.1-1
shall be satisfied for all specified force effects and
combinations thereof
The resistance of components and connections isdetermined, in many cases, on the basis of inelasticbehavior, although the force effects are determined byusing elastic analysis This inconsistency is common tomost current bridge specifications as a result of incompleteknowledge of inelastic structural action
1.3.2—Limit States
1.3.2.1—General
Each component and connection shall satisfy
Eq 1.3.2.1-1 for each limit state, unless otherwise
specified For service and extreme event limit states,
resistance factors shall be taken as 1.0, except for bolts, for
which the provisions of Article 6.5.5 shall apply, and for
concrete columns in Seismic Zones 2, 3, and 4, for which
the provisions of Articles 5.11.3 and 5.11.4.1.2 shall apply
All limit states shall be considered of equal importance
Ductility, redundancy, and operational classificationare considered in the load modifier η Whereas the firsttwo directly relate to physical strength, the lastconcerns the consequences of the bridge being out ofservice The grouping of these aspects on the load side
of Eq 1.3.2.1-1 is, therefore, arbitrary However, itconstitutes a first effort at codification In the absence
of more precise information, each effect, except that forfatigue and fracture, is estimated as ±5 percent,accumulated geometrically This is a clearly subjectiveapproach, and a rearrangement of Eq 1.3.2.1-1 may beattained with time Such a rearrangement might accountfor improved quantification of ductility, redundancy, andoperational classification, and their interactions withsystem reliability in such an equation
Trang 18γi = load factor: a statistically based multiplier applied
to force effects
f = resistance factor: a statistically based multiplier
applied to nominal resistance, as specified in
Sections 5, 6, 7, 8, 10, 11, and 12
ηi = load modifier: a factor relating to ductility,
redundancy, and operational classification
ηD = a factor relating to ductility, as specified in
η = 0.95, 1.0, 1.05, and 1.10 The resulting minimumvalues of β for 95 combinations of span, spacing, and type
of construction were determined to be approximately 3.0,3.5, 3.8, and 4.0, respectively In other words, using
η > 1.0 relates to a β higher than 3.5
A further approximate representation of the effect of η values can be obtained by considering the percent ofrandom normal data less than or equal to the mean valueplus λ σ, where λ is a multiplier, and σ is the standard deviation of the data If λ is taken as 3.0, 3.5, 3.8, and 4.0, the percent of values less than or equal to the mean valueplus λ σ would be about 99.865 percent, 99.977 percent, 99.993 percent, and 99.997 percent, respectively.The Strength I Limit State in the AASHTO LRFDDesign Specifications has been calibrated for a targetreliability index of 3.5 with a corresponding probability ofexceedance of 2.0E-04 during the 75-year design life of thebridge This 75-year reliability is equivalent to an annualprobability of exceedance of 2.7E-06 with a correspondingannual target reliability index of 4.6 Similar calibrationefforts for the Service Limit States are underway Returnperiods for extreme events are often based on annualprobability of exceedance, and caution must be used whencomparing reliability indices of various limit states.1.3.2.2—Service Limit State
The service limit state shall be taken as restrictions on
stress, deformation, and crack width under regular service
conditions
C1.3.2.2The service limit state provides certain experience-related provisions that cannot always be derived solelyfrom strength or statistical considerations
1.3.2.3—Fatigue and Fracture Limit State
The fatigue limit state shall be taken as restrictions on
stress range as a result of a single design truck occurring at
the number of expected stress range cycles
The fracture limit state shall be taken as a set of
material toughness requirements of the AASHTO Materials
Specifications
C1.3.2.3The fatigue limit state is intended to limit crackgrowth under repetitive loads to prevent fracture during thedesign life of the bridge
1.3.2.4—Strength Limit State
Strength limit state shall be taken to ensure that
strength and stability, both local and global, are provided
to resist the specified statistically significant load
combinations that a bridge is expected to experience in its
design life
C1.3.2.4The strength limit state considers stability or yielding
of each structural element If the resistance of any element,including splices and connections, is exceeded, it isassumed that the bridge resistance has been exceeded Infact, there is significant elastic reserve capacity in almostall multigider bridges beyond such a load level The live
Trang 19all parts of the cross-section simultaneously Thus, theflexural resistance of the bridge cross-section typicallyexceeds the resistance required for the total live load thatcan be applied in the number of lanes available Extensivedistress and structural damage may occur under strengthlimit state, but overall structural integrity is expected to bemaintained.
1.3.2.5—Extreme Event Limit States
The extreme event limit state shall be taken to ensure
the structural survival of a bridge during a major
earthquake or flood, or when collided with by a vessel,
vehicle, or ice floe, possibly under scoured conditions
C1.3.2.5Extreme event limit states are considered to be uniqueoccurrences that may have severe operational impact andwhose return period may be significantly greater than thedesign life of the bridge
The Owner may choose to require that the extremeevent limit state provide restricted or immediateserviceability in special cases of operational importance ofthe bridge or transportation corridor
1.3.3—Ductility
The structural system of a bridge shall be proportioned
and detailed to ensure the development of significant and
visible inelastic deformations at the strength and extreme
event limit states before failure
Energy-dissipating devices may be substituted for
conventional ductile earthquake resisting systems and the
associated methodology addressed in these Specifications
or in the AASHTO Guide Specifications for LRFD Seismic
Bridge Design
For the strength limit state:
ηD ≥ 1.05 for nonductile components and connections
= 1.00 for conventional designs and details
complying with these Specifications
≥ 0.95 for components and connections for which
additional ductility-enhancing measures have
been specified beyond those required by these
Specifications
For all other limit states:
ηD = 1.00
C1.3.3The response of structural components or connectionsbeyond the elastic limit can be characterized by eitherbrittle or ductile behavior Brittle behavior is undesirablebecause it implies the sudden loss of load-carryingcapacity immediately when the elastic limit is exceeded.Ductile behavior is characterized by significant inelasticdeformations before any loss of load-carrying capacityoccurs Ductile behavior provides warning of structuralfailure by large inelastic deformations Under repeatedseismic loading, large reversed cycles of inelasticdeformation dissipate energy and have a beneficial effect
on structural survival
If, by means of confinement or other measures, astructural component or connection made of brittlematerials can sustain inelastic deformations withoutsignificant loss of load-carrying capacity, this componentcan be considered ductile Such ductile performance shall
be verified by testing
In order to achieve adequate inelastic behavior, thesystem should have a sufficient number of ductile membersand either:
· joints and connections that are also ductile and canprovide energy dissipation without loss of capacity; or
· joints and connections that have sufficient excessstrength so as to assure that the inelastic responseoccurs at the locations designed to provide ductile,energy absorbing response
Trang 20Statically ductile but dynamically nonductile responsecharacteristics should be avoided Examples of thisbehavior are shear and bond failures in concrete membersand loss of composite action in flexural components.Past experience indicates that typical componentsdesigned in accordance with these provisions generallyexhibit adequate ductility Connection and joints requirespecial attention to detailing and the provision of loadpaths.
The Owner may specify a minimum ductility factor as
an assurance that ductile failure modes will be obtained.The factor may be defined as:
DmD
u y
Multiple-load-path and continuous structures should
be used unless there are compelling reasons not to use
them
For the strength limit state:
ηR ≥ 1.05 for nonredundant members
= 1.00 for conventional levels of redundancy,
foundation elements where f already accounts for
redundancy as specified in Article 10.5
≥ 0.95 for exceptional levels of redundancy beyond
girder continuity and a torsionally-closed
cross-section
The ductility capacity of structural components orconnections may either be established by full- or large-scale testing or with analytical models based ondocumented material behavior The ductility capacity for astructural system may be determined by integrating localdeformations over the entire structural system
The special requirements for energy dissipatingdevices are imposed because of the rigorous demandsplaced on these components
C1.3.4For each load combination and limit state underconsideration, member redundancy classification(redundant or nonredundant) should be based upon themember contribution to the bridge safety Severalredundancy measures have been proposed (Frangopol andNakib, 1991)
Single-cell boxes and single-column bents may beconsidered nonredundant at the Owner’s discretion Forprestressed concrete boxes, the number of tendons in eachweb should be taken into consideration For steel cross-sections and fracture-critical considerations, see Section 6.The Manual for Bridge Evaluation (2018) definesbridge redundancy as “the capability of a bridge structuralsystem to carry loads after damage to or the failure of one
or more of its members.” System factors are provided forpost-tensioned segmental concrete box girder bridges inSection 6A.5.11.6 of the Manual
System reliability encompasses redundancy byconsidering the system of interconnected components andmembers Rupture or yielding of an individual componentmay or may not mean collapse or failure of the whole
Trang 21anticipated to encompass ductility, redundancy, andmember correlation.
For all other limit states:
ηR = 1.00
1.3.5—Operational Importance
The Owner may declare a bridge or any structural
component and connection thereof to be of operational
priority
C1.3.5Such classification should be done by personnelresponsible for the affected transportation network andknowledgeable of its operational needs The definition ofoperational priority may differ from Owner to Owner andnetwork to network Guidelines for classifying critical oressential bridges are as follows:
· Bridges that are required to be open to all traffic onceinspected after the design event and be usable byemergency vehicles and for security, defense,economic, or secondary life safety purposesimmediately after the design event
· Bridges that should, as a minimum, be open toemergency vehicles and for security, defense, oreconomic purposes after the design event, and open toall traffic within days after that event
For the strength limit state:
ηI ≥ 1.05 for critical or essential bridges
= 1.00 for typical bridges
≥ 0.95 for relatively less important bridges
For all other limit states:
ηI = 1.00
Owner-classified bridges may use a value for h < 1.0 based
on ADTT, span length, available detour length, or otherrationale to use less stringent criteria
AASHTO The Manual for Bridge Evaluation, Third Edition with 2019 and 2020 Interim Revisions, MBE-3 AmericanAssociation of State Highway and Transportation Officials, Washington, DC, 2018
AASHTO Standard Specifications for Transportation Materials and Methods of Sampling and Testing, HM-WB.American Association of State Highway and Transportation Officials, Washington, DC, 2019
Frangopol, D M., and R Nakib “Redundancy in Highway Bridges.” Engineering Journal, Vol 28, No 1 AmericanInstitute of Steel Construction, Chicago, IL, 1991, pp 45–50
Mertz, D “Quantification of Structural Safety of Highway Bridges” (white paper), Annual Probability of Failure Internalcommunication, 2009
Nowak, A., and K R Collins Reliability of Structures McGraw–Hill Companies, Inc., New York, NY, 2000
Trang 236WUHDP 6WDELOLW
ULGJH :DWHUZDULGJH )RXQGDWLRQVHQHUDOULGJH 6FRXU5RDGZD SSURDFKHV WR ULGJH
&XOYHUW /RFDWLRQ /HQJWK DQG :DWHUZD UHD
5RDGZD UDLQDJH
HQHUDOHVLJQ 6WRUP
Trang 24GENERAL DESIGN AND LOCATION FEATURES
Commentary is opposite the text it annotates
2.1—SCOPE
Minimum requirements are provided for clearances,
environmental protection, aesthetics, geological studies,
economy, rideability, durability, constructability,
inspectability, and maintainability Minimum requirements
for traffic safety are referenced
Minimum requirements for drainage facilities and
self-protecting measures against water, ice, and water-borne
salts are included
In recognition that many bridge failures have been
caused by scour, hydrology and hydraulics are covered in
detail
C2.1 This Section is intended to provide the Designer withsufficient information to determine the configuration andoverall dimensions of a bridge
Clear Zone—An unobstructed, relatively flat area beyond the edge of the traveled way for the recovery of errant vehicles The traveled way does not include shoulders or auxiliary lanes
Clearance—An unobstructed horizontal or vertical space
Degradation—A general and progressive lowering of the longitudinal profile of the channel bed as a result of long-term erosion
Design Discharge—Maximum flow of water a bridge is expected to accommodate without exceeding the adopted design constraints
Design Flood for Bridge Scour—The flood flow equal to or less than the 100-year flood that creates the deepest scour at bridge foundations The highway or bridge may be inundated at the stage of the design flood for bridge scour The worst-case scour condition may occur for the overtopping flood as a result of the potential for pressure flow
Design Flood for Waterway Opening—The peak discharge, volume, stage, or wave crest elevation and its associated probability of exceedence that are selected for the design of a highway or bridge over a watercourse or floodplain By definition, the highway or bridge will not be inundated at the stage of the design flood for the waterway opening Detention Basin—A storm water management facility that impounds runoff and temporarily discharges it through a hydraulic outlet structure to a downstream conveyance system
Drip Groove—Linear depression in the bottom of components to cause water flowing on the surface to drop
Five-Hundred-Year Flood—The flood due to storm, tide, or both having a 0.2 percent chance of being equaled or exceeded
in any given year
General or Contraction Scour—Scour in a channel or on a floodplain that is not localized at a pier or other obstruction to flow In a channel, general/contraction scour usually affects all or most of the channel width and is typically caused by a contraction of the flow
Trang 25+ GURORJ 7KH VFLHQFH FRQFHUQHG ZLWK WKH RFFXUUHQFH GLVWULEXWLRQ DQG FLUFXODWLRQ RI ZDWHU RQ WKH HDUWK LQFOXGLQJSUHFLSLWDWLRQ UXQRII DQG JURXQGZDWHU
RFDO 6FR U 6FRXU LQ D FKDQQHO RU RQ D IORRGSODLQ WKDW LV ORFDOL HG DW D SLHU DEXWPHQW RU RWKHU REVWUXFWLRQ WR IORZ0L HG 3RS ODWLR ORRG )ORRG IORZV GHULYHG IURP WZR RU PRUH FDXVDWLYH IDFWRUV H J D VSULQJ WLGH GULYHQ E KXUULFDQHJHQHUDWHG RQVKRUH ZLQGV RU UDLQIDOO RQ D VQRZSDFN
2 H + GUHG HDU ORRG 7KH IORRG GXH WR VWRUP WLGH RU ERWK KDYLQJ D SHUFHQW FKDQFH RI EHLQJ HTXDOHG RU H FHHGHG
LQ DQ JLYHQ HDU
2YHUWRSSL J ORRG 7KH IORRG IORZ WKDW LI H FHHGHG UHVXOWV LQ IORZ RYHU D KLJKZD RU EULGJH RYHU D ZDWHUVKHG GLYLGH RUWKURXJK VWUXFWXUHV SURYLGHG IRU HPHUJHQF UHOLHI 7KH ZRUVW FDVH VFRXU FRQGLWLRQ PD EH FDXVHG E WKH RYHUWRSSLQJ IORRG5HOLHI ULGJH Q RSHQLQJ LQ DQ HPEDQNPHQW RQ D IORRGSODLQ WR SHUPLW SDVVDJH RI RYHUEDQN IORZ
5LYHU 7UDL L J 6WU FW UH Q FRQILJXUDWLRQ FRQVWUXFWHG LQ D VWUHDP RU SODFHG RQ DGMDFHQW WR RU LQ WKH YLFLQLW RI DVWUHDPEDQN WR GHIOHFW FXUUHQW LQGXFH VHGLPHQW GHSRVLWLRQ LQGXFH VFRXU RU LQ VRPH RWKHU ZD DOWHU WKH IORZ DQG VHGLPHQWUHJLPHQV RI WKH VWUHDP
6F SSHU GHYLFH WR GUDLQ ZDWHU WKURXJK WKH GHFN
6LGHZDON :LGW 8QREVWUXFWHG VSDFH IRU H FOXVLYH SHGHVWULDQ XVH EHWZHHQ EDUULHUV RU EHWZHHQ D FXUE DQG D EDUULHU6SUL J 7LGH WLGH RI LQFUHDVHG UDQJH WKDW RFFXUV DERXW HYHU WZR ZHHNV ZKHQ WKH PRRQ LV IXOO RU QHZ
6WDEOH D HO FRQGLWLRQ WKDW H LVWV ZKHQ D VWUHDP KDV D EHG VORSH DQG FURVV VHFWLRQ WKDW DOORZV LWV FKDQQHO WRWUDQVSRUW WKH ZDWHU DQG VHGLPHQW GHOLYHUHG IURP WKH XSVWUHDP ZDWHUVKHG ZLWKRXW VLJQLILFDQW GHJUDGDWLRQ DJJUDGDWLRQ RUEDQN HURVLRQ
6WUHDP HRPRUS RORJ 7KH VWXG RI D VWUHDP DQG LWV IORRGSODLQ ZLWK UHJDUG WR LWV ODQG IRUPV WKH JHQHUDO FRQILJXUDWLRQ
RI LWV VXUIDFH DQG WKH FKDQJHV WKDW WDNH SODFH GXH WR HURVLRQ DQG WKH EXLOGXS RI HURVLRQDO GHEULV
6 SHUHOHYDWLR WLOWLQJ RI WKH URDGZD VXUIDFH WR SDUWLDOO FRXQWHUEDODQFH WKH FHQWULIXJDO IRUFHV RQ YHKLFOHV RQKRUL RQWDO FXUYHV
6 SHUIORRG Q IORRG RU WLGDO IORZ ZLWK D IORZ UDWH JUHDWHU WKDQ WKDW RI WKH HDU IORRG EXW QRW JUHDWHU WKDQ D HDUIORRG
7LGH 7KH SHULRGLF ULVH DQG IDOO RI WKH HDUWK V RFHDQV WKDW UHVXOWV IURP WKH HIIHFW RI WKH PRRQ DQG VXQ DFWLQJ RQ D URWDWLQJHDUWK
:DWHUV HG Q DUHD FRQILQHG E GUDLQDJH GLYLGHV DQG RIWHQ KDYLQJ RQO RQH RXWOHW IRU GLVFKDUJH WKH WRWDO GUDLQDJH DUHDFRQWULEXWLQJ UXQRII WR D VLQJOH SRLQW
:DWHUZD Q VWUHDP ULYHU SRQG ODNH RU RFHDQ
:DWHUZD 2SH L J :LGWK RU DUHD RI EULGJH RSHQLQJ DW D VSHFLILHG VWDJH DQG PHDVXUHG QRUPDO WR SULQFLSDO GLUHFWLRQ RIIORZ
Trang 262 7,21 785 6
5R WH RFDWLR
H HUDO
7KH FKRLFH RI ORFDWLRQ RI EULGJHV VKDOO EH VXSSRUWHG E
DQDO VHV RI DOWHUQDWLYHV ZLWK FRQVLGHUDWLRQ JLYHQ WR
HFRQRPLF HQJLQHHULQJ VRFLDO DQG HQYLURQPHQWDO FRQFHUQV
DV ZHOO DV FRVWV RI PDLQWHQDQFH DQG LQVSHFWLRQ DVVRFLDWHG
ZLWK WKH VWUXFWXUHV DQG ZLWK WKH UHODWLYH LPSRUWDQFH RI WKH
DERYH QRWHG FRQFHUQV
WWHQWLRQ FRPPHQVXUDWH ZLWK WKH ULVN LQYROYHG VKDOO
EH GLUHFWHG WRZDUG SURYLGLQJ IRU IDYRUDEOH EULGJH ORFDWLRQV
:DWHU D D G ORRGSODL URVVL JV
:DWHUZD FURVVLQJV VKDOO EH ORFDWHG ZLWK UHJDUG WR
LQLWLDO FDSLWDO FRVWV RI FRQVWUXFWLRQ DQG WKH RSWLPL DWLRQ RI
WRWDO FRVWV LQFOXGLQJ ULYHU FKDQQHO WUDLQLQJ ZRUNV DQG WKH
PDLQWHQDQFH PHDVXUHV QHFHVVDU WR UHGXFH HURVLRQ 6WXGLHV
RI DOWHUQDWLYH FURVVLQJ ORFDWLRQV VKRXOG LQFOXGH
DVVHVVPHQWV RI
• WKH K GURORJLF DQG K GUDXOLF FKDUDFWHULVWLFV RI WKH
ZDWHUZD DQG LWV IORRGSODLQ LQFOXGLQJ FKDQQHO
VWDELOLW IORRG KLVWRU DQG LQ HVWXDULQH FURVVLQJV
WLGDO UDQJHV DQG F FOHV
• WKH HIIHFW RI WKH SURSRVHG EULGJH RQ IORRG IORZ
SDWWHUQV DQG WKH UHVXOWLQJ VFRXU SRWHQWLDO DW EULGJH
ULGJHV DQG WKHLU DSSURDFKHV RQ IORRGSODLQV VKRXOG EH
ORFDWHG DQG GHVLJQHG ZLWK UHJDUG WR WKH JRDOV DQG
REMHFWLYHV RI IORRGSODLQ PDQDJHPHQW LQFOXGLQJ
• SUHYHQWLRQ RI XQHFRQRPLF KD DUGRXV RU LQFRPSDWLEOH
XVH DQG GHYHORSPHQW RI IORRGSODLQV
• DYRLGDQFH RI VLJQLILFDQW WUDQVYHUVH DQG ORQJLWXGLQDO
HQFURDFKPHQWV ZKHUH SUDFWLFDEOH
• PLQLPL DWLRQ RI DGYHUVH KLJKZD LPSDFWV DQG
PLWLJDWLRQ RI XQDYRLGDEOH LPSDFWV ZKHUH SUDFWLFDEOH
HWDLOHG JXLGDQFH RQ SURFHGXUHV IRU HYDOXDWLQJ WKHORFDWLRQ RI EULGJHV DQG WKHLU DSSURDFKHV RQ IORRGSODLQV LVFRQWDLQHG LQ )HGHUDO 5HJXODWLRQV DQG WKH 3ODQQLQJ DQG/RFDWLRQ &KDSWHU RI WKH 6+72 UDL DJH 0D DO VHHUWLFOH & (QJLQHHUV ZLWK NQRZOHGJH DQG H SHULHQFH
LQ DSSO LQJ WKH JXLGDQFH DQG SURFHGXUHV LQ WKH 6+72UDL DJH 0D DO VKRXOG EH LQYROYHG LQ ORFDWLRQ GHFLVLRQV,W LV JHQHUDOO VDIHU DQG PRUH FRVW HIIHFWLYH WR DYRLG
K GUDXOLF SUREOHPV WKURXJK WKH VHOHFWLRQ RI IDYRUDEOHFURVVLQJ ORFDWLRQV WKDQ WR DWWHPSW WR PLQLPL H WKH SUREOHPV
DW D ODWHU WLPH LQ WKH SURMHFW GHYHORSPHQW SURFHVV WKURXJKGHVLJQ PHDVXUHV
( SHULHQFH DW H LVWLQJ EULGJHV VKRXOG EH SDUW RI WKHFDOLEUDWLRQ RU YHULILFDWLRQ RI K GUDXOLF PRGHOV LI SRVVLEOH(YDOXDWLRQ RI WKH SHUIRUPDQFH RI H LVWLQJ EULGJHV GXULQJSDVW IORRGV LV RIWHQ KHOSIXO LQ VHOHFWLQJ WKH W SH VL H DQGORFDWLRQ RI QHZ EULGJHV
Trang 27• FRQVLVWHQF ZLWK WKH LQWHQW RI WKH VWDQGDUGV DQG FULWHULD
RI WKH 1DWLRQDO )ORRG ,QVXUDQFH 3URJUDP ZKHUH
DSSOLFDEOH
• ORQJ WHUP DJJUDGDWLRQ RU GHJUDGDWLRQ DQG
• FRPPLWPHQWV PDGH WR REWDLQ HQYLURQPHQWDO DSSURYDOV
ULGJH 6LWH UUD JHPH W
H HUDO
7KH ORFDWLRQ DQG WKH DOLJQPHQW RI WKH EULGJH VKRXOG EH
VHOHFWHG WR VDWLVI ERWK RQ EULGJH DQG XQGHU EULGJH WUDIILF
UHTXLUHPHQWV &RQVLGHUDWLRQ VKRXOG EH JLYHQ WR SRVVLEOH
IXWXUH YDULDWLRQV LQ DOLJQPHQW RU ZLGWK RI WKH ZDWHUZD
KLJKZD RU UDLOZD VSDQQHG E WKH EULGJH
:KHUH DSSURSULDWH FRQVLGHUDWLRQ VKRXOG EH JLYHQ WR
IXWXUH DGGLWLRQ RI PDVV WUDQVLW IDFLOLWLHV RU EULGJH ZLGHQLQJ
OWKRXJK WKH ORFDWLRQ RI D EULGJH VWUXFWXUH RYHU DZDWHUZD LV XVXDOO GHWHUPLQHG E RWKHU FRQVLGHUDWLRQV WKDQWKH KD DUGV RI YHVVHO FROOLVLRQ WKH IROORZLQJ SUHIHUHQFHVVKRXOG EH FRQVLGHUHG ZKHUH SRVVLEOH DQG SUDFWLFDO
• /RFDWLQJ WKH EULGJH DZD IURP EHQGV LQ WKH QDYLJDWLRQFKDQQHO 7KH GLVWDQFH WR WKH EULGJH VKRXOG EH VXFK WKDWYHVVHOV FDQ OLQH XS EHIRUH SDVVLQJ WKH EULGJH XVXDOOHLJKW WLPHV WKH OHQJWK RI WKH YHVVHO 7KLV GLVWDQFHVKRXOG EH LQFUHDVHG IXUWKHU ZKHUH KLJK FXUUHQWV DQGZLQGV DUH SUHYDOHQW DW WKH VLWH
• &URVVLQJ WKH QDYLJDWLRQ FKDQQHO QHDU ULJKW DQJOHV DQG
V PPHWULFDOO ZLWK UHVSHFW WR WKH QDYLJDWLRQ FKDQQHO
• 3URYLGLQJ DQ DGHTXDWH GLVWDQFH IURP ORFDWLRQV ZLWKFRQJHVWHG QDYLJDWLRQ YHVVHO EHUWKLQJ PDQHXYHUV RURWKHU QDYLJDWLRQ SUREOHPV
• /RFDWLQJ WKH EULGJH ZKHUH WKH ZDWHUZD LV VKDOORZ RUQDUURZ DQG WKH EULGJH SLHUV FRXOG EH ORFDWHG RXW RIYHVVHO UHDFK
7UDIILF 6DIHW
3URWHFWLR RI 6WU FW UHV
&RQVLGHUDWLRQ VKDOO EH JLYHQ WR VDIH SDVVDJH RI
YHKLFOHV RQ RU XQGHU D EULGJH 7KH KD DUG WR HUUDQW YHKLFOHV
ZLWKLQ WKH FOHDU RQH VKRXOG EH PLQLPL HG E ORFDWLQJ
REVWDFOHV DW D VDIH GLVWDQFH IURP WKH WUDYHO ODQHV
3LHU FROXPQV RU ZDOOV IRU JUDGH VHSDUDWLRQ VWUXFWXUHV
VKRXOG EH ORFDWHG LQ FRQIRUPDQFH ZLWK WKH FOHDU RQH
FRQFHSW DV FRQWDLQHG LQ &KDSWHU RI WKH 6 72 5RDGVLGH
HVLJ LGH :KHUH WKH SUDFWLFDO OLPLWV RI VWUXFWXUH FRVWV
W SH RI VWUXFWXUH YROXPH DQG GHVLJQ VSHHG RI WKURXJK WUDIILF
VSDQ DUUDQJHPHQW VNHZ DQG WHUUDLQ PDNH FRQIRUPDQFH ZLWK
WKH 6 72 5RDGVLGH HVLJ LGH LPSUDFWLFDO WKH SLHU RU
ZDOO VKRXOG EH SURWHFWHG E WKH XVH RI JXDUGUDLO RU RWKHU
EDUULHU GHYLFHV 7KH JXDUGUDLO RU RWKHU GHYLFH VKRXOG LI
SUDFWLFDO EH LQGHSHQGHQWO VXSSRUWHG ZLWK LWV URDGZD IDFH
DW OHDVW IW IURP WKH IDFH RI WKH SLHU RU DEXWPHQW XQOHVV D
ULJLG EDUULHU LV SURYLGHG
7KH IDFH RI WKH JXDUGUDLO RU RWKHU GHYLFH VKRXOG EH DW
OHDVW IW RXWVLGH WKH QRUPDO VKRXOGHU OLQH
7KH LQWHQW RI SURYLGLQJ VWUXFWXUDOO LQGHSHQGHQWEDUULHUV LV WR SUHYHQW WUDQVPLVVLRQ RI IRUFH HIIHFWV IURP WKHEDUULHU WR WKH VWUXFWXUH EHLQJ SURWHFWHG
3URWHFWLR RI VHUV
5DLOLQJV VKDOO EH SURYLGHG DORQJ WKH HGJHV RI
VWUXFWXUHV FRQIRUPLQJ WR WKH UHTXLUHPHQWV RI 6HFWLRQ
Trang 28OO SURWHFWLYH VWUXFWXUHV VKDOO KDYH DGHTXDWH VXUIDFH
IHDWXUHV DQG WUDQVLWLRQV WR VDIHO UHGLUHFW HUUDQW WUDIILF
,Q WKH FDVH RI PRYDEOH EULGJHV ZDUQLQJ VLJQV OLJKWV
VLJQDO EHOOV JDWHV EDUULHUV DQG RWKHU VDIHW GHYLFHV VKDOO
EH SURYLGHG IRU WKH SURWHFWLRQ RI SHGHVWULDQ ELF FOH DQG
YHKLFXODU WUDIILF 7KHVH VKDOO EH GHVLJQHG WR RSHUDWH EHIRUH
WKH RSHQLQJ RI WKH PRYDEOH VSDQ DQG WR UHPDLQ RSHUDWLRQDO
XQWLO WKH VSDQ KDV EHHQ FRPSOHWHO FORVHG 7KH GHYLFHV
VKDOO FRQIRUP WR WKH UHTXLUHPHQWV IRU 7UDIILF &RQWURO DW
0RYDEOH ULGJHV LQ WKH 0D DO R LIRUP 7UDIILF
R WURO HYLFHV 087& RU DV VKRZQ RQ SODQV
3URWHFWLYH VWUXFWXUHV LQFOXGH WKRVH WKDW SURYLGH D VDIHDQG FRQWUROOHG VHSDUDWLRQ RI WUDIILF RQ PXOWLPRGDO IDFLOLWLHVXVLQJ WKH VDPH ULJKW RI ZD
:KHUH VSHFLILHG E WKH 2ZQHU VLGHZDONV VKDOO EH
SURWHFWHG E EDUULHUV YLVLELOLW HWF PD MXVWLI EDUULHU SURWHFWLRQ HYHQ ZLWK ORZ6SHFLDO FRQGLWLRQV VXFK DV FXUYHG DOLJQPHQW LPSHGHG
GHVLJQ YHORFLWLHVHRPHWULF 6WD GDUGV
5HTXLUHPHQWV RI WKH 6 72 SXEOLFDWLRQ 3ROLF R
HRPHWULF HVLJ RI +LJ ZD V D G 6WUHHWV VKDOO HLWKHU EH
VDWLVILHG RU H FHSWLRQV WKHUHWR VKDOO EH MXVWLILHG DQG
GRFXPHQWHG :LGWK RI VKRXOGHUV DQG JHRPHWU RI WUDIILF
EDUULHUV VKDOO PHHW WKH VSHFLILFDWLRQV RI WKH 2ZQHU
5RDG 6 UIDFHV
5RDG VXUIDFHV RQ D EULGJH VKDOO EH JLYHQ DQWLVNLG
FKDUDFWHULVWLFV FURZQ GUDLQDJH DQG VXSHUHOHYDWLRQ LQ
DFFRUGDQFH ZLWK 3ROLF R HRPHWULF HVLJ RI
+LJ ZD V D G 6WUHHWV RU ORFDO UHTXLUHPHQWV
HVVHO ROOLVLR VULGJH VWUXFWXUHV VKDOO HLWKHU EH SURWHFWHG DJDLQVW
YHVVHO FROOLVLRQ IRUFHV E IHQGHUV GLNHV RU GROSKLQV DV
VSHFLILHG LQ UWLFOH RU VKDOO EH GHVLJQHG WR
ZLWKVWDQG FROOLVLRQ IRUFH HIIHFWV DV VSHFLILHG LQ
UWLFOH
7KH QHHG IRU GROSKLQ DQG IHQGHU V VWHPV FDQ EHHOLPLQDWHG DW VRPH EULGJHV E MXGLFLRXV SODFHPHQW RI EULGJHSLHUV XLGDQFH RQ XVH RI GROSKLQ DQG IHQGHU V VWHPV LVLQFOXGHG LQ WKH 6 72 +LJ ZD UDL DJH LGHOL HV
&KDSWHU GUDXOLF QDO VHV IRU WKH /RFDWLRQ DQG HVLJQ
RI ULGJHVOHDUD FHV
1DYLJDWLR DO
3HUPLWV IRU FRQVWUXFWLRQ RI EULGJHV RYHU QDYLJDEOH
ZDWHUZD V VKDOO EH REWDLQHG IURP WKH 8 6 &RDVW XDUG
DQG RU RWKHU DJHQFLHV KDYLQJ MXULVGLFWLRQ 1DYLJDWLRQDO
FOHDUDQFHV ERWK YHUWLFDO DQG KRUL RQWDO VKDOO EH
HVWDEOLVKHG LQ FRRSHUDWLRQ ZLWK WKH 8 6 &RDVW XDUG
:KHUH EULGJH SHUPLWV DUH UHTXLUHG HDUO FRRUGLQDWLRQVKRXOG EH LQLWLDWHG ZLWK WKH 8 6 &RDVW XDUG WR HYDOXDWH WKHQHHGV RI QDYLJDWLRQ DQG WKH FRUUHVSRQGLQJ ORFDWLRQ DQGGHVLJQ UHTXLUHPHQWV IRU WKH EULGJH
3URFHGXUHV IRU DGGUHVVLQJ QDYLJDWLRQDO UHTXLUHPHQWV IRUEULGJHV LQFOXGLQJ FRRUGLQDWLRQ ZLWK WKH &RDVW XDUG DUHVHW IRUWK LQ WKH &RGH RI )HGHUDO 5HJXODWLRQV &)53DUW 6XESDUW 1DYLJDWLRQDO &OHDUDQFHV IRU ULGJHV
LJ D 9HUWLFDO
7KH YHUWLFDO FOHDUDQFH RI KLJKZD VWUXFWXUHV VKDOO EH LQ
FRQIRUPDQFH ZLWK 3ROLF R HRPHWULF HVLJ RI
+LJ ZD V D G 6WUHHWV IRU WKH IXQFWLRQDO FODVVLILFDWLRQ RI
7KH VSHFLILHG PLQLPXP FOHDUDQFH VKRXOG LQFOXGH LQIRU SRVVLEOH IXWXUH RYHUOD V ,I RYHUOD V DUH QRWFRQWHPSODWHG E WKH 2ZQHU WKLV UHTXLUHPHQW PD EH
Trang 293RVVLEOH UHGXFWLRQ RI YHUWLFDO FOHDUDQFH GXH WR VHWWOHPHQW
RI DQ RYHUSDVV VWUXFWXUH VKDOO EH LQYHVWLJDWHG ,I WKH
H SHFWHG VHWWOHPHQW H FHHGV LQ LW VKDOO EH DGGHG WR WKH
VSHFLILHG FOHDUDQFH
7KH YHUWLFDO FOHDUDQFH WR VLJQ VXSSRUWV DQG SHGHVWULDQ
RYHUSDVVHV VKRXOG EH IW JUHDWHU WKDQ WKH KLJKZD
VWUXFWXUH FOHDUDQFH DQG WKH YHUWLFDO FOHDUDQFH IURP WKH
URDGZD WR WKH RYHUKHDG FURVV EUDFLQJ RI WKURXJK WUXVV
VWUXFWXUHV VKRXOG QRW EH OHVV WKDQ IW
6LJQ VXSSRUWV SHGHVWULDQ EULGJHV DQG RYHUKHDG FURVVEUDFLQJV UHTXLUH WKH KLJKHU FOHDUDQFH EHFDXVH RI WKHLU OHVVHUUHVLVWDQFH WR LPSDFW
LJ D RUL R WDO
7KH EULGJH ZLGWK VKDOO QRW EH OHVV WKDQ WKDW RI WKH
DSSURDFK URDGZD VHFWLRQ LQFOXGLQJ VKRXOGHUV RU FXUEV
1R REMHFW RQ RU XQGHU D EULGJH RWKHU WKDQ D EDUULHU
VKRXOG EH ORFDWHG FORVHU WKDQ IW WR WKH HGJH RI D
GHVLJQDWHG WUDIILF ODQH 7KH LQVLGH IDFH RI D EDUULHU VKRXOG
QRW EH FORVHU WKDQ IW WR HLWKHU WKH IDFH RI WKH REMHFW RU
WKH HGJH RI D GHVLJQDWHG WUDIILF ODQH
7KH VSHFLILHG PLQLPXP GLVWDQFHV EHWZHHQ WKH HGJH RIWKH WUDIILF ODQH DQG WKH IL HG REMHFW DUH LQWHQGHG WR SUHYHQWFROOLVLRQ ZLWK VOLJKWO HUUDQW YHKLFOHV DQG WKRVH FDUU LQJZLGH ORDGV
5DLOURDG 2YHUSDVV
6WUXFWXUHV GHVLJQHG WR SDVV RYHU D UDLOURDG VKDOO EH LQ
DFFRUGDQFH ZLWK VWDQGDUGV HVWDEOLVKHG DQG XVHG E WKH
DIIHFWHG UDLOURDG LQ LWV QRUPDO SUDFWLFH 7KHVH RYHUSDVV
VWUXFWXUHV VKDOO FRPSO ZLWK DSSOLFDEOH IHGHUDO VWDWH
WWHQWLRQ LV SDUWLFXODUO FDOOHG WR WKH IROORZLQJ FKDSWHUV
LQ WKH 0D DO IRU 5DLOZD JL HHUL J 5(0
• &KDSWHU 7UDFN 6HFWLRQ LJKZD 5DLOZDUDGH &URVVLQJV
• &KDSWHU 7LPEHU 6WUXFWXUHV
• &KDSWHU &RQFUHWH 6WUXFWXUHV DQG )RXQGDWLRQV
• &KDSWHU 6WHHO 6WUXFWXUHV DQG
• &KDSWHU &OHDUDQFHV7KH SURYLVLRQV RI WKH LQGLYLGXDO UDLOURDGV DQG WKH5(0 0DQXDO VKRXOG EH XVHG WR GHWHUPLQH
7KH LPSDFW RI D EULGJH DQG LWV DSSURDFKHV RQ ORFDO
FRPPXQLWLHV KLVWRULF VLWHV ZHWODQGV DQG RWKHU
DHVWKHWLFDOO HQYLURQPHQWDOO DQG HFRORJLFDOO VHQVLWLYH
DUHDV VKDOO EH FRQVLGHUHG &RPSOLDQFH ZLWK VWDWH ZDWHU
ODZV IHGHUDO DQG VWDWH UHJXODWLRQV FRQFHUQLQJ
HQFURDFKPHQW RQ IORRGSODLQV ILVK DQG ZLOGOLIH KDELWDWV
DQG WKH SURYLVLRQV RI WKH 1DWLRQDO )ORRG ,QVXUDQFH
3URJUDP VKDOO EH DVVXUHG 6WUHDP JHRPRUSKRORJ
FRQVHTXHQFHV RI ULYHUEHG VFRXU UHPRYDO RI HPEDQNPHQW
VWDELOL LQJ YHJHWDWLRQ DQG ZKHUH DSSURSULDWH LPSDFWV WR
HVWXDULQH WLGDO G QDPLFV VKDOO EH FRQVLGHUHG
6WUHDP L H IOXYLDO JHRPRUSKRORJ LV WKH VWXG RI WKHVWUXFWXUH DQG IRUPDWLRQ RI WKH HDUWK V IHDWXUHV WKDW UHVXOWIURP WKH IRUFHV RI ZDWHU )RU SXUSRVHV RI WKLV 6HFWLRQ WKLVLQYROYHV HYDOXDWLQJ WKH VWUHDPV SRWHQWLDO IRU DJJUDGDWLRQGHJUDGDWLRQ RU ODWHUDO PLJUDWLRQ
Trang 30281 7,21 ,19 67, 7,21
H HUDO
VXEVXUIDFH LQYHVWLJDWLRQ LQFOXGLQJ ERULQJV DQG VRLO
WHVWV VKDOO EH FRQGXFWHG LQ DFFRUGDQFH ZLWK WKH SURYLVLRQV
RI UWLFOH WR SURYLGH SHUWLQHQW DQG VXIILFLHQW
LQIRUPDWLRQ IRU WKH GHVLJQ RI VXEVWUXFWXUH XQLWV 7KH W SH
DQG FRVW RI IRXQGDWLRQV VKRXOG EH FRQVLGHUHG LQ WKH
HFRQRPLF DQG DHVWKHWLF VWXGLHV IRU ORFDWLRQ DQG EULGJH
DOWHUQDWH VHOHFWLRQ
7RSRJUDS LF 6W GLHV
&XUUHQW WRSRJUDSK RI WKH EULGJH VLWH VKDOO EH
HVWDEOLVKHG YLD FRQWRXU PDSV DQG SKRWRJUDSKV 6XFK
VWXGLHV VKDOO LQFOXGH WKH KLVWRU RI WKH VLWH LQ WHUPV RI
PRYHPHQW RI HDUWK PDVVHV VRLO DQG URFN HURVLRQ DQG
PHDQGHULQJ RI ZDWHUZD V
6, 1 2 - 7,9 6
6DIHW
7KH SULPDU UHVSRQVLELOLW RI WKH (QJLQHHU VKDOO EH
SURYLGLQJ IRU WKH VDIHW RI WKH SXEOLF 7KH 2ZQHU PD
UHTXLUH D GHVLJQ REMHFWLYH RWKHU WKDQ VWUXFWXUDO VXUYLYDO IRU
DQ H WUHPH HYHQW
0LQLPXP UHTXLUHPHQWV WR HQVXUH WKH VWUXFWXUDO VDIHW
RI EULGJHV DV FRQYH DQFHV DUH LQFOXGHG LQ WKHVH6SHFLILFDWLRQV 7KH SKLORVRSK RI DFKLHYLQJ DGHTXDWHVWUXFWXUDO VDIHW LV RXWOLQHG LQ UWLFOH
6WU FW UDO 6 UYLYDO
7KH VWUXFWXUH VKDOO QRW FROODSVH XQGHU WKH GHVLJQ HYHQW
7KH VWUXFWXUH PD XQGHUJR FRQVLGHUDEOH GLVSODFHPHQW
VHWWOHPHQW RU LQHODVWLF GHIRUPDWLRQ (OHPHQWV RI WKH
VWUXFWXUDO V VWHP PD EH GHVLJQDWHG DV VDFULILFLDO
7KH VWUXFWXUDO UHSDLUV PD EH H WHQVLYH DQG UHTXLUH WKHVWUXFWXUH WR EH UHSODFHG RU RXW RI VHUYLFH IRU DQ H WHQGHGSHULRG RI WLPH
LPLWHG 6HUYLFHDELOLW
7KH VWUXFWXUH VKDOO UHPDLQ VWDEOH XQGHU GHVLJQDWHG
HPHUJHQF YHKLFXODU OLYH ORDGV VWHHO PHPEHUV DQG VSDOOLQJ LQ FRQFUHWH FROXPQV PD DOO/LPLWHG GLVSODFHPHQW OLPLWHG SODVWLF GHIRUPDWLRQ LQ
RFFXU 6DFULILFLDO PHPEHUV PD QHHG WR EH UHSODFHG6WUXFWXUDO UHSDLUV PD EH H WHQVLYH
,PPHGLDWH 8VH
7KH VWUXFWXUH PD EH UHRSHQHG WR DOO WUDIILF DIWHU
LQVSHFWLRQ IROORZLQJ DQ H WUHPH HYHQW OO ORDG FDUU LQJ
PHPEHUV RI WKH VWUXFWXUH VKRXOG UHPDLQ HVVHQWLDOO HODVWLF
0LQRU VSDOOLQJ RI FRQFUHWH FROXPQV PD RFFXU
Trang 31UDELOLW0DWHULDOV
7KH FRQWUDFW GRFXPHQWV VKDOO FDOO IRU TXDOLW PDWHULDOV
DQG IRU WKH DSSOLFDWLRQ RI KLJK VWDQGDUGV RI IDEULFDWLRQ DQG
DLUERUQH RU ZDWHUERUQH VDOWV VKDOO EH SURWHFWHG E DQ
DSSURSULDWH FRPELQDWLRQ RI HSR DQG RU JDOYDQL HG
FRDWLQJ FRQFUHWH FRYHU GHQVLW RU FKHPLFDO FRPSRVLWLRQ
RI FRQFUHWH LQFOXGLQJ DLU HQWUDLQPHQW DQG D QRQSRURXV
SDLQWLQJ RI WKH FRQFUHWH VXUIDFH RU FDWKRGLF SURWHFWLRQ
3UHVWUHVV VWUDQGV LQ FDEOH GXFWV VKDOO EH JURXWHG RU
RWKHUZLVH SURWHFWHG DJDLQVW FRUURVLRQ
WWDFKPHQWV DQG IDVWHQHUV XVHG LQ ZRRG FRQVWUXFWLRQ
VKDOO EH RI VWDLQOHVV VWHHO PDOOHDEOH LURQ DOXPLQXP RU
VWHHO WKDW LV JDOYDQL HG FDGPLXP SODWHG RU RWKHUZLVH
FRDWHG :RRG FRPSRQHQWV VKDOO EH WUHDWHG ZLWK
SUHVHUYDWLYHV
OXPLQXP SURGXFWV VKDOO EH HOHFWULFDOO LQVXODWHG IURP
VWHHO DQG FRQFUHWH FRPSRQHQWV
3URWHFWLRQ VKDOO EH SURYLGHG WR PDWHULDOV VXVFHSWLEOH WR
GDPDJH IURP VRODU UDGLDWLRQ DQG RU DLU SROOXWLRQ
&RQVLGHUDWLRQ VKDOO EH JLYHQ WR WKH GXUDELOLW RI
PDWHULDOV LQ GLUHFW FRQWDFW ZLWK VRLO ZDWHU RU ERWK
7KH LQWHQW RI WKLV UWLFOH LV WR UHFRJQL H WKHVLJQLILFDQFH RI FRUURVLRQ DQG GHWHULRUDWLRQ RI VWUXFWXUDOPDWHULDOV WR WKH ORQJ WHUP SHUIRUPDQFH RI D EULGJH 2WKHUSURYLVLRQV UHJDUGLQJ GXUDELOLW FDQ EH IRXQG LQ UWLFOH2WKHU WKDQ WKH GHWHULRUDWLRQ RI WKH FRQFUHWH GHFN LWVHOIWKH VLQJOH PRVW SUHYDOHQW EULGJH PDLQWHQDQFH SUREOHP LV WKHGLVLQWHJUDWLRQ RI EHDP HQGV EHDULQJV SHGHVWDOV SLHUV DQGDEXWPHQWV GXH WR SHUFRODWLRQ RI ZDWHUERUQH URDG VDOWVWKURXJK WKH GHFN MRLQWV ( SHULHQFH DSSHDUV WR LQGLFDWH WKDW
D VWUXFWXUDOO FRQWLQXRXV GHFN SURYLGHV WKH EHVW SURWHFWLRQIRU FRPSRQHQWV EHORZ WKH GHFN 7KH SRWHQWLDO FRQVHTXHQFHV
RI WKH XVH RI URDG VDOWV RQ VWUXFWXUHV ZLWK XQILOOHG VWHHOGHFNV DQG XQSUHVWUHVVHG ZRRG GHFNV VKRXOG EH WDNHQ LQWRDFFRXQW
7KHVH 6SHFLILFDWLRQV SHUPLW WKH XVH RI GLVFRQWLQXRXVGHFNV LQ WKH DEVHQFH RI VXEVWDQWLDO XVH RI URDG VDOWV7UDQVYHUVH VDZ FXW UHOLHI MRLQWV LQ FDVW LQ SODFH FRQFUHWHGHFNV KDYH EHHQ IRXQG WR EH RI QR SUDFWLFDO YDOXH ZKHUHFRPSRVLWH DFWLRQ LV SUHVHQW (FRQRP GXH WR VWUXFWXUDOFRQWLQXLW DQG WKH DEVHQFH RI H SDQVLRQ MRLQWV ZLOO XVXDOOIDYRU WKH DSSOLFDWLRQ RI FRQWLQXRXV GHFNV UHJDUGOHVV RIORFDWLRQ
6WULQJHUV PDGH VLPSO VXSSRUWHG E VOLGLQJ MRLQWV ZLWK
RU ZLWKRXW VORWWHG EROW KROHV WHQG WR IUHH H GXH WR WKHDFFXPXODWLRQ RI FRUURVLRQ SURGXFWV DQG FDXVH PDLQWHQDQFHSUREOHPV HFDXVH RI WKH JHQHUDO DYDLODELOLW RI FRPSXWHUVDQDO VLV RI FRQWLQXRXV GHFNV LV QR ORQJHU D SUREOHP( SHULHQFH LQGLFDWHV WKDW IURP WKH SHUVSHFWLYH RIGXUDELOLW DOO MRLQWV VKRXOG EH FRQVLGHUHG VXEMHFW WR VRPHGHJUHH RI PRYHPHQW DQG OHDNDJH
6HOI 3URWHFWL J 0HDV UHV
&RQWLQXRXV GULS JURRYHV VKDOO EH SURYLGHG DORQJ WKH
XQGHUVLGH RI D FRQFUHWH GHFN DW D GLVWDQFH QRW H FHHGLQJ
LQ IURP WKH IDVFLD HGJHV :KHUH WKH GHFN LV
LQWHUUXSWHG E D VHDOHG GHFN MRLQW DOO VXUIDFHV RI SLHUV DQG
DEXWPHQWV RWKHU WKDQ EHDULQJ VHDWV VKDOO KDYH D PLQLPXP
VORSH RI SHUFHQW WRZDUG WKHLU HGJHV )RU RSHQ GHFN MRLQWV
WKLV PLQLPXP VORSH VKDOO EH LQFUHDVHG WR SHUFHQW ,Q WKH
FDVH RI RSHQ GHFN MRLQWV WKH EHDULQJV VKDOO EH SURWHFWHG
DJDLQVW FRQWDFW ZLWK VDOW DQG GHEULV
3RQGLQJ RI ZDWHU KDV RIWHQ EHHQ REVHUYHG RQ WKH VHDWV
RI DEXWPHQWV SUREDEO DV D UHVXOW RI FRQVWUXFWLRQ WROHUDQFHVDQG RU WLOWLQJ 7KH SHUFHQW VORSH VSHFLILHG LQ FRQMXQFWLRQZLWK RSHQ MRLQWV LV LQWHQGHG WR HQDEOH UDLQV WR ZDVK DZDGHEULV DQG VDOW
:HDULQJ VXUIDFHV VKDOO EH LQWHUUXSWHG DW WKH GHFN MRLQWV
DQG VKDOO EH SURYLGHG ZLWK D VPRRWK WUDQVLWLRQ WR WKH GHFN
MRLQW GHYLFH
6WHHO IRUPZRUN VKDOO EH SURWHFWHG DJDLQVW FRUURVLRQ LQ
DFFRUGDQFH ZLWK WKH VSHFLILFDWLRQV RI WKH 2ZQHU
,Q WKH SDVW IRU PDQ VPDOOHU EULGJHV QR H SDQVLRQGHYLFH ZDV SURYLGHG DW WKH IL HG MRLQW DQG WKH ZHDULQJVXUIDFH ZDV VLPSO UXQ RYHU WKH MRLQW WR JLYH D FRQWLQXRXVULGLQJ VXUIDFH V WKH URWDWLRQ FHQWHU RI WKH VXSHUVWUXFWXUH LVDOZD V EHORZ WKH VXUIDFH WKH IL HG MRLQW DFWXDOO PRYHVGXH WR ORDG DQG HQYLURQPHQWDO HIIHFWV FDXVLQJ WKH ZHDULQJVXUIDFH WR FUDFN OHDN DQG GLVLQWHJUDWH
Trang 32, VSHFWDELOLW
,QVSHFWLRQ ODGGHUV ZDONZD V FDWZDONV FRYHUHG
DFFHVV KROHV DQG SURYLVLRQ IRU OLJKWLQJ LI QHFHVVDU VKDOO
EH SURYLGHG ZKHUH RWKHU PHDQV RI LQVSHFWLRQ DUH QRW
SUDFWLFDO
:KHUH SUDFWLFDO DFFHVV WR SHUPLW PDQXDO RU YLVXDO
LQVSHFWLRQ LQFOXGLQJ DGHTXDWH KHDGURRP LQ ER VHFWLRQV
VKDOO EH SURYLGHG WR WKH LQVLGH RI FHOOXODU FRPSRQHQWV DQG
WR LQWHUIDFH DUHDV ZKHUH UHODWLYH PRYHPHQW PD RFFXU
7KH LGH 6SHFLILFDWLR V IRU HVLJ D G R VWU FWLR
RI 6HJPH WDO R FUHWH ULGJHV UHTXLUHV H WHUQDO DFFHVVKDWFKHV ZLWK D PLQLPXP VL H RI IW × IW ODUJHURSHQLQJV DW LQWHULRU GLDSKUDJPV DQG YHQWLQJ E GUDLQV RUVFUHHQHG YHQWV DW LQWHUYDOV RI QR PRUH WKDQ IW 7KHVHUHFRPPHQGDWLRQV VKRXOG EH XVHG LQ EULGJHV GHVLJQHG XQGHUWKHVH 6SHFLILFDWLRQV
0DL WDL DELOLW
6WUXFWXUDO V VWHPV ZKRVH PDLQWHQDQFH LV H SHFWHG WR
EH GLIILFXOW VKRXOG EH DYRLGHG :KHUH WKH FOLPDWLF DQG RU
WUDIILF HQYLURQPHQW LV VXFK WKDW D EULGJH GHFN PD QHHG WR
EH UHSODFHG EHIRUH WKH UHTXLUHG VHUYLFH OLIH SURYLVLRQV VKDOO
EH VKRZQ RQ WKH FRQWUDFW GRFXPHQWV IRU
• D FRQWHPSRUDU RU IXWXUH SURWHFWLYH RYHUOD
• D IXWXUH GHFN UHSODFHPHQW RU
• VXSSOHPHQWDO VWUXFWXUDO UHVLVWDQFH
UHDV DURXQG EHDULQJ VHDWV DQG XQGHU GHFN MRLQWV
VKRXOG EH GHVLJQHG WR IDFLOLWDWH MDFNLQJ FOHDQLQJ UHSDLU
DQG UHSODFHPHQW RI EHDULQJV DQG MRLQWV
-DFNLQJ SRLQWV VKDOO EH LQGLFDWHG RQ WKH SODQV DQG WKH
VWUXFWXUH VKDOO EH GHVLJQHG IRU MDFNLQJ IRUFHV VSHFLILHG LQ
UWLFOH ,QDFFHVVLEOH FDYLWLHV DQG FRUQHUV VKRXOG EH
DYRLGHG &DYLWLHV WKDW PD LQYLWH KXPDQ RU DQLPDO
LQKDELWDQWV VKDOO HLWKHU EH DYRLGHG RU PDGH VHFXUH
0DLQWHQDQFH RI WUDIILF GXULQJ UHSODFHPHQW VKRXOG EHSURYLGHG HLWKHU E SDUWLDO ZLGWK VWDJLQJ RI UHSODFHPHQW RU
E WKH XWLOL DWLRQ RI DQ DGMDFHQW SDUDOOHO VWUXFWXUH0HDVXUHV IRU LQFUHDVLQJ WKH GXUDELOLW RI FRQFUHWH DQGZRRG GHFNV LQFOXGH HSR FRDWLQJ RI UHLQIRUFLQJ EDUV SRVWWHQVLRQLQJ GXFWV DQG SUHVWUHVVLQJ VWUDQGV LQ WKH GHFN0LFURVLOLFD DQG RU FDOFLXP QLWULWH DGGLWLYHV LQ WKH GHFNFRQFUHWH ZDWHUSURRILQJ PHPEUDQHV DQG RYHUOD V PD EHXVHG WR SURWHFW EODFN VWHHO 6HH UWLFOH IRU DGGLWLRQDOUHTXLUHPHQWV UHJDUGLQJ RYHUOD V
5LGHDELOLW
7KH GHFN RI WKH EULGJH VKDOO EH GHVLJQHG WR SHUPLW WKH
VPRRWK PRYHPHQW RI WUDIILF 2Q SDYHG URDGV D VWUXFWXUDO
WUDQVLWLRQ VODE VKRXOG EH ORFDWHG EHWZHHQ WKH DSSURDFK
URDGZD DQG WKH DEXWPHQW RI WKH EULGJH &RQVWUXFWLRQ
WROHUDQFHV ZLWK UHJDUG WR WKH SURILOH RI WKH ILQLVKHG GHFN
VKDOO EH LQGLFDWHG RQ WKH SODQV RU LQ WKH VSHFLILFDWLRQV RU
VSHFLDO SURYLVLRQV
7KH QXPEHU RI GHFN MRLQWV VKDOO EH NHSW WR D SUDFWLFDO
PLQLPXP (GJHV RI MRLQWV LQ FRQFUHWH GHFNV H SRVHG WR
WUDIILF VKRXOG EH SURWHFWHG IURP DEUDVLRQ DQG VSDOOLQJ 7KH
SODQV IRU SUHIDEULFDWHG MRLQWV VKDOO VSHFLI WKDW WKH MRLQW
DVVHPEO EH HUHFWHG DV D XQLW
:KHUH FRQFUHWH GHFNV ZLWKRXW DQ LQLWLDO RYHUOD DUH
XVHG FRQVLGHUDWLRQ VKRXOG EH JLYHQ WR SURYLGLQJ DQ
DGGLWLRQDO WKLFNQHVV RI LQ WR SHUPLW FRUUHFWLRQ RI WKH
GHFN SURILOH E JULQGLQJ DQG WR FRPSHQVDWH IRU WKLFNQHVV
ORVV GXH WR DEUDVLRQ
8WLOLWLHV
:KHUH UHTXLUHG SURYLVLRQV VKDOO EH PDGH WR VXSSRUW
DQG PDLQWDLQ WKH FRQYH DQFH IRU XWLOLWLHV
Trang 33HIRUPDWLR V
H HUDOULGJHV VKRXOG EH GHVLJQHG WR DYRLG XQGHVLUDEOH
VWUXFWXUDO RU SV FKRORJLFDO HIIHFWV GXH WR WKHLU
GHIRUPDWLRQV :KLOH GHIOHFWLRQ DQG GHSWK OLPLWDWLRQV DUH
PDGH RSWLRQDO H FHSW IRU RUWKRWURSLF SODWH GHFNV DQ ODUJH
GHYLDWLRQ IURP SDVW VXFFHVVIXO SUDFWLFH UHJDUGLQJ
VOHQGHUQHVV DQG GHIOHFWLRQV VKRXOG EH FDXVH IRU UHYLHZ RI
WKH GHVLJQ WR GHWHUPLQH WKDW LW ZLOO SHUIRUP DGHTXDWHO
,I G QDPLF DQDO VLV LV XVHG LW VKDOO FRPSO ZLWK WKH
SULQFLSOHV DQG UHTXLUHPHQWV RI UWLFOH
6HUYLFH ORDG GHIRUPDWLRQV PD FDXVH GHWHULRUDWLRQ RIZHDULQJ VXUIDFHV DQG ORFDO FUDFNLQJ LQ FRQFUHWH VODEV DQG LQPHWDO EULGJHV WKDW FRXOG LPSDLU VHUYLFHDELOLW DQG GXUDELOLWHYHQ LI VHOI OLPLWLQJ DQG QRW D SRWHQWLDO VRXUFH RI FROODSVH
V HDUO DV DWWHPSWV ZHUH PDGH WR DYRLG WKHVHHIIHFWV E OLPLWLQJ WKH GHSWK WR VSDQ UDWLRV RI WUXVVHV DQGJLUGHUV DQG VWDUWLQJ LQ WKH V OLYH ORDG GHIOHFWLRQ OLPLWVZHUH SUHVFULEHG IRU WKH VDPH SXUSRVH ,Q D VWXG RIGHIOHFWLRQ OLPLWDWLRQV RI EULGJHV 6&( DQ 6&(FRPPLWWHH IRXQG QXPHURXV VKRUWFRPLQJV LQ WKHVH WUDGLWLRQDODSSURDFKHV DQG QRWHG IRU H DPSOH
7KH OLPLWHG VXUYH FRQGXFWHG E WKH &RPPLWWHHUHYHDOHG QR HYLGHQFH RI VHULRXV VWUXFWXUDO GDPDJHWKDW FRXOG EH DWWULEXWHG WR H FHVVLYH GHIOHFWLRQ7KH IHZ H DPSOHV RI GDPDJHG VWULQJHUFRQQHFWLRQV RU FUDFNHG FRQFUHWH IORRUV FRXOGSUREDEO EH FRUUHFWHG PRUH HIIHFWLYHO E FKDQJHV
LQ GHVLJQ WKDQ E PRUH UHVWULFWLYH OLPLWDWLRQV RQGHIOHFWLRQ 2Q WKH RWKHU KDQG ERWK WKH KLVWRULFDOVWXG DQG WKH UHVXOWV IURP WKH VXUYH LQGLFDWHFOHDUO WKDW XQIDYRUDEOH SV FKRORJLFDO UHDFWLRQ WREULGJH GHIOHFWLRQ LV SUREDEO WKH PRVW IUHTXHQW DQGLPSRUWDQW VRXUFH RI FRQFHUQ UHJDUGLQJ WKHIOH LELOLW RI EULGJHV RZHYHU WKRVHFKDUDFWHULVWLFV RI EULGJH YLEUDWLRQ ZKLFK DUHFRQVLGHUHG REMHFWLRQDEOH E SHGHVWULDQV RUSDVVHQJHUV LQ YHKLFOHV FDQQRW HW EH GHILQHG6LQFH SXEOLFDWLRQ RI WKH VWXG WKHUH KDV EHHQ H WHQVLYHUHVHDUFK RQ KXPDQ UHVSRQVH WR PRWLRQ ,W LV QRZ JHQHUDOODJUHHG WKDW WKH SULPDU IDFWRU DIIHFWLQJ KXPDQ VHQVLWLYLW LVDFFHOHUDWLRQ UDWKHU WKDQ GHIOHFWLRQ YHORFLW RU WKH UDWH RIFKDQJH RI DFFHOHUDWLRQ IRU EULGJH VWUXFWXUHV EXW WKH SUREOHP
LV D GLIILFXOW VXEMHFWLYH RQH 7KXV WKHUH DUH DV HW QR VLPSOHGHILQLWLYH JXLGHOLQHV IRU WKH OLPLWV RI WROHUDEOH VWDWLFGHIOHFWLRQ RU G QDPLF PRWLRQ PRQJ FXUUHQWVSHFLILFDWLRQV WKH D DGLD +LJ ZD ULGJH HVLJ RGH
FRQWDLQV FRPSUHKHQVLYH SURYLVLRQV UHJDUGLQJYLEUDWLRQV WROHUDEOH WR KXPDQV
)RU VWUDLJKW VNHZHG VWHHO JLUGHU EULGJHV DQG
KRUL RQWDOO FXUYHG VWHHO JLUGHU EULGJHV ZLWK RU ZLWKRXW
VNHZHG VXSSRUWV WKH IROORZLQJ DGGLWLRQDO LQYHVWLJDWLRQV
VKDOO EH FRQVLGHUHG
• (ODVWLF YHUWLFDO ODWHUDO DQG URWDWLRQDO GHIOHFWLRQV GXH
WR DSSOLFDEOH ORDG FRPELQDWLRQV VKDOO EH FRQVLGHUHG WR
HQVXUH VDWLVIDFWRU VHUYLFH SHUIRUPDQFH RI EHDULQJV
MRLQWV LQWHJUDO DEXWPHQWV DQG SLHUV
RUL RQWDOO FXUYHG VWHHO EULGJHV DUH VXEMHFWHG WRWRUVLRQ UHVXOWLQJ LQ ODUJHU ODWHUDO GHIOHFWLRQV DQG WZLVWLQJWKDQ WDQJHQW EULGJHV 7KHUHIRUH URWDWLRQV GXH WR GHDG ORDGDQG WKHUPDO IRUFHV WHQG WR KDYH D ODUJHU HIIHFW RQ WKHSHUIRUPDQFH RI EHDULQJV DQG H SDQVLRQ MRLQWV RI FXUYHGEULGJHV
HDULQJ URWDWLRQV GXULQJ FRQVWUXFWLRQ PD H FHHG WKHGHDG ORDG URWDWLRQV FRPSXWHG IRU WKH FRPSOHWHG EULGJH LQSDUWLFXODU DW VNHZHG VXSSRUWV ,GHQWLILFDWLRQ RI WKLVWHPSRUDU VLWXDWLRQ PD EH FULWLFDO WR HQVXUH WKH EULGJH FDQ
EH EXLOW ZLWKRXW GDPDJLQJ WKH EHDULQJV RU H SDQVLRQGHYLFHV
Trang 34• &RPSXWHG JLUGHU URWDWLRQV DW EHDULQJV VKRXOG EH
DFFXPXODWHG RYHU WKH (QJLQHHU V DVVXPHG FRQVWUXFWLRQ
VHTXHQFH &RPSXWHG URWDWLRQV DW EHDULQJV VKDOO QRW
H FHHG WKH VSHFLILHG URWDWLRQDO FDSDFLW RI WKH EHDULQJV
IRU WKH DFFXPXODWHG IDFWRUHG ORDGV FRUUHVSRQGLQJ WR
• 7KH SURYLVLRQV LQ UWLFOH IRU SUHFDVW
UHLQIRUFHG FRQFUHWH WKUHH VLGHG VWUXFWXUHV VKDOO EH
FRQVLGHUHG PDQGDWRU
• 0HWDO JULG GHFNV DQG RWKHU OLJKWZHLJKW PHWDO DQG
FRQFUHWH EULGJH GHFNV VKDOO EH VXEMHFW WR WKH
VHUYLFHDELOLW SURYLVLRQV RI UWLFOH
,Q DSSO LQJ WKHVH FULWHULD WKH YHKLFXODU ORDG VKDOO
LQFOXGH WKH G QDPLF ORDG DOORZDQFH
,I DQ 2ZQHU FKRRVHV WR LQYRNH GHIOHFWLRQ FRQWURO WKH
IROORZLQJ SULQFLSOHV PD EH DSSOLHG
7KHVH SURYLVLRQV SHUPLW EXW GR QRW HQFRXUDJH WKH XVH
RI SDVW SUDFWLFH IRU GHIOHFWLRQ FRQWURO HVLJQHUV ZHUHSHUPLWWHG WR H FHHG WKHVH OLPLWV DW WKHLU GLVFUHWLRQ LQ WKHSDVW &DOFXODWHG GHIOHFWLRQV RI VWUXFWXUHV KDYH RIWHQ EHHQIRXQG WR EH GLIILFXOW WR YHULI LQ WKH ILHOG GXH WR QXPHURXVVRXUFHV RI VWLIIQHVV QRW DFFRXQWHG IRU LQ FDOFXODWLRQVHVSLWH WKLV PDQ 2ZQHUV DQG GHVLJQHUV KDYH IRXQGFRPIRUW LQ WKH SDVW UHTXLUHPHQWV WR OLPLW WKH RYHUDOO VWLIIQHVV
RI EULGJHV 7KH GHVLUH IRU FRQWLQXHG DYDLODELOLW RI VRPHJXLGDQFH LQ WKLV DUHD RIWHQ VWDWHG GXULQJ WKH GHYHORSPHQW RIWKHVH 6SHFLILFDWLRQV KDV UHVXOWHG LQ WKH UHWHQWLRQ RI RSWLRQDOFULWHULD H FHSW IRU RUWKRWURSLF GHFNV IRU ZKLFK WKH FULWHULDDUH UHTXLUHG HIOHFWLRQ FULWHULD DUH DOVR PDQGDWRU IRUOLJKWZHLJKW GHFNV FRPSULVHG RI PHWDO DQG FRQFUHWH VXFK DVILOOHG DQG SDUWLDOO ILOOHG JULG GHFNV DQG XQILOOHG JULG GHFNVFRPSRVLWH ZLWK UHLQIRUFHG FRQFUHWH VODEV DV SURYLGHG LQUWLFOH
GGLWLRQDO JXLGDQFH UHJDUGLQJ GHIOHFWLRQ RI VWHHOEULGJHV FDQ EH IRXQG LQ :ULJKW DQG :DONHU
GGLWLRQDO FRQVLGHUDWLRQV DQG UHFRPPHQGDWLRQV IRUGHIOHFWLRQ LQ WLPEHU EULGJH FRPSRQHQWV DUH GLVFXVVHG LQPRUH GHWDLO LQ &KDSWHUV DQG LQ 5LWWHU
• :KHQ LQYHVWLJDWLQJ WKH PD LPXP DEVROXWH GHIOHFWLRQ
IRU VWUDLJKW JLUGHU V VWHPV DOO GHVLJQ ODQHV VKRXOG EH
ORDGHG DQG DOO VXSSRUWLQJ FRPSRQHQWV VKRXOG EH
DVVXPHG WR GHIOHFW HTXDOO
)RU D VWUDLJKW JLUGHU V VWHP EULGJH WKLV LV HTXLYDOHQW WR
VD LQJ WKDW WKH GLVWULEXWLRQ IDFWRU IRU GHIOHFWLRQ LV HTXDO WRWKH QXPEHU RI ODQHV GLYLGHG E WKH QXPEHU RI EHDPV
• )RU FXUYHG VWHHO ER DQG , JLUGHU V VWHPV WKH
GHIOHFWLRQ RI HDFK JLUGHU VKRXOG EH GHWHUPLQHG
LQGLYLGXDOO EDVHG RQ LWV UHVSRQVH DV SDUW RI D
V VWHP
)RU FXUYHG VWHHO JLUGHU V VWHPV WKH GHIOHFWLRQ OLPLW LVDSSOLHG WR HDFK LQGLYLGXDO JLUGHU EHFDXVH WKH FXUYDWXUH FDXVHVHDFK JLUGHU WR GHIOHFW GLIIHUHQWO WKDQ WKH DGMDFHQW JLUGHU VRWKDW DQ DYHUDJH GHIOHFWLRQ KDV OLWWOH PHDQLQJ )RU FXUYHG VWHHOJLUGHU V VWHPV WKH VSDQ XVHG WR FRPSXWH WKH GHIOHFWLRQ OLPLWVKRXOG EH WDNHQ DV WKH DUF JLUGHU OHQJWK EHWZHHQ EHDULQJV
• )RU FRPSRVLWH GHVLJQ WKH VWLIIQHVV RI WKH GHVLJQ FURVV
VHFWLRQ XVHG IRU WKH GHWHUPLQDWLRQ RI GHIOHFWLRQ DQG
IUHTXHQF VKRXOG LQFOXGH WKH HQWLUH ZLGWK RI WKH
URDGZD DQG WKH VWUXFWXUDOO FRQWLQXRXV SRUWLRQV RI
WKH UDLOLQJV VLGHZDONV DQG PHGLDQ EDUULHUV
• )RU VWUDLJKW JLUGHU V VWHPV WKH FRPSRVLWH EHQGLQJ
VWLIIQHVV RI DQ LQGLYLGXDO JLUGHU PD EH WDNHQ DV WKH
VWLIIQHVV GHWHUPLQHG DV VSHFLILHG DERYH GLYLGHG E WKH
QXPEHU RI JLUGHUV
• :KHQ LQYHVWLJDWLQJ PD LPXP UHODWLYH GLVSODFHPHQWV
WKH QXPEHU DQG SRVLWLRQ RI ORDGHG ODQHV VKRXOG EH
Trang 35• 7KH OLYH ORDG SRUWLRQ RI /RDG &RPELQDWLRQ 6HUYLFH ,
RI 7DEOH VKRXOG EH XVHG LQFOXGLQJ WKH
G QDPLF ORDG DOORZDQFH ,0
• 7KH OLYH ORDG VKDOO EH WDNHQ IURP UWLFOH
• 7KH SURYLVLRQV RI UWLFOH VKRXOG DSSO DQG
• )RU VNHZHG EULGJHV D ULJKW FURVV VHFWLRQ PD EH XVHG
DQG IRU FXUYHG DQG FXUYHG VNHZHG EULGJHV D UDGLDO
FURVV VHFWLRQ PD EH XVHG
,Q WKH DEVHQFH RI RWKHU FULWHULD WKH IROORZLQJ
GHIOHFWLRQ OLPLWV PD EH FRQVLGHUHG IRU VWHHO DOXPLQXP
DQG RU FRQFUHWH YHKLFXODU EULGJHV
• 9HKLFXODU DQG SHGHVWULDQ ORDGV 6SDQ
• 9HKLFXODU ORDG RQ FDQWLOHYHU DUPV 6SDQ DQG
• 9HKLFXODU DQG SHGHVWULDQ ORDGV RQ FDQWLOHYHU
)RU VWHHO , VKDSHG EHDPV DQG JLUGHUV DQG IRU VWHHO ER
DQG WXE JLUGHUV WKH SURYLVLRQV RI UWLFOHV DQG
UHVSHFWLYHO UHJDUGLQJ WKH FRQWURO RI SHUPDQHQW
GHIOHFWLRQV WKURXJK IODQJH VWUHVV FRQWUROV VKDOO DSSO )RU
SHGHVWULDQ EULGJHV L H EULGJHV ZKRVH SULPDU IXQFWLRQ LV
WR FDUU SHGHVWULDQV ELF FOLVWV HTXHVWULDQV DQG OLJKW
PDLQWHQDQFH YHKLFOHV WKH SURYLVLRQV RI 6HFWLRQ RI
6 72 V 5 LGH 6SHFLILFDWLR V IRU W H HVLJ RI
3HGHVWULD ULGJHV VKDOO DSSO
2WKHU FULWHULD PD LQFOXGH UHFRJQL HG GHIOHFWLRQIUHTXHQF SHUFHSWLRQ UHTXLUHPHQWV VXFK DV WKDW VSHFLILHG LQWKH D DGLD +LJ ZD ULGJH HVLJ RGH &6
SSOLFDWLRQ RI WKH &6 FULWHULD LV GLVFXVVHG LQ XOLFNL HW DOLQFOXGLQJ VWDWLVWLFDO GDWD IRU OLYH ORDG EDVHG RQ :,0GDWD D ORDG IDFWRU IRU WKH / OLYH ORDG DQG D WDUJHWUHOLDELOLW LQGH
,Q WKH DEVHQFH RI RWKHU FULWHULD WKH IROORZLQJ
GHIOHFWLRQ OLPLWV PD EH FRQVLGHUHG IRU ZRRG FRQVWUXFWLRQ
• 9HKLFXODU DQG SHGHVWULDQ ORDGV 6SDQ DQG
• 9HKLFXODU ORDG RQ ZRRG SODQNV DQG SDQHOV H WUHPH
UHODWLYH GHIOHFWLRQ EHWZHHQ DGMDFHQW HGJHV LQ
)URP D VWUXFWXUDO YLHZSRLQW ODUJH GHIOHFWLRQV LQ ZRRGFRPSRQHQWV FDXVH IDVWHQHUV WR ORRVHQ DQG EULWWOH PDWHULDOVVXFK DV DVSKDOW SDYHPHQW WR FUDFN DQG EUHDN ,Q DGGLWLRQPHPEHUV WKDW VDJ EHORZ D OHYHO SODQH SUHVHQW D SRRUDSSHDUDQFH DQG FDQ JLYH WKH SXEOLF D SHUFHSWLRQ RIVWUXFWXUDO LQDGHTXDF HIOHFWLRQV IURP PRYLQJ YHKLFOHORDGV DOVR SURGXFH YHUWLFDO PRYHPHQW DQG YLEUDWLRQV WKDWDQQR PRWRULVWV DQG DODUP SHGHVWULDQV 5LWWHU
7KH IROORZLQJ SURYLVLRQV VKDOO DSSO WR RUWKRWURSLF
SODWH GHFNV
• 9HKLFXODU ORDG RQ GHFN SODWH 6SDQ
• 9HKLFXODU ORDG RQ ULEV RI RUWKRWURSLF PHWDO
( FHVVLYH GHIRUPDWLRQ FDQ FDXVH SUHPDWXUHGHWHULRUDWLRQ RI WKH ZHDULQJ VXUIDFH DQG DIIHFW WKHSHUIRUPDQFH RI IDVWHQHUV EXW OLPLWV RQ WKH ODWWHU KDYH QRW
HW EHHQ HVWDEOLVKHG7KH LQWHQW RI WKH UHODWLYH GHIOHFWLRQ FULWHULRQ LV WRSURWHFW WKH ZHDULQJ VXUIDFH IURP GHERQGLQJ DQG IUDFWXULQJGXH WR H FHVVLYH IOH LQJ RI WKH GHFN
• 9HKLFXODU ORDG RQ ULEV RI RUWKRWURSLF PHWDO GHFNV
H WUHPH UHODWLYH GHIOHFWLRQ EHWZHHQ DGMDFHQW
7KH LQ UHODWLYH GHIOHFWLRQ OLPLWDWLRQ LV WHQWDWLYH
Trang 362SWLR DO ULWHULD IRU 6SD WR HSW
5DWLRV
8QOHVV RWKHUZLVH VSHFLILHG KHUHLQ LI DQ 2ZQHU
FKRRVHV WR LQYRNH FRQWUROV RQ VSDQ WR GHSWK UDWLRV WKH
OLPLWV LQ 7DEOH LQ ZKLFK 6 LV WKH VODE VSDQ
OHQJWK DQG LV WKH VSDQ OHQJWK ERWK LQ IHHW PD EH
FRQVLGHUHG LQ WKH DEVHQFH RI RWKHU FULWHULD :KHUH XVHG WKH
OLPLWV LQ 7DEOH VKDOO EH WDNHQ WR DSSO WR RYHUDOO
GHSWK XQOHVV QRWHG
7UDGLWLRQDO PLQLPXP GHSWKV IRU FRQVWDQW GHSWKVXSHUVWUXFWXUHV FRQWDLQHG LQ SUHYLRXV HGLWLRQV RI WKH
6 72 6WD GDUG 6SHFLILFDWLR V IRU +LJ ZD ULGJHV DUHJLYHQ LQ 7DEOH ZLWK VRPH PRGLILFDWLRQV
)RU FXUYHG VWHHO JLUGHU V VWHPV WKH VSDQ WR GHSWK
UDWLR DV RI HDFK VWHHO JLUGHU VKRXOG QRW H FHHG ZKHQ
WKH VSHFLILHG PLQLPXP LHOG VWUHQJWK RI WKH JLUGHU LQ
UHJLRQV RI SRVLWLYH IOH XUH LV NVL RU OHVV DQG
• :KHQ WKH VSHFLILHG PLQLPXP LHOG VWUHQJWK RI WKH
JLUGHU LV NVL RU OHVV LQ UHJLRQV RI QHJDWLYH IOH XUH
RU
• :KHQ K EULG VHFWLRQV VDWLVI LQJ WKH SURYLVLRQV RI
UWLFOH DUH XVHG LQ UHJLRQV RI QHJDWLYH
IOH XUH
)RU DOO RWKHU FXUYHG VWHHO JLUGHU V VWHPV DV RI HDFK VWHHO
JLUGHU VKRXOG QRW H FHHG WKH IROORZLQJ
Q LQFUHDVH LQ WKH SUHIHUUHG PLQLPXP JLUGHU GHSWK IRUFXUYHG VWHHO JLUGHUV QRW VDWLVI LQJ WKH FRQGLWLRQV VSHFLILHGKHUHLQ LV UHFRPPHQGHG DFFRUGLQJ WR (T ,Q VXFKFDVHV WKH JLUGHUV ZLOO WHQG WR EH VLJQLILFDQWO PRUH IOH LEOHDQG OHVV VWHHO FDXVHV LQFUHDVHG GHIOHFWLRQV ZLWKRXW DQLQFUHDVH LQ WKH JLUGHU GHSWK
VKDOORZHU FXUYHG JLUGHU PLJKW EH XVHG LI WKH(QJLQHHU HYDOXDWHV HIIHFWV VXFK DV FURVV IUDPH IRUFHV DQGEULGJH GHIRUPDWLRQV LQFOXGLQJ JLUGHU URWDWLRQV DQG ILQGVWKH EULGJH IRUFHV DQG JHRPHWULF FKDQJHV ZLWKLQ DFFHSWDEOHUDQJHV )RU FXUYHG FRPSRVLWH JLUGHUV WKH UHFRPPHQGHGUDWLRV DSSO WR WKH VWHHO JLUGHU SRUWLRQ RI WKH FRPSRVLWHVHFWLRQ
ZKHUH
W VSHFLILHG PLQLPXP LHOG VWUHQJWK RI WKH
FRPSUHVVLRQ IODQJH NVL
GHSWK RI VWHHO JLUGHU IW
DV DQ DUF JLUGHU OHQJWK GHILQHG DV IROORZV IW
• DUF VSDQ IRU VLPSOH VSDQV
• WLPHV WKH DUF VSDQ IRU FRQWLQXRXV HQG VSDQV
• WLPHV WKH DUF VSDQ IRU FRQWLQXRXV LQWHULRU VSDQV
Trang 377DEOH 7UDGLWLR DO 0L LP P HSW V IRU R VWD W HSW 6 SHUVWU FW UHV
6XSHUVWUXFWXUH
0LQLPXP HSWK ,QFOXGLQJ HFN:KHQ YDULDEOH GHSWK PHPEHUV DUH XVHG YDOXHV PD EHDGMXVWHG WR DFFRXQW IRU FKDQJHV LQ UHODWLYH VWLIIQHVV RISRVLWLYH DQG QHJDWLYH PRPHQW VHFWLRQV
3UHVWUHVVHG
&RQFUHWH
&,3 R HDPV3UHFDVW , HDPV3HGHVWULDQ 6WUXFWXUH HDPVGMDFHQW R HDPV6WHHO
2YHUDOO HSWK RI &RPSRVLWH , HDPHSWK RI , HDP 3RUWLRQ RI
&RPSRVLWH , HDP7UXVVHV
R VLGHUDWLR RI W UH :LGH L J
WHULRU HDPV R LUGHU 6 VWHP ULGJHV8QOHVV IXWXUH ZLGHQLQJ LV YLUWXDOO LQFRQFHLYDEOH WKH
ORDG FDUU LQJ FDSDFLW RI H WHULRU EHDPV VKDOO QRW EH OHVV
WKDQ WKH ORDG FDUU LQJ FDSDFLW RI DQ LQWHULRU EHDP
7KLV SURYLVLRQ DSSOLHV WR DQ ORQJLWXGLQDO IOH XUDOPHPEHUV WUDGLWLRQDOO FRQVLGHUHG WR EH VWULQJHUV EHDPV RUJLUGHUV
&RQVWUXFWDELOLW LVVXHV VKRXOG LQFOXGH EXW QRW EH
OLPLWHG WR FRQVLGHUDWLRQ RI GHIOHFWLRQ VWUHQJWK RI VWHHO DQG
FRQFUHWH DQG VWDELOLW GXULQJ FULWLFDO VWDJHV RI FRQVWUXFWLRQ
Q H DPSOH RI D SDUWLFXODU VHTXHQFH RI FRQVWUXFWLRQZRXOG EH ZKHUH WKH GHVLJQHU UHTXLUHV D VWHHO JLUGHU WR EHVXSSRUWHG ZKLOH WKH FRQFUHWH GHFN LV FDVW VR WKDW WKH JLUGHUDQG WKH GHFN ZLOO DFW FRPSRVLWHO IRU GHDG ORDG DV ZHOO DVOLYH ORDG
ULGJHV VKRXOG EH GHVLJQHG LQ D PDQQHU VXFK WKDW
IDEULFDWLRQ DQG HUHFWLRQ FDQ EH SHUIRUPHG ZLWKRXW XQGXH
GLIILFXOW RU GLVWUHVV DQG WKDW ORFNHG LQ FRQVWUXFWLRQ IRUFH
HIIHFWV DUH ZLWKLQ WROHUDEOH OLPLWV
:KHQ WKH GHVLJQHU KDV DVVXPHG D SDUWLFXODU VHTXHQFH
RI FRQVWUXFWLRQ LQ RUGHU WR LQGXFH FHUWDLQ VWUHVVHV XQGHU
GHDG ORDG WKDW VHTXHQFH VKDOO EH GHILQHG LQ WKH FRQWUDFW
GRFXPHQWV
:KHUH WKHUH DUH RU DUH OLNHO WR EH FRQVWUDLQWV
LPSRVHG RQ WKH PHWKRG RI FRQVWUXFWLRQ E HQYLURQPHQWDO
Trang 38considerations or for other reasons, attention shall be
drawn to those constraints in the contract documents
Where the bridge is of unusual complexity, such
that it would be unreasonable to expect an experienced
contractor to predict and estimate a suitable method of
construction while bidding the project, at least one feasible
construction method shall be indicated in the contract
documents
If the design requires some strengthening and/or
temporary bracing or support during erection by the
selected method, indication of the need thereof shall be
indicated in the contract documents
Details that require welding in restricted areas or
placement of concrete through congested reinforcing
should be avoided
Climatic and hydraulic conditions that may affect the
construction of the bridge shall be considered
An example of a complex bridge might be a stayed bridge that has limitations on what it will carry,especially in terms of construction equipment, while it isunder construction If these limitations are not evident to anexperienced contractor, the contractor may be required to
cable-do more prebid analysis than is reasonable Given the usualconstraints of time and budget for bidding, this may not befeasible for the contractor to do
This Article does not require the designer to educate acontractor on how to construct a bridge; it is expected that the contractor will have the necessary expertise Nor is itintended to restrict a contractor from using innovation togain an edge over the competitors
All other factors being equal, designs that are supporting or use standardized falsework systems arenormally preferred to those requiring unique and complexfalsework
self-Temporary falsework within the clear zone should beadequately protected from traffic
2.5.4—Economy
2.5.4.1—General
Structural types, span lengths, and materials shall be
selected with due consideration of projected cost The cost
of future expenditures during the projected service life of
the bridge should be considered Regional factors, such as
availability of material, fabrication, location, shipping, and
erection constraints, shall be considered
C2.5.4.1
If data for the trends in labor and material costfluctuation are available, the effect of such trendsshould be projected to the time the bridge will likely be constructed
Cost comparisons of structural alternatives should bebased on long-range considerations, including inspection,maintenance, repair, and/or replacement Lowest first cost does not necessarily lead to lowest total cost
2.5.4.2—Alternative Plans
In instances where economic studies do not indicate a
clear choice, the Owner may require that alternative
contract plans be prepared and bid competitively Designs
for alternative plans shall be of equal safety, serviceability,
and aesthetic value
Movable bridges over navigable waterways should be
avoided to the extent feasible Where movable bridges are
proposed, at least one fixed bridge alternative should be
included in the economic comparisons
2.5.5—Bridge Aesthetics
Bridges should complement their surroundings, be
graceful in form, and present an appearance of adequate
strength
C2.5.5 Significant improvements in appearance can often bemade with small changes in shape or position of structuralmembers at negligible cost For prominent bridges, however, additional cost to achieve improved appearance isoften justified, considering that the bridge will likely be afeature of the landscape for 75 or more years
Comprehensive guidelines for the appearance of
Trang 39Engineers may refer to such documents as theTransportation Research Board’s Bridge Aesthetics Around the World (Gottemoeller, 1991) for guidance
Engineers should seek more pleasant appearance by
improving the shapes and relationships of the structural
components themselves The application of extraordinary
and nonstructural embellishment should be avoided
The following guidelines should be considered:
· Alternative bridge designs without piers or with few
piers should be studied during the site selection and
location stage and refined during the preliminary
design stage
· Pier form should be consistent in shape and detail with
the superstructure
· Abrupt changes in the form of components and
structural type should be avoided Where the interface
of different structural types cannot be avoided, a
smooth transition in appearance from one type to
another should be attained
· Attention to details, such as deck drain downspouts,
should not be overlooked
· If the use of a through structure is dictated by
performance and/or economic considerations, the
structural system should be selected to provide an
open and uncluttered appearance
· The use of the bridge as a support for message or
directional signing or lighting should be avoided
wherever possible
· Transverse web stiffeners, other than those located at
bearing points, should not be visible in elevation
· For spanning deep ravines, arch-type structures
should be preferred
The most admired modern structures are those that relyfor their good appearance on the forms of the structuralcomponent themselves:
· Components are shaped to respond to the structuralfunction They are thick where the stresses are greatest and thin where the stresses are smaller
· The function of each part and how the function isperformed is visible
· Components are slender and widely spaced, preservingviews through the structure
· The bridge is seen as a single whole, with all members consistent and contributing to that whole; for example,all elements should come from the same family ofshapes, such as shapes with rounded edges
· The bridge fulfills its function with a minimum ofmaterial and minimum number of elements
· The size of each member compared with the others isclearly related to the overall structural concept and thejob the component does, and
· The bridge as a whole has a clear and logicalrelationship to its surroundings
Several procedures have been proposed to integrate aesthetic thinking into the design process (Gottemoeller,1991)
Because the major structural components are thelargest parts of a bridge and are seen first, they determinethe appearance of a bridge Consequently, engineers shouldseek excellent appearance in bridge parts in the followingorder of importance:
· Horizontal and vertical alignment and position in theenvironment;
· Superstructure type, i.e., arch, girder, etc.;
· Pier placement;
· Abutment placement and height;
· Superstructure shape, i.e., haunched, tapered, depth;
· Pier shape;
· Abutment shape;
· Parapet and railing details;
· Surface colors and textures; and
· Ornament
The Designer should determine the likely position ofthe majority of viewers of the bridge, then use thatinformation as a guide in judging the importance of variouselements in the appearance of the structure
Perspective drawings of photographs takenfrom the important viewpoints can be used to analyzethe appearance of proposed structures Models are also useful
The appearance of standard details should be reviewed
to make sure they fit the bridge’s design concept
Trang 4052 2 1 5 8 , 6
H HUDO
GURORJLF DQG K GUDXOLF VWXGLHV DQG DVVHVVPHQWV RI
EULGJH VLWHV IRU VWUHDP FURVVLQJV VKDOO EH FRPSOHWHG DV SDUW
RI WKH SUHOLPLQDU SODQ GHYHORSPHQW 7KH GHWDLO RI WKHVH
VWXGLHV VKRXOG EH FRPPHQVXUDWH ZLWK WKH LPSRUWDQFH RI DQG
ULVNV DVVRFLDWHG ZLWK WKH VWUXFWXUH
7HPSRUDU VWUXFWXUHV IRU WKH &RQWUDFWRU V XVH RU IRU
DFFRPPRGDWLQJ WUDIILF GXULQJ FRQVWUXFWLRQ VKDOO EH
GHVLJQHG ZLWK UHJDUG WR WKH VDIHW RI WKH WUDYHOLQJ SXEOLF
DQG WKH DGMDFHQW SURSHUW RZQHUV DV ZHOO DV PLQLPL DWLRQ
RI LPSDFW RQ IORRGSODLQ QDWXUDO UHVRXUFHV 7KH 2ZQHU PD
SHUPLW UHYLVHG GHVLJQ UHTXLUHPHQWV FRQVLVWHQW ZLWK WKH
LQWHQGHG VHUYLFH SHULRG IRU DQG IORRG KD DUG SRVHG E WKH
WHPSRUDU VWUXFWXUH &RQWUDFW GRFXPHQWV IRU WHPSRUDU
VWUXFWXUHV VKDOO GHOLQHDWH WKH UHVSHFWLYH UHVSRQVLELOLWLHV DQG
ULVNV WR EH DVVXPHG E WKH KLJKZD DJHQF DQG WKH
&RQWUDFWRU
(YDOXDWLRQ RI EULGJH GHVLJQ DOWHUQDWLYHV VKDOO FRQVLGHU
VWUHDP VWDELOLW EDFNZDWHU IORZ GLVWULEXWLRQ VWUHDP
YHORFLWLHV VFRXU SRWHQWLDO IORRG KD DUGV WLGDO G QDPLFV
ZKHUH DSSURSULDWH DQG FRQVLVWHQF ZLWK HVWDEOLVKHG FULWHULD
IRU WKH 1DWLRQDO )ORRG ,QVXUDQFH 3URJUDP
7KH SURYLVLRQV LQ WKLV UWLFOH LQFRUSRUDWH LPSURYHGSUDFWLFHV DQG SURFHGXUHV IRU WKH K GUDXOLF GHVLJQ RIEULGJHV HWDLOHG JXLGDQFH IRU DSSO LQJ WKHVH SUDFWLFHV DQGSURFHGXUHV LV FRQWDLQHG LQ WKH 6+72 UDL DJH 0D DO7KLV GRFXPHQW FRQWDLQV JXLGDQFH DQG UHIHUHQFHV RQ GHVLJQSURFHGXUHV DQG FRPSXWHU VRIWZDUH IRU K GURORJLF DQG
K GUDXOLF GHVLJQ ,W DOVR LQFRUSRUDWHV JXLGDQFH DQGUHIHUHQFHV IURP WKH 6 72 +LJ ZD UDL DJHLGHOL HV ZKLFK LV D FRPSDQLRQ GRFXPHQW WR WKH6+72 UDL DJH 0D DO
,QIRUPDWLRQ RQ WKH 1DWLRQDO )ORRG ,QVXUDQFH 3URJUDP
LV FRQWDLQHG LQ 86& WKH 1DWLR DO ORRG, V UD FH FW VHH DOVR &)5 WKURXJK 1DWLR DOORRG , V UD FH 3URJUDP DQG &)5 6XESDUWRFDWLR D G + GUD OLF HVLJ RI FURDF PH W RORRGSODL V
GURORJLF K GUDXOLF VFRXU DQG VWUHDP VWDELOLWVWXGLHV DUH FRQFHUQHG ZLWK WKH SUHGLFWLRQ RI IORRGIORZV DQG IUHTXHQFLHV DQG ZLWK WKH FRPSOH SK VLFDOSURFHVVHV LQYROYLQJ WKH DFWLRQV DQG LQWHUDFWLRQV RI ZDWHUDQG VRLO GXULQJ WKH RFFXUUHQFH RI SUHGLFWHG IORRG IORZV7KHVH VWXGLHV VKRXOG EH SHUIRUPHG E DQ (QJLQHHUZLWK WKH NQRZOHGJH DQG H SHULHQFH WR PDNH SUDFWLFDOMXGJPHQWV UHJDUGLQJ WKH VFRSH RI WKH VWXGLHV WR EHSHUIRUPHG DQG WKH VLJQLILFDQFH RI WKH UHVXOWV REWDLQHG 7KHGHVLJQ RI EULGJH IRXQGDWLRQV LV EHVW DFFRPSOLVKHG E DQLQWHUGLVFLSOLQDU WHDP RI VWUXFWXUDO K GUDXOLF DQGJHRWHFKQLFDO HQJLQHHUV
7KH 6+72 UDL DJH 0D DO DOVR FRQWDLQV JXLGDQFHDQG UHIHUHQFHV RQ
• HVLJQ PHWKRGV IRU HYDOXDWLQJ WKH DFFXUDF RI
K GUDXOLF VWXGLHV LQFOXGLQJ HOHPHQWV RI D GDWDFROOHFWLRQ SODQ
• XLGDQFH RQ HVWLPDWLQJ IORRG IORZ SHDNV DQG YROXPHVLQFOXGLQJ UHTXLUHPHQWV IRU WKH GHVLJQ RI ,QWHUVWDWHKLJKZD V DV SHU &)5 6XESDUW(QFURDFKPHQWV
• 3URFHGXUHV RU UHIHUHQFHV IRU DQDO VLV RI WLGDOZDWHUZD V UHJXODWHG VWUHDPV DQG XUEDQ ZDWHUVKHGV
• (YDOXDWLRQ RI VWUHDP VWDELOLW
• 8VH RI UHFRPPHQGHG GHVLJQ SURFHGXUHV DQG VRIWZDUHIRU VL LQJ EULGJH ZDWHUZD V
• /RFDWLRQ DQG GHVLJQ RI EULGJHV WR UHVLVW GDPDJH IURPVFRXU DQG K GUDXOLF ORDGV FUHDWHG E VWUHDP FXUUHQWLFH DQG GHEULV
• &DOFXODWLRQ RI PDJQLWXGH RI FRQWUDFWLRQ VFRXU ORFDOVFRXU DQG FRXQWHUPHDVXUHV WKHUHWR
• HVLJQ RI UHOLHI EULGJHV URDG RYHUWRSSLQJ JXLGHEDQNV DQG RWKHU ULYHU WUDLQLQJ ZRUNV DQG
• 3URFHGXUHV IRU K GUDXOF GHVLJQ RI EULGJH VL H FXOYHUWV