AASHTO LRFD Bridge Design Specifications - 9th Edition 2020 [Section 11-end] 11. Abutments, Piers, and Walls 12. Buried Structures and Tunnel Liners 13. Railings 14. Joints and Bearings 15. Design of Sound Barriers Index
Trang 2SECTION 11:WALLS,ABUTMENTS, AND PIERSTABLE OF CONTENTS 11.1—SCOPE 11-111.2—DEFINITIONS 11-111.3—NOTATION 11-211.3.1—General 11-211.4—SOIL PROPERTIES AND MATERIALS 11-711.4.1—General 11-711.4.2—Determination of Soil Properties 11-711.5—LIMIT STATES AND RESISTANCE FACTORS 11-711.5.1—General 11-711.5.2—Service Limit States 11-811.5.3—Strength Limit State 11-911.5.4—Extreme Event Limit State 11-911.5.4.1—General Requirements 11-911.5.4.2—Extreme Event I, No Analysis 11-911.5.5—Resistance Requirement 11-1111.5.6—Load Combinations and Load Factors 11-1111.5.7—Resistance Factors—Service and Strength 11-1511.5.8—Resistance Factors—Extreme Event Limit State 11-1811.6—ABUTMENTS AND CONVENTIONAL RETAINING WALLS 11-1911.6.1—General Considerations 11-1911.6.1.1—General 11-1911.6.1.2—Loading 11-1911.6.1.3—Integral Abutments 11-2011.6.1.4 —Wingwalls 11-2011.6.1.5—Reinforcement 11-2011.6.1.5.1—Conventional Walls and Abutments 11-2011.6.1.5.2—Wingwalls 11-2011.6.1.6 —Expansion and Contraction Joints 11-2111.6.2—Movement at the Service Limit State 11-2111.6.2.1—Abutments 11-2111.6.2.2—Conventional Retaining Walls 11-2111.6.3—Bearing Resistance and Stability at the Strength Limit State 11-2111.6.3.1—General 11-2111.6.3.2—Bearing Resistance 11-2111.6.3.3—Eccentricity Limits 11-2411.6.3.4—Subsurface Erosion 11-2411.6.3.5—Passive Resistance 11-2411.6.3.6—Sliding 11-2411.6.3.7—Overall Stability 11-2411.6.4—Safety against Structural Failure 11-2511.6.5—Seismic Design for Abutments and Conventional Retaining Walls 11-2511.6.5.1—General 11-2511.6.5.2—Calculation of Seismic Acceleration Coefficients for Wall Design 11-2711.6.5.2.1—Characterization of Acceleration at Wall Base 11-2711.6.5.2.2—Estimation of Acceleration Acting on Wall Mass 11-2811.6.5.3—Calculation of Seismic Active Earth Pressures 11-2911.6.5.4—Calculation of Seismic Earth Pressure for Nonyielding Abutments and Walls 11-3211.6.5.5—Calculation of Seismic Passive Earth Pressure 11-3211.6.5.6—Wall Details for Improved Seismic Performance 11-3411.6.6—Drainage 11-3511.7—PIERS 11-3511.7.1—Load Effects in Piers 11-3511.7.2—Pier Protection 11-3511.7.2.1—Collision 11-3511.7.2.2—Collision Walls 11-3511.7.2.3—Scour 11-36
Trang 311-ii AASHTO LRFD B RIDGE D ESIGN S PECIFICATIONS , N INTH E DITION , 2020
11.7.2.4—Facing 11-3611.8—NONGRAVITY CANTILEVERED WALLS 11-3611.8.1—General 11-3611.8.2—Loading 11-3611.8.3—Movement at the Service Limit State 11-3611.8.3.1—Movement 11-3611.8.4—Safety against Soil Failure at the Strength Limit State 11-3611.8.4.1—Overall Stability 11-3611.8.5—Safety against Structural Failure 11-3811.8.5.1—Vertical Wall Elements 11-3811.8.5.2—Facing 11-3811.8.6—Seismic Design of Nongravity Cantilever Walls 11-3911.8.6.1—General 11-3911.8.6.2—Seismic Active Lateral Earth Pressure 11-4011.8.6.3—Seismic Passive Lateral Earth Pressure 11-4111.8.6.4—Wall Displacement Analyses to Determine Earth Pressures 11-4211.8.7—Corrosion Protection 11-4411.8.8—Drainage 11-4411.9—ANCHORED WALLS 11-4411.9.1—General 11-4411.9.2—Loading 11-4511.9.3—Movement at the Service Limit State 11-4511.9.3.1—Movement 11-4511.9.4—Safety against Soil Failure 11-4611.9.4.1—Bearing Resistance 11-4611.9.4.2—Anchor Pullout Capacity 11-4711.9.4.3—Passive Resistance 11-5011.9.4.4—Overall Stability 11-5011.9.5—Safety Against Structural Failure 11-5011.9.5.1—Anchors 11-5011.9.5.2—Vertical Wall Elements 11-5211.9.5.3—Facing 11-5211.9.6—Seismic Design 11-5311.9.7—Corrosion Protection 11-5411.9.8—Construction and Installation 11-5411.9.8.1—Anchor Stressing and Testing 11-5411.9.9—Drainage 11-5511.10—MECHANICALLY STABILIZED EARTH WALLS 11-5511.10.1—General 11-5511.10.2—Structure Dimensions 11-5711.10.2.1—Minimum Length of Soil Reinforcement 11-5811.10.2.2—Minimum Front Face Embedment 11-5911.10.2.3—Facing 11-6011.10.2.3.1—Stiff or Rigid Concrete, Steel, and Timber Facings 11-6011.10.2.3.2—Flexible Wall Facings 11-6111.10.2.3.3—Corrosion Issues for MSE Facing 11-6111.10.3—Loading 11-6111.10.4—Movement at the Service Limit State 11-6111.10.4.1—Settlement 11-6111.10.4.2—Lateral Displacement 11-6211.10.4.3—Soil Failure (Internal Stability) 11-6311.10.5—Safety against Soil Failure (External Stability) 11-6411.10.5.1—General 11-6411.10.5.2—Loading 11-6411.10.5.3—Sliding 11-6511.10.5.4—Bearing Resistance 11-6611.10.5.5—Overturning 11-6611.10.5.6—Overall and Compound Stability 11-6611.10.6—Safety against Structural Failure (Internal Stability) 11-68
Trang 4S ECTION 11: W ALLS , A BUTMENTS , AND P IERS 11-iii
11.10.6.1—General 11-6811.10.6.2—Loading (Internal Stability) 11-6811.10.6.2.1—Maximum Reinforcement Loads 11-6911.10.6.2.1a—Special Loading Conditions 11-7011.10.6.2.1b—Reinforcement Spacing for Calculation of Tmax 11-7211.10.6.2.1c—Calculation of Lateral Earth Pressure Coefficients for Determination of Tmax 11-7311.10.6.2.1d—Coherent Gravity Method 11-7411.10.6.2.1e—Stiffness Method 11-7611.10.6.2.2—Reinforcement Loads at Connection to Wall Face 11-7911.10.6.3—Reinforcement Pullout 11-7911.10.6.3.1—Boundary between Active and Resistant Zones 11-7911.10.6.3.2—Reinforcement Pullout Design 11-8111.10.6.4—Reinforcement Strength 11-8411.10.6.4.1—General 11-8411.10.6.4.2—Design Life Considerations 11-8811.10.6.4.2a—Steel Reinforcements 11-8811.10.6.4.2b—Geosynthetic Reinforcements 11-9011.10.6.4.3—Design Tensile Resistance 11-9311.10.6.4.3a—Steel Reinforcements 11-9311.10.6.4.3b—Geosynthetic Reinforcements 11-9411.10.6.4.4—Reinforcement/Facing Connection Design Strength 11-9411.10.6.4.4a—Steel Reinforcements 11-9411.10.6.4.4b—Geosynthetic Reinforcements 11-9511.10.7—Seismic Design of MSE Walls 11-9711.10.7.1—External Stability 11-9711.10.7.2—Internal Stability 11-9911.10.7.3—Facing Reinforcement Connections 11-10311.10.7.4—Wall Details for Improved Seismic Performance 11-10411.10.8—Drainage 11-10611.10.9—Subsurface Erosion 11-10611.10.10—Special Loading Conditions 11-10611.10.10.1—Concentrated Dead Loads 11-10611.10.10.2—Traffic Loads and Barriers 11-10911.10.10.3—Hydrostatic Pressures 11-11011.10.10.4—Obstructions in the Reinforced Soil Zone 11-11111.10.11—MSE Abutments 11-11211.11—PREFABRICATED MODULAR WALLS 11-11311.11.1—General 11-11311.11.2—Loading 11-11411.11.3—Movement at the Service Limit State 11-11411.11.4—Safety against Soil Failure 11-11511.11.4.1—General 11-11511.11.4.2—Sliding 11-11511.11.4.3—Bearing Resistance 11-11511.11.4.4—Overturning 11-11511.11.4.5—Subsurface Erosion 11-11611.11.4.6—Overall Stability 11-11611.11.4.7—Passive Resistance and Sliding 11-11611.11.5—Safety against Structural Failure 11-11611.11.5.1—Module Members 11-11611.11.6—Seismic Design for Prefabricated Modular Walls 11-11711.11.7—Abutments 11-11711.11.8—Drainage 11-11811.12—SOIL NAIL WALLS 11-11811.12.1—General Considerations 11-11811.12.2—Loading 11-12011.12.3—Movement at the Service Limit State 11-12211.12.4—Safety against Soil Failure (External and Overall Stability—Strength Limit State) 11-12211.12.4.1—Sliding 11-122
Trang 511-iv AASHTO LRFD B RIDGE D ESIGN S PECIFICATIONS , N INTH E DITION , 2020
11.12.4.2—Overall Stability 11-12211.12.5—Safety against Soil Failure (Internal and Compound Stability—Strength Limit State) 11-12311.12.5.1—Soil Shear Strength 11-12311.12.5.2—Soil Nail Pullout 11-12311.12.6—Safety against Structural Failure (Internal and Compound Stability—Strength Limit State) 11-12511.12.6.1—Soil Nail in Tension 11-12511.12.6.2—Soil Nail Wall Facing—Strength Limit State 11-12611.12.6.2.1—General 11-12611.12.6.2.2—Facing Flexure 11-12711.12.6.2.3—Facing Punching Shear Resistance 11-13011.12.6.2.4—Headed Stud in Tension 11-13211.12.7—Seismic Design of Soil Nail Walls 11-13311.12.7.1—External and Global Stability 11-13311.12.7.2—Internal Stability 11-13411.12.8—Corrosion Protection 11-13411.12.9—Soil Nail Testing 11-13611.12.10—Drainage 11-13611.13—REFERENCES 11-137APPENDIX A11—SEISMIC DESIGN OF RETAINING STRUCTURES 11-143A11.1—GENERAL 11-143A11.2—PERFORMANCE OF WALLS IN PAST EARTHQUAKES 11-143A11.3—CALCULATION OF SEISMIC ACTIVE PRESSURE 11-144A11.3.1—Mononobe–Okabe Method 11-144A11.3.2—Modification of Mononobe–Okabe Method to Consider Cohesion 11-146A11.3.3—Generalized Limit Equilibrium (GLE) Method 11-149A11.4—SEISMIC PASSIVE PRESSURE 11-149A11.5—ESTIMATING WALL SEISMIC ACCELERATION CONSIDERING WAVE SCATTERING AND WALL DISPLACEMENT 11-154A11.5.1—Kavazanjian et al., (1997) 11-155A11.5.2—NCHRP Report 611—Anderson et al (2008) 11-155A11.5.3—Bray et al (2010), and Bray and Travasarou (2009) 11-158A11.6—APPENDIX REFERENCES 11-158
B11.1—GENERAL 11-161B11.2—DETERMINATION OF TMAX 11-161B11.3—APPENDIX REFERENCE 11-163
Trang 66( 7,21
6 23(
7KLV 6HFWLRQ SURYLGHV UHTXLUHPHQWV IRU GHVLJQ RI
DEXWPHQWV DQG ZDOOV &RQYHQWLRQDO UHWDLQLQJ ZDOOV
QRQJUDYLW FDQWLOHYHUHG ZDOOV DQFKRUHG ZDOOV
PHFKDQLFDOO VWDELOL]HG HDUWK 06( ZDOOV SUHIDEULFDWHG
PRGXODU ZDOOV DQG VRLO QDLO ZDOOV DUH FRQVLGHUHG
'(),1,7,216
EXWPHQW VWUXFWXUH WKDW VXSSRUWV WKH HQG RI D EULGJH VSDQ DQG SURYLGHV ODWHUDO VXSSRUW IRU ILOO PDWHULDO RQ ZKLFK WKHURDGZD UHVWV LPPHGLDWHO DGMDFHQW WR WKH EULGJH ,Q SUDFWLFH GLIIHUHQW W SHV RI DEXWPHQWV PD EH XVHG 7KHVH LQFOXGH
• 6WXE EXWPHQW 6WXE DEXWPHQWV DUH ORFDWHG DW RU QHDU WKH WRS RI DSSURDFK ILOOV ZLWK D EDFNZDOO GHSWK VXIILFLHQW
WR DFFRPPRGDWH WKH VWUXFWXUH GHSWK DQG EHDULQJV ZKLFK VLW RQ WKH EHDULQJ VHDW
• 3D WLDO 'HSWK EXWPHQW 3DUWLDO GHSWK DEXWPHQWV DUH ORFDWHG DSSUR[LPDWHO DW PLGGHSWK RI WKH IURQW VORSH RIWKH DSSURDFK HPEDQNPHQW 7KH KLJKHU EDFNZDOO DQG ZLQJZDOOV PD UHWDLQ ILOO PDWHULDO RU WKH HPEDQNPHQWVORSH PD FRQWLQXH EHKLQG WKH EDFNZDOO ,Q WKH ODWWHU FDVH D VWUXFWXUDO DSSURDFK VODE RU HQG VSDQ GHVLJQ PXVWEULGJH WKH VSDFH RYHU WKH ILOO VORSH DQG FXUWDLQ ZDOOV DUH SURYLGHG WR FORVH RII WKH RSHQ DUHD ,QVSHFWLRQ DFFHVVVKRXOG EH SURYLGHG IRU WKLV VLWXDWLRQ
• )XOO 'HSWK EXWPHQW )XOO GHSWK DEXWPHQWV DUH ORFDWHG DW WKH DSSUR[LPDWH IURQW WRH RI WKH DSSURDFKHPEDQNPHQW UHVWULFWLQJ WKH RSHQLQJ XQGHU WKH VWUXFWXUH
• ,QWHJ DO EXWPHQW ,QWHJUDO DEXWPHQWV DUH ULJLGO DWWDFKHG WR WKH VXSHUVWUXFWXUH DQG DUH VXSSRUWHG RQ D VSUHDGIRRWLQJ RU D GHHS IRXQGDWLRQ FDSDEOH RI SHUPLWWLQJ QHFHVVDU KRUL]RQWDO PRYHPHQWV
QFKR HG :DOO Q HDUWK UHWDLQLQJ V VWHP W SLFDOO FRPSRVHG RI WKH VDPH HOHPHQWV DV QRQJUDYLW FDQWLOHYHUHG ZDOOVDQG WKDW GHULYH DGGLWLRQDO ODWHUDO UHVLVWDQFH IURP RQH RU PRUH WLHUV RI DQFKRUV
*HRJ LG JHRV QWKHWLF IRUPHG E D UHJXODU QHWZRUN RI LQWHJUDOO FRQQHFWHG HOHPHQWV ZLWK DSHUWXUHV JUHDWHU WKDQ
LQ WR DOORZ LQWHUORFNLQJ ZLWK VXUURXQGLQJ VRLO URFN HDUWK DQG RWKHU VXUURXQGLQJ PDWHULDOV WR IXQFWLRQ SULPDULO
DV UHLQIRUFHPHQW
*HRVW LS 3RO PHULF PDWHULDO LQ WKH IRUP RI D VWULS DOVR VRPHWLPHV FDOOHG D SRO PHU VWUDS RI ZLGWK QRW PRUH WKDQ
LQ XVHG LQ FRQWDFW ZLWK VRLO RU RWKHU PDWHULDOV LQ JHRWHFKQLFDO DQG FLYLO HQJLQHHULQJ DSSOLFDWLRQV RU ERWK
*HRWH WLOH SHUPHDEOH JHRV QWKHWLF FRPSULVHG VROHO RI WH[WLOHV
0HFKDQLFDOO 6WDELOL HG (D WK :DOO VRLO UHWDLQLQJ V VWHP HPSOR LQJ HLWKHU VWULS RU JULG W SH PHWDOOLF RUSRO PHULF WHQVLOH UHLQIRUFHPHQWV LQ WKH VRLO PDVV DQG D IDFLQJ HOHPHQW WKDW LV HLWKHU YHUWLFDO RU QHDUO YHUWLFDO
1RQJ D LW DQWLOH H :DOO VRLO UHWDLQLQJ V VWHP WKDW GHULYHV ODWHUDO UHVLVWDQFH WKURXJK HPEHGPHQW RI YHUWLFDO ZDOOHOHPHQWV DQG VXSSRUWV UHWDLQHG VRLO ZLWK IDFLQJ HOHPHQWV 9HUWLFDO ZDOO HOHPHQWV PD FRQVLVW RI GLVFUHWH HOHPHQWV H JSLOHV GULOOHG VKDIWV RU DXJHU FDVW SLOHV VSDQQHG E D VWUXFWXUDO IDFLQJ H J ODJJLQJ SDQHOV RU VKRWFUHWH OWHUQDWLYHOWKH YHUWLFDO ZDOO HOHPHQWV DQG IDFLQJ PD EH FRQWLQXRXV H J VKHHW SLOHV GLDSKUDJP ZDOO SDQHOV WDQJHQW SLOHV RUWDQJHQW GULOOHG VKDIWV
3LH 3DUW RI D EULGJH VWUXFWXUH WKDW SURYLGHV LQWHUPHGLDWH VXSSRUW WR WKH VXSHUVWUXFWXUH 'LIIHUHQW W SHV RI SLHUV PD
EH XVHG 7KHVH LQFOXGH
• 6ROLG :DOO 3LH V 6ROLG ZDOO SLHUV DUH GHVLJQHG DV FROXPQV IRU IRUFHV DQG PRPHQWV DFWLQJ DERXW WKH ZHDN D[LVDQG DV SLHUV IRU WKRVH DFWLQJ DERXW WKH VWURQJ D[LV 7KH PD EH SLQQHG IL[HG RU IUHH DW WKH WRS DQG DUHFRQYHQWLRQDOO IL[HG DW WKH EDVH 6KRUW VWXEE W SHV DUH RIWHQ SLQQHG DW WKH EDVH WR HOLPLQDWH WKH KLJK PRPHQWVZKLFK ZRXOG GHYHORS GXH WR IL[LW (DUOLHU PRUH PDVVLYH GHVLJQV ZHUH FRQVLGHUHG JUDYLW W SHV
Trang 76 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21:Z ZHLJKW RI WKH ZDOO NLSV IW
: ZHLJKW RI ZDOO VWHP NLSV IW
: ZHLJKW RI ZDOO IRRWLQJ RU EDVH NLSV IW
VSDFLQJ EHWZHHQ YHUWLFDO HOHPHQW VXSSRUWV IW
= GHSWK EHORZ HIIHFWLYH WRS RI ZDOO RU WR UHLQIRUFHPHQW IW
=S GHSWK RI VRLO DW UHLQIRUFHPHQW OD HU DW EHJLQQLQJ RI UHVLVWDQFH ]RQH IRU SXOORXW FDOFXODWLRQ IW
E GHSWK EHORZ WRS RI ZDOO DW ZDOO IDFH ZKHUH 'WPD EHFRPHV HTXDO WR DQG EHORZ ZKLFK 'WPD HTXDOV
α VFDOH HIIHFW FRUUHFWLRQ IDFWRU RU ZDOO KHLJKW DFFHOHUDWLRQ UHGXFWLRQ IDFWRU IRU ZDYH VFDWWHULQJ GLP
β LQFOLQDWLRQ RI JURXQG VORSH EHKLQG IDFH RI ZDOO GHJUHHV VORSH RI EDFNILOO GHJUHHV VORSH RI ZDOO WR WKH
YHUWLFDO QHJDWLYH DV VKRZQ GHJUHHV
γ 7 ORDG IDFWRU IRU YHKLFXODU LPSDFW ORDGV GLP
γ(4 ORDG IDFWRU IRU OLYH ORDG DSSOLHG VLPXOWDQHRXVO ZLWK VHLVPLF ORDGV LQ UWLFOH GLP
&
γI XQLW ZHLJKW RI EDFNILOO NFI
γ/6 ORDG IDFWRU IRU OLYH ORDG VXUFKDUJH GLP %
γ3 ORDG IDFWRU IRU YHUWLFDO HDUWK SUHVVXUH LQ UWLFOH GLP
γ3 (6 ORDG IDFWRU IRU HDUWK VXUFKDUJH (6 LQ 7DEOH
γ3 (9 ORDG IDFWRU IRU YHUWLFDO HDUWK SUHVVXUH LQ UWLFOH GLP
γS (9VI ORDG IDFWRU IRU SUHGLFWLRQ RI 7PD IRU WKH VRLO IDLOXUH OLPLW VWDWH GLP
γ XQLW ZHLJKW RI VRLO NFI
γ XQLW ZHLJKW RI UHLQIRUFHG ILOO NFI
γV VRLO XQLW ZHLJKW NFI
γ′V HIIHFWLYH VRLO XQLW ZHLJKW NFI &
γVHLV WKH ([WUHPH (YHQW , ORDG IDFWRU IRU UHLQIRUFHPHQW ORDG GXH WR GHDG ORDG SOXV VHLVPLFDOO LQGXFHG
UHLQIRUFHPHQW ORDG IRU ([WUHPH (YHQW , GLP
Δσ+ KRUL]RQWDO VWUHVV RQ UHLQIRUFHPHQW IURP FRQFHQWUDWHG KRUL]RQWDO VXUFKDUJH NVI WUDIILF EDUULHU LPSDFW
VWUHVV DSSOLHG RYHU UHLQIRUFHPHQW WULEXWDU DUHD NVI
Δσ YHUWLFDO VWUHVV GXH WR IRRWLQJ ORDG NVI
δ ZDOO EDFNILOO LQWHUIDFH IULFWLRQ DQJOH GHJUHHV
δPD PD[LPXP GLVSODFHPHQW IW &
δ5 UHODWLYH GLVSODFHPHQW FRHIILFLHQW &
ε D QRUPDOO GLVWULEXWHG UDQGRP YDULDEOH ZLWK ]HUR PHDQ DQG D VWDQGDUG GHYLDWLRQ RI
εP P PD[LPXP DFFHSWDEOH VWUDLQ LQ WKH ZDOO FURVV VHFWLRQ FRUUHVSRQGLQJ WR 7PD LQ DQ UHLQIRUFHPHQW OD HU
εHLQ WKH UHLQIRUFHPHQW VWUDLQ LQ DQ LQGLYLGXDO UHLQIRUFHPHQW OD HU FRUUHVSRQGLQJ WR 7PD
θ ZDOO EDWWHU IURP KRUL]RQWDO GHJUHHV & F
θ02 DUF WDQ >NK N IRU 0 2 DQDO VLV GHJUHHV
ρ VRLO UHLQIRUFHPHQW DQJOH RI IULFWLRQ GHJUHHV
ρLM UHLQIRUFHPHQW UDWLR SHUFHQW &
σ+ IDFWRUHG KRUL]RQWDO VWUHVV DW UHLQIRUFHPHQW OHYHO NVI D
σ+PD PD[LPXP VWUHVV LQ VRLO UHLQIRUFHPHQW LQ DEXWPHQW ]RQHV
σ YHUWLFDO VWUHVV LQ VRLO DW UHLQIRUFHPHQW OHYHO RI EDVH RI ZDOO NVI D
σ9 YHUWLFDO VRLO VWUHVV RYHU HIIHFWLYH EDVH ZLGWK NVI
σ VWUHVV DW UHLQIRUFHPHQW OHYHO GXH WR 06( ZDOO EDFNILOO VHOI ZHLJKW NVI D
σ DYHUDJH VWUHVV DW WRS RI 06( ZDOO EDFNILOO GXH WR VRLO VXUFKDUJH NVI D
τQ QRPLQDO DQFKRU ERQG VWUHVV NVI
Φ HPSLULFDOO GHWHUPLQHG LQIOXHQFH IDFWRU WKDW FDSWXUHV WKH HIIHFW WKDW WKH VRLO UHLQIRUFHPHQW SURSHUWLHV VRLO
FRKHVLRQ DQG ZDOO JHRPHWU KDYH RQ 7PD GLP H
ΦF VRLO FRKHVLRQ IDFWRU GLP H
ΦIE IDFLQJ EDWWHU IDFWRU GLP &
ΦIV IDFLQJ VWLIIQHVV IDFWRU GLP H
ΦJ JOREDO VWLIIQHVV IDFWRU GLP H
ΦORFDO ORFDO VWLIIQHVV IDFWRU GLP & H
φ UHVLVWDQFH IDFWRU
φI LQWHUQDO IULFWLRQ DQJOH RI IRXQGDWLRQ RU EDFNILOO VRLO GHJUHHV
Trang 86 ( 7,21 : //6 870(176 1' 3 ,(56
φ)) UHVLVWDQFH IDFWRU IRU IOH[XUH GLP
φ)+ UHVLVWDQFH IDFWRU IRU KHDGHG VWXG LQ WHQVLRQ GLP
φ)3 UHVLVWDQFH IDFWRU IRU SXQFKLQJ VKHDU LQ IDFLQJ GLP
φ32 UHVLVWDQFH IDFWRU IRU SXOORXW GLP
φ LQWHUQDO IULFWLRQ DQJOH RI UHLQIRUFHG ILOO GHJUHHV
φVI UHVLVWDQFH IDFWRU WKDW DFFRXQWV IRU XQFHUWDLQW LQ WKH PHDVXUHPHQW RI WKH UHLQIRUFHPHQW VWLIIQHVV DW WKH
VSHFLILHG VWUDLQ GLP
φ7 UHVLVWDQFH IDFWRU IRU WHQVLRQ GLP
φ′I HIIHFWLYH LQWHUQDO IULFWLRQ DQJOH RI VRLO GHJUHHV &
ω ZDOO EDWWHU GXH WR VHWEDFN RI VHJPHQWDO IDFLQJ XQLWV GHJUHHV E
62,/ 3523(57,(6 1' 0 7(5, /6
*HQHUDO
%DFNILOO PDWHULDOV VKRXOG EH JUDQXODU IUHH GUDLQLQJ
PDWHULDOV :KHUH ZDOOV UHWDLQ LQ VLWX FRKHVLYH VRLOV
GUDLQDJH VKDOO EH SURYLGHG WR UHGXFH K GURVWDWLF ZDWHU
SUHVVXUH EHKLQG WKH ZDOO
0XFK RI WKH NQRZOHGJH DQG H[SHULHQFH ZLWK 06(VWUXFWXUHV KDV EHHQ ZLWK VHOHFW FRKHVLRQOHVV EDFNILOO DVVSHFLILHG LQ 6HFWLRQ RI WKH 6+72 /5)' LGJHRQVW XFWLRQ 6SHFLILFDWLRQV +HQFH NQRZOHGJH DERXWLQWHUQDO VWUHVV GLVWULEXWLRQ SXOORXW UHVLVWDQFH DQG IDLOXUHVXUIDFH VKDSH LV FRQVWUDLQHG DQG LQIOXHQFHG E WKH XQLTXHHQJLQHHULQJ SURSHUWLHV RI JUDQXODU VRLOV :KLOH FRKHVLYHVRLOV KDYH EHHQ VXFFHVVIXOO XVHG SUREOHPV LQFOXGLQJH[FHVVLYH GHIRUPDWLRQ DQG FRPSOHWH FROODSVH KDYH DOVRRFFXUUHG 0RVW RI WKHVH SUREOHPV KDYH EHHQ DWWULEXWHG WRSRRU GUDLQDJH 'UDLQDJH UHTXLUHPHQWV IRU ZDOOVFRQVWUXFWHG ZLWK SRRU GUDLQLQJ VRLOV DUH SURYLGHG LQ %HUJ
HW DO'HWHUPLQDWLRQ RI 6RLO 3URSHUWLHV
7KH SURYLVLRQV RI UWLFOHV DQG VKDOO DSSO OVR VHH UWLFOH &
/,0,7 67 7(6 1' 5(6,67 1 (
) 7256
*HQHUDO
'HVLJQ RI DEXWPHQWV SLHUV DQG ZDOOV VKDOO VDWLVI WKH
FULWHULD IRU WKH VHUYLFH OLPLW VWDWH VSHFLILHG LQ
UWLFOH DQG IRU WKH VWUHQJWK OLPLW VWDWH VSHFLILHG LQ
UWLFOH
EXWPHQWV SLHUV DQG UHWDLQLQJ ZDOOV VKDOO EH
GHVLJQHG WR ZLWKVWDQG ODWHUDO HDUWK DQG ZDWHU SUHVVXUHV
LQFOXGLQJ DQ OLYH DQG GHDG ORDG VXUFKDUJH WKH VHOI
ZHLJKW RI WKH ZDOO WHPSHUDWXUH DQG VKULQNDJH HIIHFWV DQG
HDUWKTXDNH ORDGV LQ DFFRUGDQFH ZLWK WKH JHQHUDO
SULQFLSOHV VSHFLILHG LQ WKLV 6HFWLRQ
Trang 96 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21
KD GLVWDQFH EHWZHHQ WKH EDVH RI WKH ZDOO RU WKH PXGOLQH LQ IURQW RI WKH ZDOO DQG WKH UHVXOWDQW DFWLYH VHLVPLF
HDUWK SUHVVXUH IRUFH IW
KF HIIHFWLYH GHSWK RI FRQLFDO VXUIDFH IW
KHII HTXLYDOHQW KHLJKW RI DQ XQMRLQWHG IDFLQJ FROXPQ WKDW LV DSSUR[LPDWHO SHUFHQW HIILFLHQW LQ WUDQVPLWWLQJ
PRPHQW WKURXJK WKH KHLJKW RI WKH IDFLQJ FROXPQ IW & H
KI WKLFNQHVV RI ILQDO IDFLQJ LQ
KL KHLJKW RI UHLQIRUFHG VRLO ]RQH FRQWULEXWLQJ KRUL]RQWDO ORDG WR UHLQIRUFHPHQW DW OHYHO L IW WKLFNQHVV RI
LQLWLDO IDFLQJ LQ
KS YHUWLFDO GLVWDQFH EHWZHHQ WKH ZDOO EDVH DQG WKH VWDWLF VXUFKDUJH ODWHUDO IRUFH )S IW
-D H DYHUDJH VHFDQW WHQVLOH VWLIIQHVV RI DOO Q UHLQIRUFHPHQW OD HUV LQ ZDOO NLSV IW H
-L UHLQIRUFHPHQW OD HU VHFDQW VWLIIQHVV NLSV IW
VHLVPLF SDVVLYH SUHVVXUH FRHIILFLHQW GLP
( VHLVPLF DFWLYH SUHVVXUH FRHIILFLHQW GLP
ND DFWLYH HDUWK SUHVVXUH FRHIILFLHQW GLP
NDI DFWLYH HDUWK SUHVVXUH FRHIILFLHQW RI EDFNILOO GLP
ND K DFWLYH HDUWK SUHVVXUH FRHIILFLHQW IRU D ZDOO ZLWK D YHUWLFDO IDFH GLP H
NK KRUL]RQWDO VHLVPLF DFFHOHUDWLRQ FRHIILFLHQW GLP
NK KRUL]RQWDO VHLVPLF DFFHOHUDWLRQ FRHIILFLHQW DW ]HUR GLVSODFHPHQW GLP
NR KRUL]RQWDO DW UHVW HDUWK SUHVVXUH FRHIILFLHQW RI UHLQIRUFHG ILOO GLP G
N YHUWLFDO VHLVPLF DFFHOHUDWLRQ FRHIILFLHQW GLP
N KRUL]RQWDO HDUWK SUHVVXUH FRHIILFLHQW RI UHLQIRUFHG ILOO GLP
N LHOG DFFHOHUDWLRQ LQ VOLGLQJ EORFN DQDO VLV WKDW UHVXOWV LQ VOLGLQJ RI WKH ZDOO GLP
/ VSDFLQJ EHWZHHQ YHUWLFDO HOHPHQWV RU IDFLQJ VXSSRUWV IW OHQJWK RI UHLQIRUFLQJ HOHPHQWV LQ DQ 06( ZDOO
DQG FRUUHVSRQGLQJO LWV IRXQGDWLRQ IW &
/D OHQJWK RI UHLQIRUFHPHQW LQ DFWLYH ]RQH IW
/ 3 OHQJWK RI D EHDULQJ SODWH IW
/H OHQJWK RI UHLQIRUFHPHQW LQ UHVLVWDQFH ]RQH IW
/HL HIIHFWLYH UHLQIRUFHPHQW OHQJWK IRU OD HU L IW
/6 OHQJWK RI KHDGHG VWXG IW
0PD PD[LPXP EHQGLQJ PRPHQW LQ YHUWLFDO ZDOO HOHPHQW RU IDFLQJ NLS IW RU NLS IW IW &
1 VWDQGDUG SHQHWUDWLRQ UHVLVWDQFH IURP 637 EORZV IW
3 ( G QDPLF DFWLYH KRUL]RQWDO WKUXVW LQFOXGLQJ VWDWLF HDUWK SUHVVXUH NLSV IW
3D UHVXOWDQW DFWLYH HDUWK SUHVVXUH IRUFH SHU XQLW ZLGWK RI ZDOO NLSV IW DWPRVSKHULF SUHVVXUH DW VHD OHYHO NVI
H
3E SUHVVXUH LQVLGH ELQ PRGXOH NVI
3+ ODWHUDO IRUFH GXH WR VXSHUVWUXFWXUH RU RWKHU FRQFHQWUDWHG ORDGV NLSV IW
3L LQWHUQDO LQHUWLDO IRUFH GXH WR WKH ZHLJKW RI WKH EDFNILOO ZLWKLQ WKH DFWLYH ]RQH NLSV IW
3,5 KRUL]RQWDO LQHUWLDO IRUFH NLSV IW
3L KRUL]RQWDO LQHUWLDO IRUFH FDXVHG E DFFHOHUDWLRQ RI UHLQIRUFHG EDFNILOO NLSV IW
3LV LQWHUQDO LQHUWLDO IRUFH FDXVHG E DFFHOHUDWLRQ RI VORSLQJ VXUFKDUJH NLSV IW
33( G QDPLF SDVVLYH KRUL]RQWDO WKUXVW LQFOXGLQJ VWDWLF HDUWK SUHVVXUH NLSV IW
3 XOWLPDWH VRLO UHLQIRUFHPHQW SXOORXW UHVLVWDQFH SHU XQLW RI UHLQIRUFHPHQW ZLGWK NLSV IW &
3VHLV WRWDO ODWHUDO IRUFH DSSOLHG WR D ZDOO GXULQJ VHLVPLF ORDGLQJ NLSV IW
S DYHUDJH ODWHUDO SUHVVXUH LQFOXGLQJ HDUWK VXUFKDUJH DQG ZDWHU SUHVVXUH DFWLQJ RQ WKH VHFWLRQ RI ZDOO
HOHPHQW EHLQJ FRQVLGHUHG NVI &
4Q QRPLQDO XOWLPDWH DQFKRU UHVLVWDQFH NLSV
45 IDFWRUHG DQFKRU UHVLVWDQFH NLSV
TV VXUFKDUJH SUHVVXUH NVI &
Trang 106 ( 7,21 : //6 870(176 1' 3 ,(56
TX ERQG VWUHQJWK RI VRLO QDLOV NVL
5 UHVXOWDQW IRUFH DW EDVH RI ZDOO NLSV IW
5 + EDVDO KHDYH UDWLR &
5F UHLQIRUFHPHQW FRYHUDJH UDWLR GLP
5Q QRPLQDO UHVLVWDQFH NLSV RU NLSV IW
55 IDFWRUHG UHVLVWDQFH NLSV RU NLSV IW
5) FRPELQHG VWUHQJWK UHGXFWLRQ IDFWRU WR DFFRXQW IRU SRWHQWLDO ORQJ WHUP GHJUDGDWLRQ GXH WR LQVWDOODWLRQ
GDPDJH FUHHS DQG FKHPLFDO ELRORJLFDO DJLQJ RI JHRV QWKHWLF UHLQIRUFHPHQWV GLP E5)F FRPELQHG VWUHQJWK UHGXFWLRQ IDFWRU IRU ORQJ WHUP GHJUDGDWLRQ RI JHRV QWKHWLF UHLQIRUFHPHQW IDFLQJ
FRQQHFWLRQ GLP E
5) 5 VWUHQJWK UHGXFWLRQ IDFWRU WR SUHYHQW ORQJ WHUP FUHHS UXSWXUH RI UHLQIRUFHPHQW GLP E5)' VWUHQJWK UHGXFWLRQ IDFWRU WR SUHYHQW UXSWXUH RI UHLQIRUFHPHQW GXH WR FKHPLFDO DQG ELRORJLFDO GHJUDGDWLRQ
5)) QRPLQDO UHVLVWDQFH RI VRLO QDLO WR IOH[XUH L H EHQGLQJ RI IDFLQJ NLS
5)+ QRPLQDO WHQVLOH UHVLVWDQFH RI KHDGHG VWXGV ORFDWHG LQ ILQDO IDFLQJ NLS
5),' VWUHQJWK UHGXFWLRQ IDFWRU WR DFFRXQW IRU LQVWDOODWLRQ GDPDJH WR UHLQIRUFHPHQW GLP E
5)3 QRPLQDO SXQFKLQJ VKHDU UHVLVWDQFH RI IDFLQJ NLS
532 QRPLQDO SXOORXW UHVLVWDQFH RI VRLO QDLO NLS
57 QRPLQDO WHQVLOH UHVLVWDQFH RI WHQGRQ NLS
6 DYHUDJH KHLJKW RI VRLO VXUFKDUJH ZLWKLQ + RI EDFN RI ZDOO IDFH IW D
6D WKH ILYH SHUFHQW GDPSHG VSHFWUDO DFFHOHUDWLRQ FRHIILFLHQW IURP WKH VLWH UHVSRQVH VSHFWUD
6JOREDO JOREDO UHLQIRUFHPHQW VWLIIQHVV NVI H
6K KRUL]RQWDO UHLQIRUFHPHQW VSDFLQJ IW KRUL]RQWDO VSDFLQJ RI VRLO QDLOV IW &
6+6 VSDFLQJ RI KHDGHG VWXGV IW
6PD PD[LPXP VSDFLQJ RI VRLO QDLOV IW &
6W VSDFLQJ EHWZHHQ WUDQVYHUVH JULG HOHPHQWV LQ
6X XQGUDLQHG VKHDU VWUHQJWK NVI &
6 YHUWLFDO VSDFLQJ RI UHLQIRUFHPHQWV RU YHUWLFDO WULEXWDU OD HU WKLFNQHVV IW YHUWLFDO VSDFLQJ RI VRLO QDLOV
6V XOWLPDWH UHLQIRUFHPHQW WHQVLOH UHVLVWDQFH UHTXLUHG WR UHVLVW VWDWLF ORDG FRPSRQHQW NLSV IW
6W XOWLPDWH UHLQIRUFHPHQW WHQVLOH UHVLVWDQFH UHTXLUHG WR UHVLVW WUDQVLHQW ORDG FRPSRQHQW NLSV IW
6 VHF VSHFWUDO DFFHOHUDWLRQ FRHIILFLHQW GLP
7DF QRPLQDO ORQJ WHUP UHLQIRUFHPHQW IDFLQJ FRQQHFWLRQ GHVLJQ VWUHQJWK NLSV IW
7Dℓ QRPLQDO ORQJ WHUP UHLQIRUFHPHQW GHVLJQ VWUHQJWK NLSV IW
7F F FUHHS UHGXFHG FRQQHFWLRQ VWUHQJWK SHU XQLW RI UHLQIRUFHPHQW ZLGWK GHWHUPLQHG IURP WKH VWUHVV UXSWXUH
HQYHORSH DW WKH VSHFLILHG GHVLJQ OLIH DV SURGXFHG IURP D VHULHV RI ORQJ WHUP FRQQHFWLRQ FUHHS WHVWV NLSV IW
E
7ORW XOWLPDWH ZLGH ZLGWK WHQVLOH VWUHQJWK SHU XQLW RI UHLQIRUFHPHQW ZLGWK 670 ' RU ' IRU WKH
UHLQIRUFHPHQW PDWHULDO ORW XVHG IRU WKH FRQQHFWLRQ VWUHQJWK WHVWLQJ NLSV IW E
7PD DSSOLHG ORDG WR UHLQIRUFHPHQW NLSV IW
7PD VQ PD[LPXP VRLO QDLO IRUFH NLS &
7PG IDFWRUHG LQFUHPHQWDO G QDPLF LQHUWLD IRUFH NLSV IW
7P P WKH PD[LPXP YDOXH RI UHLQIRUFHPHQW ORDG 7PD[ZLWKLQ WKH ZDOO VHFWLRQ NLSV IW & H
7R IDFWRUHG WHQVLOH ORDG DW UHLQIRUFHPHQW IDFLQJ FRQQHFWLRQ NLSV IW
7RVQ WHQVLOH IRUFH DW WKH QDLO KHDG NLS
7V IXQGDPHQWDO SHULRG RI ZDOO VHF
7WRWDO WRWDO ORDG RQ UHLQIRUFHPHQW OD HU VWDWLF G QDPLF SHU XQLW ZLGWK RI ZDOO NLSV IW
7WRWDOI WRWDO IDFWRUHG ORDG LQ WKH VRLO UHLQIRUFHPHQW NLSV IW
7XOW XOWLPDWH WHQVLOH VWUHQJWK RI UHLQIRUFHPHQW NLSV IW E
7XOWFRQQ XOWLPDWH FRQQHFWLRQ VWUHQJWK SHU XQLW RI UHLQIRUFHPHQW ZLGWK NLSV IW E
W WKLFNQHVV RI WUDQVYHUVH HOHPHQWV LQ
W3 WKLFNQHVV RI EHDULQJ SODWH IW
W6+ WKLFNQHVV RI WKH KHDG RI VWXG IW
9) SXQFKLQJ VKHDU IRUFH DFWLQJ WKURXJK IDFLQJ NLS
9V VKHDU ZDYH YHORFLW RI WKH VRLO EHKLQG WKH ZDOO IW VHF
9 ZHLJKW RI VRLO FDUULHG E ZDOO KHHO QRW LQFOXGLQJ ZHLJKW RI VRLO VXUFKDUJH NLSV IW
9 ZHLJKW RI VRLO VXUFKDUJH GLUHFWO DERYH ZDOO KHHO NLSV IW
:V ZHLJKW RI WKH VRLO WKDW LV LPPHGLDWHO DERYH WKH ZDOO LQFOXGLQJ WKH ZDOO KHHO NLSV IW
:X XQLW ZLGWK RI VHJPHQWDO IDFLQJ IW E
Trang 116 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21:Z ZHLJKW RI WKH ZDOO NLSV IW
: ZHLJKW RI ZDOO VWHP NLSV IW
: ZHLJKW RI ZDOO IRRWLQJ RU EDVH NLSV IW
VSDFLQJ EHWZHHQ YHUWLFDO HOHPHQW VXSSRUWV IW
= GHSWK EHORZ HIIHFWLYH WRS RI ZDOO RU WR UHLQIRUFHPHQW IW
=S GHSWK RI VRLO DW UHLQIRUFHPHQW OD HU DW EHJLQQLQJ RI UHVLVWDQFH ]RQH IRU SXOORXW FDOFXODWLRQ IW
E GHSWK EHORZ WRS RI ZDOO DW ZDOO IDFH ZKHUH 'WPD EHFRPHV HTXDO WR DQG EHORZ ZKLFK 'WPD HTXDOV
α VFDOH HIIHFW FRUUHFWLRQ IDFWRU RU ZDOO KHLJKW DFFHOHUDWLRQ UHGXFWLRQ IDFWRU IRU ZDYH VFDWWHULQJ GLP
β LQFOLQDWLRQ RI JURXQG VORSH EHKLQG IDFH RI ZDOO GHJUHHV VORSH RI EDFNILOO GHJUHHV VORSH RI ZDOO WR WKH
YHUWLFDO QHJDWLYH DV VKRZQ GHJUHHV
γ 7 ORDG IDFWRU IRU YHKLFXODU LPSDFW ORDGV GLP
γ(4 ORDG IDFWRU IRU OLYH ORDG DSSOLHG VLPXOWDQHRXVO ZLWK VHLVPLF ORDGV LQ UWLFOH GLP
&
γI XQLW ZHLJKW RI EDFNILOO NFI
γ/6 ORDG IDFWRU IRU OLYH ORDG VXUFKDUJH GLP %
γ3 ORDG IDFWRU IRU YHUWLFDO HDUWK SUHVVXUH LQ UWLFOH GLP
γ3 (6 ORDG IDFWRU IRU HDUWK VXUFKDUJH (6 LQ 7DEOH
γ3 (9 ORDG IDFWRU IRU YHUWLFDO HDUWK SUHVVXUH LQ UWLFOH GLP
γS (9VI ORDG IDFWRU IRU SUHGLFWLRQ RI 7PD IRU WKH VRLO IDLOXUH OLPLW VWDWH GLP
γ XQLW ZHLJKW RI VRLO NFI
γ XQLW ZHLJKW RI UHLQIRUFHG ILOO NFI
γV VRLO XQLW ZHLJKW NFI
γ′V HIIHFWLYH VRLO XQLW ZHLJKW NFI &
γVHLV WKH ([WUHPH (YHQW , ORDG IDFWRU IRU UHLQIRUFHPHQW ORDG GXH WR GHDG ORDG SOXV VHLVPLFDOO LQGXFHG
UHLQIRUFHPHQW ORDG IRU ([WUHPH (YHQW , GLP
Δσ+ KRUL]RQWDO VWUHVV RQ UHLQIRUFHPHQW IURP FRQFHQWUDWHG KRUL]RQWDO VXUFKDUJH NVI WUDIILF EDUULHU LPSDFW
VWUHVV DSSOLHG RYHU UHLQIRUFHPHQW WULEXWDU DUHD NVI
Δσ YHUWLFDO VWUHVV GXH WR IRRWLQJ ORDG NVI
δ ZDOO EDFNILOO LQWHUIDFH IULFWLRQ DQJOH GHJUHHV
δPD PD[LPXP GLVSODFHPHQW IW &
δ5 UHODWLYH GLVSODFHPHQW FRHIILFLHQW &
ε D QRUPDOO GLVWULEXWHG UDQGRP YDULDEOH ZLWK ]HUR PHDQ DQG D VWDQGDUG GHYLDWLRQ RI
εP P PD[LPXP DFFHSWDEOH VWUDLQ LQ WKH ZDOO FURVV VHFWLRQ FRUUHVSRQGLQJ WR 7PD LQ DQ UHLQIRUFHPHQW OD HU
εHLQ WKH UHLQIRUFHPHQW VWUDLQ LQ DQ LQGLYLGXDO UHLQIRUFHPHQW OD HU FRUUHVSRQGLQJ WR 7PD
θ ZDOO EDWWHU IURP KRUL]RQWDO GHJUHHV & F
θ02 DUF WDQ >NK N IRU 0 2 DQDO VLV GHJUHHV
ρ VRLO UHLQIRUFHPHQW DQJOH RI IULFWLRQ GHJUHHV
ρLM UHLQIRUFHPHQW UDWLR SHUFHQW &
σ+ IDFWRUHG KRUL]RQWDO VWUHVV DW UHLQIRUFHPHQW OHYHO NVI D
σ+PD PD[LPXP VWUHVV LQ VRLO UHLQIRUFHPHQW LQ DEXWPHQW ]RQHV
σ YHUWLFDO VWUHVV LQ VRLO DW UHLQIRUFHPHQW OHYHO RI EDVH RI ZDOO NVI D
σ9 YHUWLFDO VRLO VWUHVV RYHU HIIHFWLYH EDVH ZLGWK NVI
σ VWUHVV DW UHLQIRUFHPHQW OHYHO GXH WR 06( ZDOO EDFNILOO VHOI ZHLJKW NVI D
σ DYHUDJH VWUHVV DW WRS RI 06( ZDOO EDFNILOO GXH WR VRLO VXUFKDUJH NVI D
τQ QRPLQDO DQFKRU ERQG VWUHVV NVI
Φ HPSLULFDOO GHWHUPLQHG LQIOXHQFH IDFWRU WKDW FDSWXUHV WKH HIIHFW WKDW WKH VRLO UHLQIRUFHPHQW SURSHUWLHV VRLO
FRKHVLRQ DQG ZDOO JHRPHWU KDYH RQ 7PD GLP H
ΦF VRLO FRKHVLRQ IDFWRU GLP H
ΦIE IDFLQJ EDWWHU IDFWRU GLP &
ΦIV IDFLQJ VWLIIQHVV IDFWRU GLP H
ΦJ JOREDO VWLIIQHVV IDFWRU GLP H
ΦORFDO ORFDO VWLIIQHVV IDFWRU GLP & H
φ UHVLVWDQFH IDFWRU
φI LQWHUQDO IULFWLRQ DQJOH RI IRXQGDWLRQ RU EDFNILOO VRLO GHJUHHV
Trang 126 ( 7,21 : //6 870(176 1' 3 ,(56
φ)) UHVLVWDQFH IDFWRU IRU IOH[XUH GLP
φ)+ UHVLVWDQFH IDFWRU IRU KHDGHG VWXG LQ WHQVLRQ GLP
φ)3 UHVLVWDQFH IDFWRU IRU SXQFKLQJ VKHDU LQ IDFLQJ GLP
φ32 UHVLVWDQFH IDFWRU IRU SXOORXW GLP
φ LQWHUQDO IULFWLRQ DQJOH RI UHLQIRUFHG ILOO GHJUHHV
φVI UHVLVWDQFH IDFWRU WKDW DFFRXQWV IRU XQFHUWDLQW LQ WKH PHDVXUHPHQW RI WKH UHLQIRUFHPHQW VWLIIQHVV DW WKH
VSHFLILHG VWUDLQ GLP
φ7 UHVLVWDQFH IDFWRU IRU WHQVLRQ GLP
φ′I HIIHFWLYH LQWHUQDO IULFWLRQ DQJOH RI VRLO GHJUHHV &
ω ZDOO EDWWHU GXH WR VHWEDFN RI VHJPHQWDO IDFLQJ XQLWV GHJUHHV E
62,/ 3523(57,(6 1' 0 7(5, /6
*HQHUDO
%DFNILOO PDWHULDOV VKRXOG EH JUDQXODU IUHH GUDLQLQJ
PDWHULDOV :KHUH ZDOOV UHWDLQ LQ VLWX FRKHVLYH VRLOV
GUDLQDJH VKDOO EH SURYLGHG WR UHGXFH K GURVWDWLF ZDWHU
SUHVVXUH EHKLQG WKH ZDOO
0XFK RI WKH NQRZOHGJH DQG H[SHULHQFH ZLWK 06(VWUXFWXUHV KDV EHHQ ZLWK VHOHFW FRKHVLRQOHVV EDFNILOO DVVSHFLILHG LQ 6HFWLRQ RI WKH 6+72 /5)' LGJHRQVW XFWLRQ 6SHFLILFDWLRQV +HQFH NQRZOHGJH DERXWLQWHUQDO VWUHVV GLVWULEXWLRQ SXOORXW UHVLVWDQFH DQG IDLOXUHVXUIDFH VKDSH LV FRQVWUDLQHG DQG LQIOXHQFHG E WKH XQLTXHHQJLQHHULQJ SURSHUWLHV RI JUDQXODU VRLOV :KLOH FRKHVLYHVRLOV KDYH EHHQ VXFFHVVIXOO XVHG SUREOHPV LQFOXGLQJH[FHVVLYH GHIRUPDWLRQ DQG FRPSOHWH FROODSVH KDYH DOVRRFFXUUHG 0RVW RI WKHVH SUREOHPV KDYH EHHQ DWWULEXWHG WRSRRU GUDLQDJH 'UDLQDJH UHTXLUHPHQWV IRU ZDOOVFRQVWUXFWHG ZLWK SRRU GUDLQLQJ VRLOV DUH SURYLGHG LQ %HUJ
HW DO'HWHUPLQDWLRQ RI 6RLO 3URSHUWLHV
7KH SURYLVLRQV RI UWLFOHV DQG VKDOO DSSO OVR VHH UWLFOH &
/,0,7 67 7(6 1' 5(6,67 1 (
) 7256
*HQHUDO
'HVLJQ RI DEXWPHQWV SLHUV DQG ZDOOV VKDOO VDWLVI WKH
FULWHULD IRU WKH VHUYLFH OLPLW VWDWH VSHFLILHG LQ
UWLFOH DQG IRU WKH VWUHQJWK OLPLW VWDWH VSHFLILHG LQ
UWLFOH
EXWPHQWV SLHUV DQG UHWDLQLQJ ZDOOV VKDOO EH
GHVLJQHG WR ZLWKVWDQG ODWHUDO HDUWK DQG ZDWHU SUHVVXUHV
LQFOXGLQJ DQ OLYH DQG GHDG ORDG VXUFKDUJH WKH VHOI
ZHLJKW RI WKH ZDOO WHPSHUDWXUH DQG VKULQNDJH HIIHFWV DQG
HDUWKTXDNH ORDGV LQ DFFRUGDQFH ZLWK WKH JHQHUDO
SULQFLSOHV VSHFLILHG LQ WKLV 6HFWLRQ
Trang 136 ( 7,21 : //6 870(176 1' 3 ,(56
HDULQJ DQG 6OLGLQJ 5HVLVWDQFH DQG IRU (FFHQWULFLW LQ WKH ( WUHPH (YHQW , /LPLW 6WDWH
)RU VHLVPLF ORDGLQJ HIIHFWV RQ ODWHUDO HDUWK SUHVVXUH
WKH VHLVPLF ORDG IDFWRU VKDOO EH DSSOLHG WR WKH HQWLUH ODWHUDO
HDUWK SUHVVXUH ORDG FUHDWHG E WKH HDUWK PDVV UHWDLQHG E
WKH ZDOO RU DEXWPHQW )RU DQ VXUFKDUJH ORDGV DFWLQJ RQ
WKH ZDOO H J (6 LQ FRPELQDWLRQ ZLWK VHLVPLF ORDG (4
WKH ORDG IDFWRU IRU VHLVPLF ORDGV VKDOO EH DSSOLHG
6HLVPLF ORDGLQJ RI DQ HDUWK PDVV UHWDLQHG E D ZDOO
LV FDOFXODWHG XVLQJ DQ H[WHQVLRQ RI &RXORPE WKHRU RU EOLPLW HTXLOLEULXP VORSH VWDELOLW PHWKRGV 7KH VHLVPLFORDGLQJ FDXVHV WKH DFWLYH VRLO ZHGJH WR LQFUHDVH UHVXOWLQJ
LQ LQFUHDVHG WRWDO ORDG 7KH VWDWLF ORDGLQJ FDQQRW EHVHSDUDWHG IURP WKH VHLVPLF ORDGLQJ LQ WKLV DQDO VLV RWKHUWKDQ E DUWLILFLDO PHDQV WKURXJK VXEWUDFWLQJ WKH VWDWLFHDUWK SUHVVXUH IURP WKH WRWDO HDUWK SUHVVXUH FDOFXODWHG IRUVHLVPLF ORDGLQJ 3DVW DOORZDEOH VWUHVV GHVLJQ SUDFWLFH KDVEHHQ WR DSSO D VLQJOH UHGXFHG VDIHW IDFWRU WR WKH HQWLUHODWHUDO HDUWK ORDG FRPELQDWLRQ 7KHUHIRUH RQH VHLVPLFORDG IDFWRU W SLFDOO D ORDG IDFWRU RI LV DSSOLHG WR WKHWRWDO HDUWK SUHVVXUH WKDW RFFXUV GXULQJ VHLVPLF ORDGLQJ5HJDUGLQJ RWKHU ORDGV DFWLQJ LQ FRPELQDWLRQ ZLWK WKHVHLVPLF ORDGLQJ DQG HDUWK SUHVVXUH WKH ORDG FRPELQDWLRQSKLORVRSK GHVFULEHG IRU HDUWK SUHVVXUH DOVR DSSOLHV WR EHFRQVLVWHQW ZLWK SDVW DOORZDEOH VWUHVV GHVLJQ SUDFWLFH IRU D
QR FROODSVH GHVLJQ REMHFWLYH5HVLVWDQFH )DFWRUV 6HUYLFH DQG 6WUHQJWK
5HVLVWDQFH IDFWRUV IRU WKH VHUYLFH OLPLW VWDWHV VKDOO EH
WDNHQ DV
)RU WKH VWUHQJWK OLPLW VWDWH WKH UHVLVWDQFH IDFWRUV
SURYLGHG LQ 7DEOH VKDOO EH XVHG IRU ZDOO GHVLJQ
XQOHVV UHJLRQ VSHFLILF YDOXHV RU VXEVWDQWLDO VXFFHVVIXO
H[SHULHQFH LV DYDLODEOH WR MXVWLI KLJKHU YDOXHV
5HVLVWDQFH IDFWRUV IRU JHRWHFKQLFDO GHVLJQ RI IRXQGDWLRQV
WKDW PD EH QHHGHG IRU ZDOO VXSSRUW XQOHVV VSHFLILFDOO
LGHQWLILHG LQ 7DEOH DUH DV VSHFLILHG LQ 7DEOHV
DQG,I PHWKRGV RWKHU WKDQ WKRVH SUHVFULEHG LQ WKHVH
6SHFLILFDWLRQV DUH XVHG WR HVWLPDWH UHVLVWDQFH WKH
UHVLVWDQFH IDFWRUV FKRVHQ VKDOO SURYLGH WKH VDPH
UHOLDELOLW DV WKRVH JLYHQ LQ 7DEOHV
DQG 7DEOH
7KH UHVLVWDQFH IDFWRUV JLYHQ LQ 7DEOH IRUVWHHO UHLQIRUFHG 06( ZDOOV RWKHU WKDQ WKRVH UHIHUHQFHGEDFN WR 6HFWLRQ ZHUH FDOFXODWHG E GLUHFW FRUUHODWLRQ
WR DOORZDEOH VWUHVV GHVLJQ UDWKHU WKDQ UHOLDELOLW WKHRU+RZHYHU IRU JHRV QWKHWLF UHLQIRUFHG ZDOOV VLQFH WKHVSHFLILHG PHWKRG IRU FDOFXODWLQJ UHLQIRUFHPHQW ORDGV LVUHODWLYHO QHZ L H WKH 6WLIIQHVV 0HWKRG VHH UWLFOH
UHOLDELOLW WKHRU FDOLEUDWHG UHVLVWDQFHIDFWRUV DUH SURYLGHG LQ 7DEOH DVVXPLQJ WKH ORDGIDFWRU IRU WKH 6WLIIQHVV 0HWKRG γS (9 LV )RU WKH6LPSOLILHG 0HWKRG DSSOLFDEOH ORDG DQG UHVLVWDQFH IDFWRUVDUH SURYLGHG LQ SSHQGL[ %
&RPPHQWV UHJDUGLQJ WKH GLIIHUHQFHV EHWZHHQH[WHQVLEOH DQG LQH[WHQVLEOH UHLQIRUFHPHQW FDQ EH IRXQG LQUWLFOH &
Trang 146 ( 7,21 : //6 870(176 1' 3 ,(56
06( ZDOOV FDQ WROHUDWH ODUJHU WRWDO DQG GLIIHUHQWLDOYHUWLFDO GHIOHFWLRQV WKDQ ULJLG ZDOOV 7KH DPRXQW RI WRWDODQG GLIIHUHQWLDO YHUWLFDO GHIOHFWLRQ WKDW FDQ EH WROHUDWHGGHSHQGV RQ WKH ZDOO IDFLQJ PDWHULDO FRQILJXUDWLRQ DQGWLPLQJ RI IDFLQJ FRQVWUXFWLRQ FDVW LQ SODFH IDFLQJ KDVWKH VDPH YHUWLFDO GHIRUPDWLRQ OLPLWDWLRQV DV WKH PRUHULJLG UHWDLQLQJ ZDOO V VWHPV +RZHYHU DQ 06( ZDOO ZLWK
D FDVW LQ SODFH IDFLQJ FDQ EH VSHFLILHG ZLWK D ZDLWLQJSHULRG EHIRUH WKH FDVW LQ SODFH IDFLQJ LV FRQVWUXFWHG VRWKDW YHUWLFDO DV ZHOO DV KRUL]RQWDO GHIRUPDWLRQV KDYHWLPH WR RFFXU Q 06( ZDOO ZLWK ZHOGHG ZLUH RUJHRV QWKHWLF IDFLQJ FDQ WROHUDWH WKH PRVW GHIRUPDWLRQ7KH GHIRUPDWLRQ WROHUDQFH RI RWKHU 06( ZDOO IDFLQJ
V VWHPV VXFK DV SUHFDVW FRQFUHWH SDQHOV DQG GU FDVWFRQFUHWH EORFNV GHSHQGV RQ WKH VSDFLQJ RU FXVKLRQLQJSURYLGHG EHWZHHQ WKH IDFLQJ HOHPHQWV DQG WKHLUGLPHQVLRQV DQG JXLGDQFH LV SURYLGHG LQ UWLFOH
&
6WUHQJWK /LPLW 6WDWH
EXWPHQWV ZDOOV DQG SLHUV VKDOO EH LQYHVWLJDWHG DW
WKH VWUHQJWK OLPLW VWDWHV XVLQJ (T IRU
• EHDULQJ UHVLVWDQFH IDLOXUH
• ODWHUDO VOLGLQJ
• ORVV RI EDVH FRQWDFW GXH WR HFFHQWULF ORDGLQJ
• SXOORXW IDLOXUH RI DQFKRUV RU VRLO UHLQIRUFHPHQWV
• VWUXFWXUDO IDLOXUH DQG
• RYHUDOO VWDELOLW
( WUHPH (YHQW /LPLW 6WDWH
*HQHUDO 5HTXLUHPHQWV
EXWPHQWV ZDOOV DQG SLHUV VKDOO EH LQYHVWLJDWHG DW
WKH H[WUHPH HYHQW OLPLW VWDWH IRU
• RYHUDOO VWDELOLW IDLOXUH
• EHDULQJ UHVLVWDQFH IDLOXUH
• ODWHUDO VOLGLQJ
• ORVV RI EDVH FRQWDFW GXH WR HFFHQWULF ORDGLQJ
• SXOORXW IDLOXUH RI DQFKRUV RU VRLO UHLQIRUFHPHQWV
DQG
• VWUXFWXUDO IDLOXUH
7KH VLWH DGMXVWHG SHDN JURXQG DFFHOHUDWLRQ V L H
)SJD 3* DV VSHFLILHG LQ UWLFOH XVHG IRU
VHLVPLF GHVLJQ RI UHWDLQLQJ ZDOOV VKDOO EH GHWHUPLQHG LQ
DFFRUGDQFH ZLWK UWLFOH
7KH OHYHOV RI SHDN JURXQG DFFHOHUDWLRQ DW WKH JURXQGVXUIDFH LQ VRPH DUHDV ZLOO EH ORZ HQRXJK WKDW D FKHFN RQVHLVPLF ORDGLQJ LV QRW UHTXLUHG DV RWKHU OLPLW VWDWHV ZLOOFRQWURO WKH GHVLJQ
( WUHPH (YHQW , 1R QDO VLV
VHLVPLF GHVLJQ VKDOO QRW EH FRQVLGHUHG PDQGDWRU
IRU ZDOOV ORFDWHG LQ 6HLVPLF =RQHV WKURXJK RU IRU
ZDOOV DW VLWHV ZKHUH WKH VLWH DGMXVWHG SHDN JURXQG
DFFHOHUDWLRQ V LV OHVV WKDQ RU HTXDO WR J XQOHVV RQH
RU PRUH RI WKH IROORZLQJ LV WUXH
UWLFOH UHODWHG WR VSHFLILF VHLVPLF ]RQHV
PD DOVR EH FRQVLGHUHG DSSOLFDEOH WR WKH FRUUHVSRQGLQJ6HLVPLF GHVLJQ FDWHJRULHV 6'& % DQG & LI XVLQJ6+72 V *XLGH 6SHFLILFDWLRQV IR /5)' 6HLVPLFLGJH 'HVLJQ
Trang 156 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,219HUWLFDO HOHPHQWV VXFK DV VROGLHU SLOHV WDQJHQW
SLOHV DQG VOXUU WUHQFK FRQFUHWH ZDOOV VKDOO EH WUHDWHG DV
HLWKHU VKDOORZ RU GHHS IRXQGDWLRQV DV DSSURSULDWH IRU
SXUSRVHV RI HVWLPDWLQJ EHDULQJ UHVLVWDQFH XVLQJ
SURFHGXUHV GHVFULEHG LQ UWLFOHV DQG
5HJLRQ VSHFLILF UHVLVWDQFH IDFWRU YDOXHV VKRXOG EHGHWHUPLQHG EDVHG RQ VXEVWDQWLDO VWDWLVWLFDO GDWD FRPELQHGZLWK FDOLEUDWLRQ RU VXEVWDQWLDO VXFFHVVIXO H[SHULHQFH WRMXVWLI KLJKHU YDOXHV 6PDOOHU UHVLVWDQFH IDFWRUV VKRXOG EHXVHG LI VLWH RU PDWHULDO YDULDELOLW LV DQWLFLSDWHG WR EHXQXVXDOO KLJK RU LI GHVLJQ DVVXPSWLRQV DUH UHTXLUHG WKDWLQFUHDVH GHVLJQ XQFHUWDLQW WKDW KDV QRW EHHQ PLWLJDWHGWKURXJK FRQVHUYDWLYH VHOHFWLRQ RI GHVLJQ SDUDPHWHUV 6HHOOHQ HW DO IRU DGGLWLRQDO JXLGDQFH RQ FDOLEUDWLRQ
RI UHVLVWDQFH IDFWRUV6RPH LQFUHDVH LQ WKH SUHVFULEHG UHVLVWDQFH IDFWRUV
PD EH DSSURSULDWH IRU GHVLJQ RI WHPSRUDU ZDOOV
FRQVLVWHQW ZLWK LQFUHDVHG DOORZDEOH VWUHVVHV IRU
WHPSRUDU VWUXFWXUHV LQ DOORZDEOH VWUHVV GHVLJQ
7KH HYDOXDWLRQ RI RYHUDOO VWDELOLW RI ZDOOV RU HDUWKVORSHV ZLWK RU ZLWKRXW D IRXQGDWLRQ XQLW VKRXOG EHLQYHVWLJDWHG DW WKH VWUHQJWK OLPLW VWDWH using γSIRU RYHUDOOVWDELOLW DV VSHFLILHG LQ UWLFOH DQG DQ DSSURSULDWHUHVLVWDQFH IDFWRU DV VSHFLILHG LQ UWLFOH
Trang 166 ( 7,21 : //6 870(176 1' 3 ,(56
:DOO 7 SH DQG &RQGLWLRQ 5HVLVWDQFH )DFWRU1RQJUDYLW &DQWLOHYHUHG DQG QFKRUHG :DOOV
[LDO FRPSUHVVLYH UHVLVWDQFH RI YHUWLFDO HOHPHQWV UWLFOH DSSOLHV3DVVLYH UHVLVWDQFH RI YHUWLFDO HOHPHQWV
3XOORXW UHVLVWDQFH RI DQFKRUV • &RKHVLRQOHVV JUDQXODU VRLOV
• &RKHVLYH VRLOV
• 5RFN3XOORXW UHVLVWDQFH RI DQFKRUV • :KHUH SURRI WHVWV DUH FRQGXFWHG
7HQVLOH UHVLVWDQFH RI DQFKRU
WHQGRQ •• 0LOG VWHHO H J+LJK VWUHQJWK VWHHO H J670 670EDUV
EDUV
)OH[XUDO FDSDFLW RI YHUWLFDO HOHPHQWV
0HFKDQLFDOO 6WDELOL]HG (DUWK :DOOV *UDYLW :DOOV DQG 6HPLJUDYLW :DOOV
%HDULQJ UHVLVWDQFH • *UDYLW DQG VHPLJUDYLW ZDOOV
• 06( ZDOOV6OLGLQJ
7HQVLOH UHVLVWDQFH RI PHWDOOLF
UHLQIRUFHPHQW DQG FRQQHFWRUV 6WULS UHLQIRUFHPHQWV*ULG UHLQIRUFHPHQWV
7HQVLOH UHVLVWDQFH RI JHRV QWKHWLF
UHLQIRUFHPHQW DQG FRQQHFWRUV •• *HRWH[WLOH DQG JHRJULG UHLQIRUFHPHQWV*HRVWULS UHLQIRUFHPHQWV
3XOORXW UHVLVWDQFH RI PHWDOOLF
UHLQIRUFHPHQW
3XOORXW UHVLVWDQFH RI JHRV QWKHWLF
UHLQIRUFHPHQW
• 6WHHO VWULS UHLQIRUFHPHQWV
• 6WHHO JULG UHLQIRUFHPHQWV
• *HRWH[WLOHV DQG JHRJULGV
• *HRVWULS UHLQIRUFHPHQWV6HUYLFH /LPLW IRU VRLO IDLOXUH
XVLQJ VWLIIQHVV PHWKRG
2YHUDOO DQG FRPSRXQG VWDELOLW
3UHIDEULFDWHG 0RGXODU :DOOV
6RLO 1DLO :DOOV/DWHUDO VOLGLQJ
2YHUDOO DQG &RPSRXQG VWDELOLW
7HQVLOH UHVLVWDQFH RI QDLO WHQGRQ 0LOG VWHHO EDUV *UDGH
+LJK UHVLVWDQFH EDUV *UDGHV DQG3XOORXW UHVLVWDQFH RI QDLO
)DFLQJ IOH[XUH ,QLWLDO DQG ILQDO IDFLQJ
)DFLQJ SXQFKLQJ VKHDU ,QLWLDO DQG ILQDO IDFLQJ
7HQVLOH UHVLVWDQFH RI KHDGHG VWXG VWHHO EROW
VWHHO EROW
SSO WR SUHVXPSWLYH XOWLPDWH XQLW ERQG VWUHVVHV IRU SUHOLPLQDU GHVLJQ RQO LQ UWLFOH &
RQWLQXHG RQ QH W SDJH
Trang 176 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21RQWLQXHG I RP S H LRXV SDJH
SSO ZKHUH SURRI WHVW V DUH FRQGXFWHG RQ HYHU SURGXFWLRQ DQFKRU WR D ORDG RI RU JUHDWHU WLPHV WKH IDFWRUHG ORDG RQ WKH DQFKRU
SSO WR PD[LPXP SURRI WHVW ORDG IRU WKH DQFKRU )RU PLOG VWHHO DSSO UHVLVWDQFH IDFWRU WR ) )RU KLJK VWUHQJWK VWHHO DSSO WKH UHVLVWDQFH IDFWRU WR JXDUDQWHHG XOWLPDWH WHQVLOH VWUHQJWK
SSO WR JURVV FURVV VHFWLRQ OHVV VDFULILFLDO DUHD )RU VHFWLRQV ZLWK KROHV UHGXFH JURVV DUHD LQ DFFRUGDQFH ZLWK UWLFOH DQG DSSO WR QHW VHFWLRQ OHVV VDFULILFLDO DUHD
SSOLHV WR JULG UHLQIRUFHPHQWV FRQQHFWHG WR D ULJLG IDFLQJ HOHPHQW H J D FRQFUHWH SDQHO RU EORFN )RU JULG UHLQIRUFHPHQWV FRQQHFWHG WR D IOH[LEOH IDFLQJ PDW RU ZKLFK DUH FRQWLQXRXV ZLWK WKH IDFLQJ PDW XVH WKH UHVLVWDQFH IDFWRU IRU VWULS UHLQIRUFHPHQWV GGLWLRQDO VSHFLDO FDVHV RI OLPLW VWDWHV DV ZHOO DV FRUUHVSRQGLQJ UHVLVWDQFH IDFWRUV IRU VRLO QDLO ZDOOV DUH SUHVHQWHG LQ )+:
5HVLVWDQFH )DFWRUV ( WUHPH (YHQW /LPLW
6WDWH
8QOHVV RWKHUZLVH VSHFLILHG DOO UHVLVWDQFH IDFWRUV
VKDOO EH WDNHQ DV ZKHQ LQYHVWLJDWLQJ WKH H[WUHPH HYHQW
OLPLW VWDWH
)RU RYHUDOO VWDELOLW RI WKH UHWDLQLQJ ZDOO ZKHQ
HDUWKTXDNH ORDGLQJ LV LQFOXGHG D UHVLVWDQFH IDFWRU φ RI
VKDOO EH XVHG )RU EHDULQJ UHVLVWDQFH D UHVLVWDQFH
IDFWRU RI VKDOO EH XVHG IRU JUDYLW DQG VHPLJUDYLW
ZDOOV DQG IRU 06( ZDOOV
)RU WHQVLOH UHVLVWDQFH RI PHWDOOLF UHLQIRUFHPHQW DQG
FRQQHFWRUV ZKHQ HDUWKTXDNH ORDGLQJ LV LQFOXGHG WKH
IROORZLQJ UHVLVWDQFH IDFWRUV VKDOO EH XVHG
• 6WULS UHLQIRUFHPHQWV φ
• *ULG UHLQIRUFHPHQW φ
7DEOH 1RWHV DQG DOVR DSSO WR WKHVH
UHVLVWDQFH IDFWRUV IRU PHWDOOLF UHLQIRUFHPHQWV
)RU WHQVLOH DQG SXOORXW UHVLVWDQFH RI JHRV QWKHWLF
UHLQIRUFHPHQW DQG FRQQHFWRUV D UHVLVWDQFH IDFWRU φ RI
VKDOO EH XVHG
)RU SXOORXW UHVLVWDQFH RI PHWDOOLF UHLQIRUFHPHQW D
UHVLVWDQFH IDFWRU φ RI VKDOO EH XVHG
UHVLVWDQFH IDFWRU RI LV UHFRPPHQGHG IRU WKHH[WUHPH HYHQW OLPLW VWDWH LQ YLHZ RI WKH XQOLNHORFFXUUHQFH RI WKH ORDGLQJ DVVRFLDWHG ZLWK WKH GHVLJQHDUWKTXDNH 7KH FKRLFH RI LV LQIOXHQFHG E WKHIROORZLQJ IDFWRUV
• )RU FRPSHWHQW VRLOV WKDW DUH QRW H[SHFWHG WR ORVHVWUHQJWK GXULQJ VHLVPLF ORDGLQJ H J GXH WROLTXHIDFWLRQ RI VDWXUDWHG FRKHVLRQOHVV VRLOV RUVWUHQJWK UHGXFWLRQ RI VHQVLWLYH FOD V WKH XVH RIVWDWLF VWUHQJWKV IRU VHLVPLF ORDGLQJ LV XVXDOOFRQVHUYDWLYH DV UDWH RI ORDGLQJ HIIHFWV WHQG WRLQFUHDVH VRLO VWUHQJWK IRU WUDQVLHQW ORDGLQJ
• (DUWKTXDNH ORDGV DUH WUDQVLHQW LQ QDWXUH DQGKHQFH LI VRLO LHOG RFFXUV WKH QHW HIIHFW LV DQDFFXPXODWHG VPDOO GHIRUPDWLRQ DV RSSRVHG WRIRXQGDWLRQ IDLOXUH 7KLV DVVXPHV WKDW JOREDOVWDELOLW LV DGHTXDWH
8VLQJ D UHVLVWDQFH IDFWRU RI IRU VRLO DVVXPHVGXFWLOH EHKDYLRU :KLOH WKLV LV D FRUUHFW DVVXPSWLRQ IRUPDQ VRLOV LW LV LQDSSURSULDWH IRU EULWWOH VRLOV ZKHUH WKHUH
LV D VLJQLILFDQW SRVW SHDN VWUHQJWK ORVV H J VWLII RYHUFRQVROLGDWHG FOD V VHQVLWLYH VRLOV )RU VXFK FRQGLWLRQVVSHFLDO VWXGLHV ZLOO EH UHTXLUHG WR GHWHUPLQH WKHDSSURSULDWH FRPELQDWLRQ RI UHVLVWDQFH IDFWRU DQG VRLOVWUHQJWK
)RU EHDULQJ UHVLVWDQFH D VOLJKWO ORZHU UHVLVWDQFHIDFWRU RI LV UHFRPPHQGHG IRU JUDYLW DQG VHPLJUDYLWZDOOV DQG IRU 06( ZDOOV WR UHGXFH WKH SRVVLELOLW WKDW
D EHDULQJ UHVLVWDQFH IDLOXUH FRXOG RFFXU EHIRUH WKH ZDOOPRYHV ODWHUDOO LQ VOLGLQJ UHGXFLQJ WKH OLNHOLKRRG RIH[FHVVLYH ZDOO WLOWLQJ RU FROODSVH FRQVLVWHQW ZLWK WKHGHVLJQ REMHFWLYH RI QR FROODSVH
Trang 185LJLG JUDYLW DQG VHPLJUDYLW UHWDLQLQJ ZDOOV PD EH
XVHG IRU EULGJH VXEVWUXFWXUHV RU JUDGH VHSDUDWLRQ DQG DUH
JHQHUDOO IRU SHUPDQHQW DSSOLFDWLRQV
&RQYHQWLRQDO UHWDLQLQJ ZDOOV DUH JHQHUDOO FODVVLILHG
DV ULJLG JUDYLW RU VHPLJUDYLW ZDOOV H[DPSOHV RI ZKLFKDUH VKRZQ LQ )LJXUH & 7KHVH W SHV RI ZDOOV FDQ
EH HIIHFWLYH IRU ERWK FXW DQG ILOO ZDOO DSSOLFDWLRQV5LJLG JUDYLW DQG VHPLJUDYLW ZDOOV VKDOO QRW EH XVHG
ZLWKRXW GHHS IRXQGDWLRQ VXSSRUW ZKHUH WKH EHDULQJ
VRLO URFN LV SURQH WR H[FHVVLYH WRWDO RU GLIIHUHQWLDO
• /DWHUDO HDUWK DQG ZDWHU SUHVVXUHV LQFOXGLQJ DQ
OLYH DQG GHDG ORDG VXUFKDUJH
• 7KH VHOI ZHLJKW RI WKH DEXWPHQW ZDOO
• /RDGV DSSOLHG IURP WKH EULGJH VXSHUVWUXFWXUH
• 7HPSHUDWXUH DQG VKULQNDJH GHIRUPDWLRQ HIIHFWV
DQG
• (DUWKTXDNH ORDGV DV VSHFLILHG KHUHLQ LQ 6HFWLRQ
DQG HOVHZKHUH LQ WKHVH 6SHFLILFDWLRQV
7KH SURYLVLRQV RI UWLFOHV DQG VKDOO
DSSO )RU VWDELOLW FRPSXWDWLRQV WKH HDUWK ORDGV VKDOO EH
PXOWLSOLHG E WKH PD[LPXP DQG RU PLQLPXP ORDG IDFWRUV
JLYHQ LQ 7DEOH DV DSSURSULDWH
7KH GHVLJQ VKDOO EH LQYHVWLJDWHG IRU DQ FRPELQDWLRQ
RI IRUFHV ZKLFK PD SURGXFH WKH PRVW VHYHUH FRQGLWLRQ
RI ORDGLQJ 7KH GHVLJQ RI DEXWPHQWV RQ PHFKDQLFDOO
&RKHVLYH EDFNILOOV DUH GLIILFXOW WR FRPSDFW %HFDXVH
RI WKH FUHHS RI FRKHVLYH VRLOV ZDOOV ZLWK FRKHVLYHEDFNILOOV GHVLJQHG IRU DFWLYH HDUWK SUHVVXUHV ZLOO FRQWLQXH
WR PRYH JUDGXDOO WKURXJKRXW WKHLU OLYHV HVSHFLDOO ZKHQWKH EDFNILOO LV VRDNHG E UDLQ RU ULVLQJ JURXQGZDWHU OHYHOV7KHUHIRUH HYHQ LI ZDOO PRYHPHQWV DUH WROHUDEOH ZDOOVEDFNILOOHG ZLWK FRKHVLYH VRLOV VKRXOG EH GHVLJQHG ZLWKH[WUHPH FDXWLRQ IRU SUHVVXUHV EHWZHHQ WKH DFWLYH DQG
Trang 196 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21
Trang 206 ( 7,21 : //6 870(176 1' 3 ,(56
HDULQJ DQG 6OLGLQJ 5HVLVWDQFH DQG IRU (FFHQWULFLW LQ WKH ( WUHPH (YHQW , /LPLW 6WDWH
)RU VHLVPLF ORDGLQJ HIIHFWV RQ ODWHUDO HDUWK SUHVVXUH
WKH VHLVPLF ORDG IDFWRU VKDOO EH DSSOLHG WR WKH HQWLUH ODWHUDO
HDUWK SUHVVXUH ORDG FUHDWHG E WKH HDUWK PDVV UHWDLQHG E
WKH ZDOO RU DEXWPHQW )RU DQ VXUFKDUJH ORDGV DFWLQJ RQ
WKH ZDOO H J (6 LQ FRPELQDWLRQ ZLWK VHLVPLF ORDG (4
WKH ORDG IDFWRU IRU VHLVPLF ORDGV VKDOO EH DSSOLHG
6HLVPLF ORDGLQJ RI DQ HDUWK PDVV UHWDLQHG E D ZDOO
LV FDOFXODWHG XVLQJ DQ H[WHQVLRQ RI &RXORPE WKHRU RU EOLPLW HTXLOLEULXP VORSH VWDELOLW PHWKRGV 7KH VHLVPLFORDGLQJ FDXVHV WKH DFWLYH VRLO ZHGJH WR LQFUHDVH UHVXOWLQJ
LQ LQFUHDVHG WRWDO ORDG 7KH VWDWLF ORDGLQJ FDQQRW EHVHSDUDWHG IURP WKH VHLVPLF ORDGLQJ LQ WKLV DQDO VLV RWKHUWKDQ E DUWLILFLDO PHDQV WKURXJK VXEWUDFWLQJ WKH VWDWLFHDUWK SUHVVXUH IURP WKH WRWDO HDUWK SUHVVXUH FDOFXODWHG IRUVHLVPLF ORDGLQJ 3DVW DOORZDEOH VWUHVV GHVLJQ SUDFWLFH KDVEHHQ WR DSSO D VLQJOH UHGXFHG VDIHW IDFWRU WR WKH HQWLUHODWHUDO HDUWK ORDG FRPELQDWLRQ 7KHUHIRUH RQH VHLVPLFORDG IDFWRU W SLFDOO D ORDG IDFWRU RI LV DSSOLHG WR WKHWRWDO HDUWK SUHVVXUH WKDW RFFXUV GXULQJ VHLVPLF ORDGLQJ5HJDUGLQJ RWKHU ORDGV DFWLQJ LQ FRPELQDWLRQ ZLWK WKHVHLVPLF ORDGLQJ DQG HDUWK SUHVVXUH WKH ORDG FRPELQDWLRQSKLORVRSK GHVFULEHG IRU HDUWK SUHVVXUH DOVR DSSOLHV WR EHFRQVLVWHQW ZLWK SDVW DOORZDEOH VWUHVV GHVLJQ SUDFWLFH IRU D
QR FROODSVH GHVLJQ REMHFWLYH5HVLVWDQFH )DFWRUV 6HUYLFH DQG 6WUHQJWK
5HVLVWDQFH IDFWRUV IRU WKH VHUYLFH OLPLW VWDWHV VKDOO EH
WDNHQ DV
)RU WKH VWUHQJWK OLPLW VWDWH WKH UHVLVWDQFH IDFWRUV
SURYLGHG LQ 7DEOH VKDOO EH XVHG IRU ZDOO GHVLJQ
XQOHVV UHJLRQ VSHFLILF YDOXHV RU VXEVWDQWLDO VXFFHVVIXO
H[SHULHQFH LV DYDLODEOH WR MXVWLI KLJKHU YDOXHV
5HVLVWDQFH IDFWRUV IRU JHRWHFKQLFDO GHVLJQ RI IRXQGDWLRQV
WKDW PD EH QHHGHG IRU ZDOO VXSSRUW XQOHVV VSHFLILFDOO
LGHQWLILHG LQ 7DEOH DUH DV VSHFLILHG LQ 7DEOHV
DQG,I PHWKRGV RWKHU WKDQ WKRVH SUHVFULEHG LQ WKHVH
6SHFLILFDWLRQV DUH XVHG WR HVWLPDWH UHVLVWDQFH WKH
UHVLVWDQFH IDFWRUV FKRVHQ VKDOO SURYLGH WKH VDPH
UHOLDELOLW DV WKRVH JLYHQ LQ 7DEOHV
DQG 7DEOH
7KH UHVLVWDQFH IDFWRUV JLYHQ LQ 7DEOH IRUVWHHO UHLQIRUFHG 06( ZDOOV RWKHU WKDQ WKRVH UHIHUHQFHGEDFN WR 6HFWLRQ ZHUH FDOFXODWHG E GLUHFW FRUUHODWLRQ
WR DOORZDEOH VWUHVV GHVLJQ UDWKHU WKDQ UHOLDELOLW WKHRU+RZHYHU IRU JHRV QWKHWLF UHLQIRUFHG ZDOOV VLQFH WKHVSHFLILHG PHWKRG IRU FDOFXODWLQJ UHLQIRUFHPHQW ORDGV LVUHODWLYHO QHZ L H WKH 6WLIIQHVV 0HWKRG VHH UWLFOH
UHOLDELOLW WKHRU FDOLEUDWHG UHVLVWDQFHIDFWRUV DUH SURYLGHG LQ 7DEOH DVVXPLQJ WKH ORDGIDFWRU IRU WKH 6WLIIQHVV 0HWKRG γS (9 LV )RU WKH6LPSOLILHG 0HWKRG DSSOLFDEOH ORDG DQG UHVLVWDQFH IDFWRUVDUH SURYLGHG LQ SSHQGL[ %
&RPPHQWV UHJDUGLQJ WKH GLIIHUHQFHV EHWZHHQH[WHQVLEOH DQG LQH[WHQVLEOH UHLQIRUFHPHQW FDQ EH IRXQG LQUWLFOH &
Trang 216 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,219HUWLFDO HOHPHQWV VXFK DV VROGLHU SLOHV WDQJHQW
SLOHV DQG VOXUU WUHQFK FRQFUHWH ZDOOV VKDOO EH WUHDWHG DV
HLWKHU VKDOORZ RU GHHS IRXQGDWLRQV DV DSSURSULDWH IRU
SXUSRVHV RI HVWLPDWLQJ EHDULQJ UHVLVWDQFH XVLQJ
SURFHGXUHV GHVFULEHG LQ UWLFOHV DQG
5HJLRQ VSHFLILF UHVLVWDQFH IDFWRU YDOXHV VKRXOG EHGHWHUPLQHG EDVHG RQ VXEVWDQWLDO VWDWLVWLFDO GDWD FRPELQHGZLWK FDOLEUDWLRQ RU VXEVWDQWLDO VXFFHVVIXO H[SHULHQFH WRMXVWLI KLJKHU YDOXHV 6PDOOHU UHVLVWDQFH IDFWRUV VKRXOG EHXVHG LI VLWH RU PDWHULDO YDULDELOLW LV DQWLFLSDWHG WR EHXQXVXDOO KLJK RU LI GHVLJQ DVVXPSWLRQV DUH UHTXLUHG WKDWLQFUHDVH GHVLJQ XQFHUWDLQW WKDW KDV QRW EHHQ PLWLJDWHGWKURXJK FRQVHUYDWLYH VHOHFWLRQ RI GHVLJQ SDUDPHWHUV 6HHOOHQ HW DO IRU DGGLWLRQDO JXLGDQFH RQ FDOLEUDWLRQ
RI UHVLVWDQFH IDFWRUV6RPH LQFUHDVH LQ WKH SUHVFULEHG UHVLVWDQFH IDFWRUV
PD EH DSSURSULDWH IRU GHVLJQ RI WHPSRUDU ZDOOV
FRQVLVWHQW ZLWK LQFUHDVHG DOORZDEOH VWUHVVHV IRU
WHPSRUDU VWUXFWXUHV LQ DOORZDEOH VWUHVV GHVLJQ
7KH HYDOXDWLRQ RI RYHUDOO VWDELOLW RI ZDOOV RU HDUWKVORSHV ZLWK RU ZLWKRXW D IRXQGDWLRQ XQLW VKRXOG EHLQYHVWLJDWHG DW WKH VWUHQJWK OLPLW VWDWH using γSIRU RYHUDOOVWDELOLW DV VSHFLILHG LQ UWLFOH DQG DQ DSSURSULDWHUHVLVWDQFH IDFWRU DV VSHFLILHG LQ UWLFOH
Trang 226 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21
• :KHUH WKH ZDOO LV VXSSRUWHG E D URFN
IRXQGDWLRQ
WKH YHUWLFDO VWUHVV VKDOO EH FDOFXODWHG DVVXPLQJ D
OLQHDUO GLVWULEXWHG SUHVVXUH RYHU DQ HIIHFWLYH EDVH
DUHD DV VKRZQ LQ )LJXUH ,I WKH UHVXOWDQW LV
ZLWKLQ WKH PLGGOH RQH WKLUG RI WKH EDVH
ZKHUH WKH YDULDEOHV DUH DV GHILQHG LQ
)LJXUH
Trang 236 ( 7,21 : //6 870(176 1' 3 ,(56
Trang 245LJLG JUDYLW DQG VHPLJUDYLW UHWDLQLQJ ZDOOV PD EH
XVHG IRU EULGJH VXEVWUXFWXUHV RU JUDGH VHSDUDWLRQ DQG DUH
JHQHUDOO IRU SHUPDQHQW DSSOLFDWLRQV
&RQYHQWLRQDO UHWDLQLQJ ZDOOV DUH JHQHUDOO FODVVLILHG
DV ULJLG JUDYLW RU VHPLJUDYLW ZDOOV H[DPSOHV RI ZKLFKDUH VKRZQ LQ )LJXUH & 7KHVH W SHV RI ZDOOV FDQ
EH HIIHFWLYH IRU ERWK FXW DQG ILOO ZDOO DSSOLFDWLRQV5LJLG JUDYLW DQG VHPLJUDYLW ZDOOV VKDOO QRW EH XVHG
ZLWKRXW GHHS IRXQGDWLRQ VXSSRUW ZKHUH WKH EHDULQJ
VRLO URFN LV SURQH WR H[FHVVLYH WRWDO RU GLIIHUHQWLDO
• /DWHUDO HDUWK DQG ZDWHU SUHVVXUHV LQFOXGLQJ DQ
OLYH DQG GHDG ORDG VXUFKDUJH
• 7KH VHOI ZHLJKW RI WKH DEXWPHQW ZDOO
• /RDGV DSSOLHG IURP WKH EULGJH VXSHUVWUXFWXUH
• 7HPSHUDWXUH DQG VKULQNDJH GHIRUPDWLRQ HIIHFWV
DQG
• (DUWKTXDNH ORDGV DV VSHFLILHG KHUHLQ LQ 6HFWLRQ
DQG HOVHZKHUH LQ WKHVH 6SHFLILFDWLRQV
7KH SURYLVLRQV RI UWLFOHV DQG VKDOO
DSSO )RU VWDELOLW FRPSXWDWLRQV WKH HDUWK ORDGV VKDOO EH
PXOWLSOLHG E WKH PD[LPXP DQG RU PLQLPXP ORDG IDFWRUV
JLYHQ LQ 7DEOH DV DSSURSULDWH
7KH GHVLJQ VKDOO EH LQYHVWLJDWHG IRU DQ FRPELQDWLRQ
RI IRUFHV ZKLFK PD SURGXFH WKH PRVW VHYHUH FRQGLWLRQ
RI ORDGLQJ 7KH GHVLJQ RI DEXWPHQWV RQ PHFKDQLFDOO
&RKHVLYH EDFNILOOV DUH GLIILFXOW WR FRPSDFW %HFDXVH
RI WKH FUHHS RI FRKHVLYH VRLOV ZDOOV ZLWK FRKHVLYHEDFNILOOV GHVLJQHG IRU DFWLYH HDUWK SUHVVXUHV ZLOO FRQWLQXH
WR PRYH JUDGXDOO WKURXJKRXW WKHLU OLYHV HVSHFLDOO ZKHQWKH EDFNILOO LV VRDNHG E UDLQ RU ULVLQJ JURXQGZDWHU OHYHOV7KHUHIRUH HYHQ LI ZDOO PRYHPHQWV DUH WROHUDEOH ZDOOVEDFNILOOHG ZLWK FRKHVLYH VRLOV VKRXOG EH GHVLJQHG ZLWKH[WUHPH FDXWLRQ IRU SUHVVXUHV EHWZHHQ WKH DFWLYH DQG
Trang 256 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21
VWDELOL]HG HDUWK DQG SUHIDEULFDWHG PRGXODU ZDOOV VKDOO EH
)RU FRPSXWLQJ ORDG HIIHFWV LQ DEXWPHQWV WKH ZHLJKW
RI ILOOLQJ PDWHULDO GLUHFWO RYHU DQ LQFOLQHG RU VWHSSHG UHDU
IDFH RU RYHU WKH EDVH RI D UHLQIRUFHG FRQFUHWH VSUHDG
IRRWLQJ PD EH FRQVLGHUHG DV SDUW RI WKH HIIHFWLYH ZHLJKW
RI WKH DEXWPHQW
:KHUH VSUHDG IRRWLQJV DUH XVHG WKH UHDU SURMHFWLRQ
VKDOO EH GHVLJQHG DV D FDQWLOHYHU VXSSRUWHG DW WKH
DEXWPHQW VWHP DQG ORDGHG ZLWK WKH IXOO ZHLJKW RI WKH
VXSHULPSRVHG PDWHULDO XQOHVV D PRUH H[DFW PHWKRG
LV XVHG
DW UHVW FDVHV DVVXPLQJ WKH PRVW XQIDYRUDEOH FRQGLWLRQV
&RQVLGHUDWLRQ PXVW EH JLYHQ IRU WKH GHYHORSPHQW RI SRUHZDWHU SUHVVXUH ZLWKLQ WKH VRLO PDVV LQ DFFRUGDQFH ZLWKUWLFOH SSURSULDWH GUDLQDJH SURYLVLRQV VKRXOG EHSURYLGHG WR SUHYHQW K GURVWDWLF DQG VHHSDJH IRUFHV IURPGHYHORSLQJ EHKLQG WKH ZDOO ,Q QR FDVH VKDOO KLJKO SODVWLFFOD EH XVHG IRU EDFNILOO
,QWHJUDO EXWPHQWV
,QWHJUDO DEXWPHQWV VKDOO EH GHVLJQHG WR UHVLVW DQG RU
DEVRUE FUHHS VKULQNDJH DQG WKHUPDO GHIRUPDWLRQV RI WKH
VXSHUVWUXFWXUH
'HIRUPDWLRQV DUH GLVFXVVHG LQ UWLFOH
0RYHPHQW FDOFXODWLRQV VKDOO FRQVLGHU WHPSHUDWXUH
FUHHS DQG ORQJ WHUP SUHVWUHVV VKRUWHQLQJ LQ GHWHUPLQLQJ
SRWHQWLDO PRYHPHQWV RI DEXWPHQWV
7R DYRLG ZDWHU LQWUXVLRQ EHKLQG WKH DEXWPHQW WKH
DSSURDFK VODE VKRXOG EH FRQQHFWHG GLUHFWO WR WKH
DEXWPHQW QRW WR ZLQJZDOOV DQG DSSURSULDWH SURYLVLRQV
VKRXOG EH PDGH WR SURYLGH IRU GUDLQDJH RI DQ HQWUDSSHG
:LQJZDOOV PD HLWKHU EH GHVLJQHG DV PRQROLWKLF
ZLWK WKH DEXWPHQWV RU EH VHSDUDWHG IURP WKH DEXWPHQW
ZDOO ZLWK DQ H[SDQVLRQ MRLQW DQG GHVLJQHG WR EH IUHH
VWDQGLQJ
7KH ZLQJZDOO OHQJWKV VKDOO EH FRPSXWHG XVLQJ WKH
UHTXLUHG URDGZD VORSHV :LQJZDOOV VKDOO EH RI VXIILFLHQW
OHQJWK WR UHWDLQ WKH URDGZD HPEDQNPHQW DQG WR IXUQLVK
VSDFHG DFURVV WKH MXQFWLRQ EHWZHHQ ZLQJZDOOV DQG
DEXWPHQWV WR WLH WKHP WRJHWKHU 6XFK EDUV VKDOO H[WHQG
LQWR WKH PDVRQU RQ HDFK VLGH RI WKH MRLQW IDU HQRXJK WR
GHYHORS WKH VWUHQJWK RI WKH EDU DV VSHFLILHG IRU EDU
UHLQIRUFHPHQW DQG VKDOO YDU LQ OHQJWK VR DV WR DYRLG
SODQHV RI ZHDNQHVV LQ WKH FRQFUHWH DW WKHLU HQGV ,I EDUV
DUH QRW XVHG DQ H[SDQVLRQ MRLQW VKDOO EH SURYLGHG DQG WKH
ZLQJZDOO VKDOO EH NH HG LQWR WKH ERG RI WKH DEXWPHQW
Trang 266 ( 7,21 : //6 870(176 1' 3 ,(56
( SDQVLRQ DQG RQWUDFWLRQ -RLQWV
&RQWUDFWLRQ MRLQWV VKDOO EH SURYLGHG DW LQWHUYDOV QRW
H[FHHGLQJ IW DQG H[SDQVLRQ MRLQWV DW LQWHUYDOV QRW
H[FHHGLQJ IW IRU FRQYHQWLRQDO UHWDLQLQJ ZDOOV DQG
DEXWPHQWV OO MRLQWV VKDOO EH ILOOHG ZLWK DSSURYHG ILOOLQJ
PDWHULDO WR HQVXUH WKH IXQFWLRQ RI WKH MRLQW -RLQWV LQ
DEXWPHQWV VKDOO EH ORFDWHG DSSUR[LPDWHO PLGZD EHWZHHQ
WKH ORQJLWXGLQDO PHPEHUV EHDULQJ RQ WKH DEXWPHQWV
0RYHPHQW DW WKH 6HUYLFH /LPLW 6WDWH
EXWPHQWV7KH SURYLVLRQV RI UWLFOHV
VKDOO DSSO DV DSSOLFDEOH
RQYHQWLRQDO 5HWDLQLQJ :DOOV7KH SURYLVLRQV RI UWLFOHV
6WUHQJWK /LPLW 6WDWH
*HQHUDO
EXWPHQWV DQG UHWDLQLQJ ZDOOV VKDOO EH SURSRUWLRQHG
WR HQVXUH VWDELOLW DJDLQVW EHDULQJ FDSDFLW IDLOXUH
RYHUWXUQLQJ DQG VOLGLQJ 6DIHW DJDLQVW GHHS VHDWHG
IRXQGDWLRQ IDLOXUH VKDOO DOVR EH LQYHVWLJDWHG LQ
DFFRUGDQFH ZLWK WKH SURYLVLRQV RI UWLFOH
HDULQJ 5HVLVWDQFH
%HDULQJ UHVLVWDQFH VKDOO EH LQYHVWLJDWHG DW WKH
VWUHQJWK OLPLW VWDWH XVLQJ IDFWRUHG ORDGV DQG UHVLVWDQFHV
DVVXPLQJ WKH IROORZLQJ VRLO SUHVVXUH GLVWULEXWLRQV
IRXQGDWLRQ
WKH YHUWLFDO VWUHVV VKDOO EH FDOFXODWHG DVVXPLQJ D
XQLIRUPO GLVWULEXWHG SUHVVXUH RYHU DQ HIIHFWLYH EDVH
DUHD DV VKRZQ LQ )LJXUH
7KH YHUWLFDO VWUHVV VKDOO EH FDOFXODWHG DV IROORZV
FDOFXODWH WKH YHUWLFDO EHDULQJ VWUHVV ZKHUH WKH ORDGLQJ LVPRUH FRPSOH[ 7KRXJK WKLV ILJXUH VKRZV WKH DSSOLFDWLRQ
RI VXSHUSRVLWLRQ SULQFLSOHV WR PHFKDQLFDOO VWDELOL]HGHDUWK ZDOOV WKHVH SULQFLSOHV FDQ DOVR EH GLUHFWO DSSOLHG
WR FRQYHQWLRQDO ZDOOV6HH UWLFOH & IRU DSSOLFDWLRQ RI ORDG IDFWRUV IRUEHDULQJ UHVLVWDQFH DQG HFFHQWULFLW
9H
∑
σ =
−ZKHUH
Σ9 WKH VXPPDWLRQ RI YHUWLFDO IRUFHV DQG
WKH RWKHU YDULDEOHV DUH DV GHILQHG LQ)LJXUH
Trang 276 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21
• :KHUH WKH ZDOO LV VXSSRUWHG E D URFN
IRXQGDWLRQ
WKH YHUWLFDO VWUHVV VKDOO EH FDOFXODWHG DVVXPLQJ D
OLQHDUO GLVWULEXWHG SUHVVXUH RYHU DQ HIIHFWLYH EDVH
DUHD DV VKRZQ LQ )LJXUH ,I WKH UHVXOWDQW LV
ZLWKLQ WKH PLGGOH RQH WKLUG RI WKH EDVH
ZKHUH WKH YDULDEOHV DUH DV GHILQHG LQ
)LJXUH
Trang 286 ( 7,21 : //6 870(176 1' 3 ,(56
Trang 296 72 /5)' 5,'*( ' (6,*1 6 3( ,), 7,216 1 ,17 ( ',7,21(FFHQWULFLW /LPLWV
)RU IRXQGDWLRQV RQ VRLO WKH ORFDWLRQ RI WKH UHVXOWDQW
RI WKH UHDFWLRQ IRUFHV VKDOO EH ZLWKLQ WKH PLGGOH WZR
WKLUGV RI WKH EDVH ZLGWK
)RU IRXQGDWLRQV RQ URFN WKH ORFDWLRQ RI WKH UHVXOWDQW
RI WKH UHDFWLRQ IRUFHV VKDOO EH ZLWKLQ WKH PLGGOH QLQH
WHQWKV RI WKH EDVH ZLGWK
7KH VSHFLILHG FULWHULD IRU WKH ORFDWLRQ RI WKH UHVXOWDQWFRXSOHG ZLWK LQYHVWLJDWLRQ RI WKH EHDULQJ SUHVVXUHUHSODFH WKH LQYHVWLJDWLRQ RI WKH UDWLR RI VWDELOL]LQJPRPHQW WR RYHUWXUQLQJ PRPHQW /RFDWLRQ RI WKH UHVXOWDQWZLWKLQ WKH PLGGOH WZR WKLUGV RI WKH EDVH ZLGWK IRUIRXQGDWLRQV RQ VRLO LV EDVHG RQ WKH XVH RI SODVWLF EHDULQJSUHVVXUH GLVWULEXWLRQ IRU WKH OLPLW VWDWH
6XEVXUIDFH (URVLRQ
)RU ZDOOV FRQVWUXFWHG DORQJ ULYHUV DQG VWUHDPV VFRXU
RI IRXQGDWLRQ PDWHULDOV VKDOO EH HYDOXDWHG GXULQJ GHVLJQ
DV VSHFLILHG LQ UWLFOH :KHUH SRWHQWLDO SUREOHP
FRQGLWLRQV DUH DQWLFLSDWHG DGHTXDWH SURWHFWLYH PHDVXUHV
VKDOO EH LQFRUSRUDWHG LQ WKH GHVLJQ
7KH SURYLVLRQV RI UWLFOH VKDOO DSSO
7KH K GUDXOLF JUDGLHQW VKDOO QRW H[FHHG
• )RU VLOWV DQG FRKHVLYH VRLOV
• )RU RWKHU FRKHVLRQOHVV VRLOV
7KH PHDVXUHV PRVW FRPPRQO XVHG WR HQVXUH WKDWSLSLQJ GRHV QRW RFFXU DUH
• VHHSDJH FRQWURO
• UHGXFWLRQ RI K GUDXOLF JUDGLHQW DQG
• SURWHFWLYH ILOWHUV
:KHUH ZDWHU VHHSV EHQHDWK D ZDOO WKH HIIHFWV RI
XSOLIW DQG VHHSDJH IRUFHV VKDOO EH FRQVLGHUHG D IORZ QHW RU LQ FHUWDLQ FLUFXPVWDQFHV E XVLQJ JHQHUDOO6HHSDJH HIIHFWV PD EH LQYHVWLJDWHG E FRQVWUXFWLQJ
DFFHSWHG VLPSOLILHG PHWKRGV3DVVLYH 5HVLVWDQFH
3DVVLYH UHVLVWDQFH VKDOO EH QHJOHFWHG LQ VWDELOLW
FRPSXWDWLRQV XQOHVV WKH EDVH RI WKH ZDOO H[WHQGV EHORZ
WKH GHSWK RI PD[LPXP VFRXU IUHH]H WKDZ RU RWKHU
GLVWXUEDQFHV ,Q WKH ODWWHU FDVH RQO WKH HPEHGPHQW
EHORZ WKH JUHDWHU RI WKHVH GHSWKV VKDOO EH FRQVLGHUHG
HIIHFWLYH
:KHUH SDVVLYH UHVLVWDQFH LV XWLOL]HG WR HQVXUH
DGHTXDWH ZDOO VWDELOLW WKH FDOFXODWHG SDVVLYH UHVLVWDQFH
RI VRLO LQ IURQW RI DEXWPHQWV DQG FRQYHQWLRQDO ZDOOV VKDOO
EH VXIILFLHQW WR SUHYHQW XQDFFHSWDEOH IRUZDUG PRYHPHQW
RI WKH ZDOO
7KH SDVVLYH UHVLVWDQFH VKDOO EH QHJOHFWHG LI WKH VRLO
SURYLGLQJ SDVVLYH UHVLVWDQFH LV RU LV OLNHO WR EHFRPH VRIW
ORRVH RU GLVWXUEHG RU LI WKH FRQWDFW EHWZHHQ WKH VRLO DQG
ZDOO LV QRW WLJKW
6OLGLQJ
7KH SURYLVLRQV RI UWLFOH VKDOO DSSO
2YHUDOO 6WDELOLW
7KH RYHUDOO VWDELOLW RI WKH UHWDLQLQJ ZDOO UHWDLQHG
VORSH DQG IRXQGDWLRQ VRLO RU URFN VKDOO EH HYDOXDWHG XVLQJ
OLPLW HTXLOLEULXP PHWKRGV RI DQDO VLV 7KH RYHUDOO
VWDELOLW RI WHPSRUDU FXW VORSHV WR IDFLOLWDWH FRQVWUXFWLRQ
VKDOO DOVR EH HYDOXDWHG 6SHFLDO H[SORUDWLRQ WHVWLQJ DQG
8QDFFHSWDEOH GHIRUPDWLRQV PD RFFXU EHIRUHSDVVLYH UHVLVWDQFH LV PRELOL]HG SSUR[LPDWHGHIRUPDWLRQV UHTXLUHG WR PRELOL]H SDVVLYH UHVLVWDQFH DUHGLVFXVVHG LQ UWLFOH & ZKHUH + LQ 7DEOH
& LV WKH HIIHFWLYH GHSWK RI SDVVLYH UHVWUDLQW
)LJXUH & VKRZV D UHWDLQLQJ ZDOO RYHUDOOVWDELOLW IDLOXUH 2YHUDOO VWDELOLW IRU FRQYHQWLRQDO ZDOOV
H J UHLQIRUFHG FRQFUHWH JUDYLW DQG VHPL JUDYLW ZDOOV
LV GHILQHG DV WKH VWDELOLW RI D VORSH VRLO RU URFN VKHDUVXUIDFH WKDW LV ORFDWHG RXWVLGH WKH EDFN RI WKH ZDOO
Trang 30S ECTION 11: W ALLS , A BUTMENTS , AND P IERS 11-25
analyses may be required for bridge abutments or
retaining walls constructed over soft deposits
The evaluation of overall stability of earth slopes
with or without a foundation unit should be investigated
at the Strength I Load Combination and an appropriate
resistance factor The resistance factor, f, should be taken
as:
· Where the geotechnical parameters and
subsurface stratigraphy are well defined
……… 0.75
· Where the geotechnical parameters and
subsurface stratigraphy are highly variable or
……… …… 0.65
For anchored walls, MSE walls, and soil nail walls, this
Article also applies to compound stability evaluation
including its footing In the case of MSE, soil nail, andanchored walls, overall stability for walls is defined as the slope soil or rock shear surface that is located behind theends of the reinforcement elements (see Article 11.10.5.6and Figure 11.10.5.6-1) For a definition of compoundstability, see Article 11.10.5.6
The Modified Bishop, simplified Janbu, or Spencer methods of analysis may be used
Soft soil deposits may be subject to consolidationand/or lateral flow which could result in unacceptablelong-term settlements or horizontal movements
Available slope stability programs produce a singlefactor of safety, FS The specified resistance factors areessentially the inverse of the FS that should be targeted in the slope stability program (i.e., f = 0.75 approximately corresponds to FS = 1.3, and f = 0.65 approximately corresponds to FS = 1.5) These resistance factors address the soil resistance For anchored walls, MSE walls, andsoil nail walls, the resistance factors provided in Article11.5.7 apply to the resistance of the reinforcementelements
11.6.4—Safety against Structural Failure
The structural design of individual wall elements and
wall foundations shall comply with the provisions of
Sections 5, 6, 7, and 8
The provisions of Article 10.6.1.3 shall be used to
determine the distribution of contact pressure for
structural design of footings
11.6.5—Seismic Design for Abutments and
Conventional Retaining Walls
11.6.5.1—General
Rigid gravity and semigravity retaining walls and
abutments shall be designed to meet overall stability,
external stability, and internal stability requirements
during seismic loading The procedures specified in
Article 11.6.3.7 for overall stability, Article 11.6.3 for
bearing stability, and Article 10.6.3.4 for sliding stability
shall be used but including seismically induced earth
pressure and inertial forces, using Extreme Event I limit
state load and resistance factors as specified in
Article 11.5.8
For seismic eccentricity evaluation of walls with
foundations on soil and rock, the location of the resultant
of the reaction forces shall be within the middle
two-thirds of the base for γEQ = 0.0 and within the middle
eight-tenths of the base for γEQ = 1.0 For values of γEQ
between 0.0 and 1.0, the resultant location restriction
shall be obtained by linear interpolation of the values
given in this Article
C11.6.5.1 The estimation of seismic design forces should account for wall inertia forces in addition to theequivalent static forces For semigravity walls in whichthe footing protrudes behind the back of the wall face(i.e., the heel), the weight of the soil located directlyabove the heel of the footing should be included in thecalculated wall inertial force
Where a wall supports a bridge structure, the seismicdesign forces should also include seismic forcestransferred from the bridge through bearing supportswhich do not freely slide, e.g., elastomeric bearings in accordance with Article 14.6.3
For bridge abutments, the abutment seismic design
Articles 5.2 and 6.7 of AASHTO’s Guide Specifications
The static lateral earth pressure force acting behind the wall is already included in PAE (i.e., PAE is the combination
of the static and seismic lateral earth pressure) See
Trang 3111-26 AASHTO LRFD B RIDGE D ESIGN S PECIFICATIONS , N INTH E DITION , 2020
for LRFD Seismic Bridge Design, but with the following
exceptions:
· kh should be determined as specified in
Article 11.6.5.2 and
· lateral earth pressures should be estimated in
accordance with Article 11.6.5.3
To evaluate safety against structural failure (i.e.,
internal stability) for seismic design, the structural design
of the wall elements shall comply with the provisions of
Sections 5, 6, 7, and 8
The total lateral force to be applied to the wall due to
seismic and earth pressure loading, Pseis, should be
determined considering the combined effect of PAE and
PIR, in which:
and where:
PAE = dynamic lateral earth pressure force
PIR = horizontal inertial force due to seismic loading
of the wall mass
kh = seismic horizontal acceleration coefficient
Ww = the weight of the wall
Ws = the weight of soil that is immediately above the
wall, including the wall heel
To investigate the wall stability considering
the combined effect of PAE and PIR and considering them
not to be concurrent, the following two cases should be
investigated:
· combine 100 percent of the seismic earth
pressure, PAE, with 50 percent of the wall inertial
force, PIR, and
· combine 50 percent of PAE but no less than the
static active earth pressure force (i.e., F1 in
Figure 11.10.5.2-1), with 100 percent of the wall
inertial force, PIR
The most conservative result from these two analyses
should be used for design of the wall Alternatively, if
approved by the Owner, more sophisticated numerical
methods may be used to investigate nonconcurrence For
competent soils that do not lose strength under seismic
loading, static strength parameters should be used for
seismic design
· For cohesive soils, total stress strength
parameters based on undrained tests should be
used during the seismic analysis
· For clean cohesionless soils, the effective stress
friction angle should be used
For sensitive cohesive soils or saturated cohesionless
soils, the potential for earthquake-induced strength loss
shall be addressed in the analysis
Article A11.3 for details on the calculation of PAE See Articles 3.11.6.3 and 11.10.10.1 for definitions of terms in Figure 11.6.5.1-1 not specifically defined in this Article Since PAE is the combined lateral earth pressure forceresulting from static earth pressure plus dynamic effects, thestatic earth pressure as calculated based on the lateral earthpressure coefficient, Ka, should not be added to the seismicearth pressure calculated in Article 11.6.5.3 The staticlateral earth pressure coefficient, Ka, is, in effect, increased during seismic loading to KAE (see Article 11.6.5.3) due to seismically induced inertial forces on the active wedge, andthe potential increase in the volume of the active wedge itselfdue to flattening of the active failure surface PAE does not include any additional lateral forces caused by permanentsurcharge loads located above the wall (e.g., the static force,
Fp, and the dynamic force, khWsurcharge, in Figure 11.6.5.1-1,
in which Wsurcharge is the weight of the surcharge) If thegeneralized limit equilibrium method (GLE) is used tocalculate seismic lateral earth pressure on the wall, the effect
of the surcharge on the total lateral force acting on the wallduring seismic loading may, however, be taken directly intoaccount when determining PAE Note that the inertial force due to the weight of the concentrated surcharge load,
khWsurcharge, and the static force, Fp, are separate and both act during seismic loading They must therefore both beincluded in the seismic wall stability analysis Fp is calculated as specified in Article 3.11.6
For evaluating external stability of the wall and for evaluating safety against structural failure of the wall(internal stability), the simplest design approach that willensure a safe result is to combine the total seismic earthpressure force with the inertial response of the wallsection, assuming both are in phase This approach isconservative in that the peak inertial response of the wallmass is not likely to occur at the same time as the peakseismic active pressure Previous design practice, at leastfor MSE walls, has been to combine the full wall inertial force with only 50 percent of the dynamic increment ofthe total earth pressure (i.e., PAE – PA) to account for this lack of concurrence in the design forces
Research using centrifuge testing of reduced scalewalls by Al Atik and Sitar (2010) indicated that these twoseismic forces are out of phase, in that when dynamicearth pressure was at its maximum, the wall inertial forcewas at its minimum and was very close to zero When thewall inertial force was at its maximum, the total seismic earth pressure (i.e., PAE) was close to its static value Theyalso indicated, however, that more coincidence betweenthese two forces may still be possible for some wallconfigurations and ground motions Nakamura (2006)made similar observations regarding lack of concurrence
of these forces based on dynamic centrifuge testing heconducted This research indicates that treating the twoforces as nonconcurrent is justified in most cases See Al Atik and Sitar (2010) and Nakamura (2006)for examples of the application of numerical methods toinvestigate this issue of nonconcurrent forces
The inertial force associated with the soil mass on thewall heel behind the retaining wall is not added to the
Trang 32S ECTION 11: W ALLS , A BUTMENTS , AND P IERS 11-27
active seismic earth pressure when structurally designing the retaining wall The basis for excluding this inertialforce is that movement of this soil mass is assumed to be
in phase with the structural wall system with the inertialload transferred through the heel of the wall Based ontypical wave lengths associated with seismic loading, this
is considered a reasonable assumption However, theinertial force for the soil mass over the wall heel isincluded when determining the external stability of the wall.Additional discussion and guidance on the selection
of soil parameters for seismic design of walls and thepotential consideration of soil cohesion are provided byAnderson et al (2008)
Figure 11.6.5.1-1—Seismic Force Diagram for Gravity Wall External Stability Evaluation
11.6.5.2—Calculation of Seismic Acceleration
Coefficients for Wall Design
11.6.5.2.1—Characterization of Acceleration at
Wall Base
The seismic horizontal acceleration coefficient, kh,
for computation of seismic lateral earth pressures and
loads shall be determined on the basis of the PGA at the
ground surface (i.e., kh0 = Fpga PGA = As, where kh0 is the
seismic horizontal acceleration coefficient assuming zero
wall displacement occurs) The acceleration coefficient
determined at the original ground surface should be
considered to be the acceleration coefficient acting at the
wall base For walls founded on Site Class A or B soil
(hard or soft rock), kh0 shall be based on 1.2 times the
site-adjusted peak ground acceleration coefficient (i.e., kh0 =
1.2FpgaPGA)
C11.6.5.2.1
As is determined as specified in Article 3.10
Trang 3311-28 AASHTO LRFD B RIDGE D ESIGN S PECIFICATIONS , N INTH E DITION , 2020
The seismic vertical acceleration coefficient, kv,
should be assumed to be zero for the purpose of
calculating lateral earth pressures, unless the wall is
significantly affected by near fault effects (see
Article 3.10), or if relatively high vertical accelerations
are likely to be acting concurrently with the horizontal
11.6.5.2.2—Estimation of Acceleration Acting on
Wall Mass
The seismic lateral wall acceleration coefficient, kh,
shall be determined considering the effects of wave
scattering or ground motion amplification within the wall
and the ability of the wall to displace laterally For wall
heights less than 60.0 ft, simplified pseudostatic analyses
may be considered acceptable for use in determining the
design wall mass acceleration For wall heights greater
than 60.0 ft, special dynamic soil structure interaction
design analyses should be performed to assess the effect
of spatially varying ground motions within and behind the
wall and lateral deformations on the wall mass
acceleration
The height of the wall, h, shall be taken as the
distance from the bottom of the heel of the retaining
structure to the ground surface directly above the heel
If the wall is free to move laterally under the
influence of seismic loading and if lateral wall movement
during the design seismic event is acceptable to the
Owner, kh0 should be reduced to account for the allowed
lateral wall deformation The selection of a maximum
acceptable lateral deformation should take into
consideration the effect that deformation will have on the
stability of the wall under consideration, the desired
seismic performance level, and the effect that
deformation could have on any facilities or structures
supported by the wall Where the wall is capable of
displacements of 1.0 to 2.0 in or more during the design
seismic event, kh may be reduced to 0.5kh0 without
conducting a deformation analysis using the Newmark
method (Newmark, 1965) or a simplified version of it
This reduction in kh shall also be considered applicable to
the investigation of overall stability of the wall and slope
A Newmark sliding block analysis or a simplified
form of that type of analysis should be used to estimate
lateral deformation effects, unless the Owner approves
the use of more sophisticated numerical analysis methods
to establish the relationship between kh and the wall
displacement Simplified Newmark analyses should only
be used if the assumptions used to develop them are valid
for the wall under consideration
C11.6.5.2.2
The designer may use kh for wall design without accounting for wave scattering and lateral deformationeffects; however, various studies have shown that theground motions in the mass of soil behind the wall willoften be lower than kh0 at the ground surface, particularlyfor taller walls However, in some cases, it is possible tohave amplification of the ground motion in the wallrelative to the wall base ground motion
The desired performance of walls during a designseismic event can range from allowing limited damage tothe wall or displacement of the wall to requiring damage-free, post-earthquake conditions In many cases, a well-designed gravity or semigravity wall could slide severalinches and perhaps even a foot or more, as well as tilt several degrees, without affecting the function of the wall
or causing collapse, based on past performance of walls
in earthquakes However, the effect of such deformation
on the facilities or structures located above, behind, or infront of the wall must also be considered whenestablishing an allowable displacement
Report 611 (Anderson et al., 2008) concluded that, whenusing the Newmark method, the amount of permanentground displacement associated with kh = 0.5kh0 will in most cases be less than 1.0 to 2.0 in (i.e., use of
kh = 0.5kh0 provides conservative results)
Details of specific simplified procedures that may beused to estimate wave scattering effects and lateral walldeformations to determine kh are provided in Appendix A11 Those simplified procedures includeKavazanjian et al (2003), Anderson et al (2008), andBray et al (2009, 2010) Additional background needed
to conduct a full Newmark sliding block analysis is alsoprovided in Appendix A11
The simplified, Newmark method-based equations mentioned previously present a relatively quick method
of estimating the yield acceleration for a givenmaximum acceptable displacement or, alternatively,the displacements that will occur if the capacity to demand (C/D) ratio for a limiting equilibrium stability analysis isless than 1.0 Alternatively, two-dimensional numerical methods that allow seismic time history analyses may beused to estimate permanent displacements Such modelsrequire considerable expertise in the set-up and interpretation of model results, particularly relative to theselection of strength parameters consistent with seismicloading For this reason, use of this alternate approachshould be adopted only with the Owner’s concurrence
Trang 34S ECTION 11: W ALLS , A BUTMENTS , AND P IERS 11-29
11.6.5.3—Calculation of Seismic Active Earth
Pressures
Seismic active and passive earth pressures for gravity
and semigravity retaining walls shall be determined
following the methods described in this Article Site
conditions, soil and retaining wall geometry, and the
earthquake ground motion determined for the site shall be
considered when selecting the most appropriate method
to use
The seismic coefficient, kh, used to calculate seismic
earth pressures shall be the site-adjusted peak ground
surface acceleration identified in Article 11.6.5.2.1 (i.e., As)
after adjustments for 1) spectral or wave scattering effects
and 2) limited amounts of permanent deformation as
determined appropriate for the wall and anything the wall
movement could affect (Article 11.6.5.2.2) The vertical
acceleration coefficient, kv, should be assumed to be zero
for design as specified in Article 11.6.5.2.1
For seismic active earth pressures, either the
Mononobe–Okabe (M–O) Method or the Generalized
Limit Equilibrium (GLE) Method should be used For
wall geometry or site conditions for which the M–O
Method is not suitable, the GLE Method should be used
The M–O Method shall be considered acceptable for
determination of seismic active earth pressures only where:
· the material behind the wall can be reasonably
approximated as a uniform, cohesionless soil
within a zone defined by a 3H:1V wedge from
the heel of the wall,
· the backfill is not saturated and in a loose
enough condition such that it can liquefy during
shaking, and
C11.6.5.3
The suitability of the method used to determineactive and passive earth seismic pressures should bedetermined after a review of features making up the staticdesign, such as backfill soils and slope above theretaining wall These conditions, along with the ground motion for a site, will affect the method selection The complete M–O equation is provided in Appendix A11 The M–O equation for seismic active earth pressure is based on the Coulomb earth pressuretheory and is therefore limited to design of walls that have homogeneous, dry cohesionless backfill The M–Oequation has been shown to be most applicable when thebackfill is homogenous and can be characterized ascohesionless
Another important limitation of the M–O equation is that there are combinations of acceleration and slopeangle in which real solutions to the equation are no longerpossible or that result in values that rapidly approachinfinity The contents of the radical in this equation must
be positive for a real solution to be possible In past practice, when the combination of acceleration and slopeangle results in a negative number within the radical inthe equation, rather than allowing that quantity to becomenegative, it was artificially set at zero While this practicemade it possible to get a value of KAE, it also tended to produce excessively conservative results Therefore, insuch cases it is better to use an alternative method
· the combination of peak ground acceleration and
backslope angle do not exceed the friction angle
of the soil behind the wall, as specified in Eq
f = the wall backfill friction angle
i = backfill slope angle (degrees)
kh = the horizontal acceleration coefficient
kv = the vertical acceleration coefficient
Once KAE is determined, the seismic active force,
PAE, shall be determined as:
where:
KAE = seismic active earth pressure coefficient (dim)
g = the soil unit weight behind the wall (kips/ft3)
For many situations, gravity and semigravity wallsare constructed by cutting into an existing slope where thesoil properties differ from the backfill that is used behindthe retaining wall In situations where soil conditions arenot homogeneous and the failure surface is flatter than thenative slope, seismic active earth pressures computed forthe M–O equation using the backfill properties may nolonger be valid, particularly if there is a significantdifference in properties between the native and backfill soils
However, the M–O Method has been used in pastdesign practice for estimating seismic earth pressures formany of these situations due to lack of an availablealternative Various approaches to force the method to beusable for such situations have been used, such asestimating some type of average soil property for layeredsoil conditions or limiting the acceleration to prevent theradical in the equation from being negative, among others With the exception of seismic passive pressure estimation, this practice has typically resulted inexcessively conservative designs and it is notrecommended to continue this practice
The GLE Method consists of conducting a seismicslope stability analysis in which kh is used as the acceleration coefficient, typically using a computer
Trang 3511-30 AASHTO LRFD B RIDGE D ESIGN S PECIFICATIONS , N INTH E DITION , 2020
h = the total wall height, including any soil
surcharge present, at the back of the wall
The external active force computed from the
generalized limit equilibrium method, distributed over
the wall height h, shall be used as the seismic earth
pressure
The equivalent pressure representing the total static
and seismic active force (PAE) as calculated by either
method should be distributed using the same distribution
as the static earth pressure used to design the wall when
used for external stability evaluations, as illustrated in
Figure 11.6.5.1-1, but no less than H/3 For the case when
a sloping soil surcharge is present behind the wall face (h
in Figure 11.6.5.1-1), this force shall be distributed over
the total height, h
For complex wall systems or complex site
conditions, with the owner’s approval, dynamic
numerical soil structure interaction (SSI) methods should
also be considered
program in which the applied force necessary to maintainequilibrium (i.e., a capacity/demand ratio of 1.0) underseismic loading is determined This force is PAE Specific procedures used to conduct this method are provided in Appendix A11 The GLE Method should be used whenthe M–O Method is not suitable due to the wall geometry,seismic acceleration level, or site conditions
The Coulomb Wedge Equilibrium Method, alsoreferred to as the trial wedge method, as described in Peck
et al (1974) and Caltrans (2010), may also be used forsituations when the M–O Method is not suitable but a hand calculation method is desired, provided that the soilconditions are not too complex (e.g., layered soilconditions behind the wall) Other than the potentialability to use the trial wedge method as a hand calculationmethod, it has no real advantages over the GLE method Studies have indicated that classic limit equilibriumbased methods such as the M–O, GLE, and the Coulomb Wedge Equilibrium methods may be overly conservativeeven if the limitations listed above are considered See Bray et al (2010) and Lew et al (2010a, 2010b) withregard to the generation of seismic earth pressures behindwalls and the applicability of the Mononobe–Okabe or similar methods
For cases in which the wall seismic design resultappears to be excessively conservative relative to pastexperience in earthquakes, other than taking advantage ofthe no seismic analysis provisions in Article 11.5.4.2, there are no simple solutions; numerical dynamic soil–structure interaction (SSI) modeling may need to beconsidered See Bray et al (2010) for an example.Dynamic numerical SSI solutions may also be needed formore complex wall systems and for walls in which the seismic loading is severe Due to the complexities ofsuch analyses, an independent peer review of the analysisand results is recommended
Past practice for locating the resultant of the staticand seismic earth pressure for external wall stability has been to either assume a uniform distribution of lateralearth pressure for the combined static plus seismic stress
or, if the static and seismic components of earth pressureare treated separately, using an inverted trapezoid for theseismic component, with the seismic force located at 0.6habove the wall base, and combining that force with thenormal static earth pressure distribution (Seed andWhitman, 1970) More recent research indicates thelocation of the resultant of the total earth pressure (static plus seismic) should be located at h/3 above the wall base(Clough and Fragaszy, 1977) (Al Atik and Sitar, 2010)(Bray et al., 2010) (Lew et al., 2010a and b) See Appendix A11 for additional discussion on this issue As
a minimum, the combined resultant of the active andseismic earth pressure, i.e., PAE, should be located no lower, relative to the wall base, than the static earthpressure resultant However, a slightly higher combinedstatic/seismic resultant location (e.g., 0.4h to 0.5h) may
be considered, since there is limited evidence the resultantcould be higher, especially for walls in which the impact
of failure is relatively high
Trang 36S ECTION 11: W ALLS , A BUTMENTS , AND P IERS 11-31
Most natural cohesionless soils have some finescontent that contributes cohesion, particularly for short-term loading conditions Similarly, cohesionless backfillsare rarely fully saturated and partial saturation providesfor some apparent cohesion, even for most clean sands.The effects of cohesion, whether actual or apparent, are
an important issue to be considered in practical designproblems
The M–O equation has been extended to c-f soils by Prakash and Saran (1966), where solutions were obtainedfor cases including the effect of tension cracks and walladhesion Similar solutions have also been discussed by Richards and Shi (1994) and Chen and Liu (1990) Results of analyses by Anderson et al (2008) show asignificant reduction in the seismic active pressure forsmall values of cohesion From a design perspective, thismeans that even a small amount of cohesion in the soil could reduce the demand required for retaining walldesign
From a design perspective, the uncertainties in theamount of cohesion or apparent cohesion make it difficult
to explicitly incorporate the contributions of cohesion inmany situations, particularly in cases where clean backfillmaterials are being used, regardless of the potentialbenefits of apparent cohesion that could occur if the soil
is partially saturated Realizing these uncertainties, thefollowing guidelines are suggested
· Where cohesive soils are being used for backfill
or where native soils have a clear cohesivestrength component, the designer should giveconsideration to incorporating some effects ofcohesion in the determination of the seismiccoefficient
· If the cohesion in the soil behind the wall resultsprimarily from capillarity stresses, especially inrelatively low fines content soils, it is recommended that cohesion be neglected when estimating seismic earth pressure
The groundwater within the active wedge or submerged conditions (e.g., as in the case of a retainingstructure in a harbor or next to a lake or river) caninfluence the magnitude of the seismic active earthpressure The time-averaged mean groundwater elevationshould be used when assessing groundwater effects
If the soil within the wedge is fully saturated, thenthe total unit weight (gt) should be used to estimate theearth pressure when using the M–O Method, under the assumption that the soil and water move as a unit duringseismic loading This situation will apply for soils that are not free draining
Trang 3711-32 AASHTO LRFD B RIDGE D ESIGN S PECIFICATIONS , N INTH E DITION , 2020
If the backfill material is a very open granularmaterial, such as quarry spalls, it is possible that the waterwill not move with the soil during seismic loading In thiscase, the effective unit weight should be used in thepressure determination and an additional forcecomponent due to hydrodynamic effects should be added
to the wall pressure Various methods are available toestimate the hydrodynamic pressure (see Kramer, 1996) Generally, these methods involve a form of theWestergaard solution
11.6.5.4—Calculation of Seismic Earth Pressure
for Nonyielding Abutments and Walls
For abutment walls and other walls that are
considered nonyielding, the value of kh used to calculate
seismic earth pressure shall be increased to 1.0kh0, unless
the Owner approves the use of more sophisticated
numerical analysis techniques to determine the
seismically induced earth pressure acting on the wall,
considering the ability of the wall to yield in response to
lateral loading In this case, kh should not be corrected for
wall displacement, since displacement is assumed to be
zero However, kh should be corrected for wave scattering
effects as specified in Article 11.6.5.2.2
C11.6.5.4
The lateral earth pressure calculation methodologiesprovided in Article 11.6.5.3 assume that the abutment
or wall is free to laterally yield a sufficient amount
to mobilize peak soil strengths in the backfill Examples
of walls that may be nonyielding are integral abutments, abutment walls with structural wing walls, tunnelportal walls, and tied back cylinder pile walls Forgranular soils, peak soil strengths can be assumed to bemobilized if deflections at the wall top are about 0.5percent of the abutment or wall height For walls restrained from movement by structures, batter piles,
or anchors, lateral forces induced by backfill inertialforces could be greater than those calculated by M–O
or GLE methods of analysis Simplified elastic solutionspresented by Wood (1973) for rigid nonyieldingwalls also indicate that pressures are greater than thosegiven by M–O and GLE analysis These solutions also indicate that a higher resultant location for thecombined effect of static and seismic earth pressure of h/2 may be warranted for nonyielding abutments and wallsand should be considered for design The use of a factor
of 1.0 applied to kh0 is recommended for design wheredoubt exists that an abutment or wall can yieldsufficiently to mobilize backfill soil strengths In general,
if the lack of ability of the wall to yield requires that thewall be designed for K0 conditions for the strength limitstate, then a kh of 1.0kh0 should be used for seismic design.Alternatively, numerical methods may be used tobetter quantify the yielding or nonyielding nature of thewall and its effect on the seismic earth pressures thatdevelop, if approved by the Owner
11.6.5.5—Calculation of Seismic Passive Earth
Pressure
For estimating seismic passive earth pressures, wall
friction and the deformation required to mobilize the
passive resistance shall be considered and a log spiral
design methodology shall be used The M–O Method
shall not be used for estimating passive seismic earth
pressure
Seismic passive earth pressures shall be estimated
using procedures that account for the friction between the
retaining wall and the soil, the nonlinear failure surface
that develops in the soil during passive pressure loading,
C11.6.5.5
The seismic passive earth pressure becomesimportant for walls that develop resistance to sliding fromthe embedded portion of the wall For these designs, it isimportant to estimate passive pressures that are not overlyconservative or unconservative for the seismic loadingcondition This is particularly the case if displacement-based design methods are used but it can also affect theefficiency of designs based on limit-equilibrium methods
If the depth of embedment of the retaining wall is lessthan 5.0 ft, the passive pressure can be estimated using
Trang 38S ECTION 11: W ALLS , A BUTMENTS , AND P IERS 11-33
and for wall embedment greater than or equal to 5.0 ft,
the inertial forces in the passive pressure zone in front of
the wall from the earthquake For wall embedment depths
less than 5.0 ft, passive pressure should be calculated
using the static methods provided in Section 3
In the absence of any specific guidance or research
results for seismic loading, a wall interface friction equal
to two-thirds of the soil friction angle should be used
when calculating seismic passive pressures
static methods given in Section 3 of these Specifications For this depth of embedment, the inertial effects fromearthquake loading on the development of passivepressures will be small
For greater depths of embedment, the inertial effects
of ground shaking on the development of passive pressures should be considered This passive zonetypically extends three to five times the embedment depth beyond the face of the embedded wall
Shamsabadi et al (2007) have developed amethodology for estimating the seismic passive pressures while accounting for wall friction and the nonlinearfailure surface within the soil Appendix A11 of thisSection provides charts based on this development for awall friction of two-thirds of the soil friction angle, f, and
a range of seismic coefficients, f values, and soil cohesion, c
The seismic coefficient used in the passive seismicearth pressure calculation is the same value as used forthe seismic active earth pressure calculation Wavescattering reductions are also appropriate to account for incoherency of ground motions in the soil if the depth ofthe passive zone exceeds 20.0 ft For most wall designs,the difference between the seismic coefficient behind thewall relative to seismic coefficient of the soil in front ofthe wall is too small to warrant use of different values The M–O equation for seismic passive earth pressure
is not recommended for use in determining the seismicpassive pressure, despite its apparent simplicity Forpassive earth pressure determination, the M–O equation
is based on the Coulomb method of determining passiveearth pressure; this method can overestimate the earthpressure in some cases
A key consideration during the determination ofstatic and seismic passive pressures is the wall friction.Common practice is to assume that some wall friction willoccur for static loading The amount of interface frictionfor static loading is often assumed to range from 50percent to 80 percent of the soil friction angle Similarguidance is not available for seismic loading
Another important consideration when using theseismic passive earth pressure is the amount ofdeformation required to mobilize this force Thedeformation to mobilize the passive earth pressure duringstatic loading is usually assumed to be large—typically 2 percent to 6 percent of the embedded wall height Similarguidance is not available for seismic loading andtherefore the normal approach during design for seismicpassive earth pressures is to assume that the displacement
to mobilize the seismic passive earth pressure is the same
as for static loading
Trang 3911-52 AASHTO LRFD B RIDGE D ESIGN S PECIFICATIONS , N INTH E DITION , 2020
Figure C11.9.5.1-2—Calculation of Anchor Loads for Multilevel Wall after Sabatini et al (1999)
11.9.5.2—Vertical Wall Elements
Vertical wall elements shall be designed to resist all
horizontal earth pressure, surcharge, water pressure,
anchor, and seismic loadings, as well as the vertical
component of the anchor loads and any other vertical
loads Horizontal supports may be assumed at each
anchor location and at the bottom of the excavation if the
vertical element is sufficiently embedded below the
bottom of the excavation
C11.9.5.2 Discrete vertical wall elements are continuousthroughout their length and include driven piles, caissons,drilled shafts, and auger-cast piles, i.e., piles and built-up sections installed in preaugured holes and backfilled withstructural concrete in the passive zone and lean concrete
in the exposed section of the wall
Continuous vertical wall elements are continuousthroughout both their length and width, although verticaljoints may prevent shear and/or moment transfer betweenadjacent sections Continuous vertical wall elementsinclude sheet piles, precast or cast-in-place concrete diaphragm wall panels, tangent-piles, and tangent caissons
For structural analysis methods, see Section 4 For walls supported in or through soft clays with
Su < 0.15γs¢H, continuous vertical elements extendingwell below the exposed base of the wall may be required
to prevent heave in front of the wall Otherwise, thevertical elements are embedded approximately 3.0 ft or as required for stability or end bearing
11.9.5.3—Facing
The provisions of Article 11.8.5.2 shall apply
Trang 406 ( 7,21 : //6 870(176 1' 3 ,(56
IHDWXUHV WR NHHS ZDWHU RXW RI WKH EDFNILOO DQG WKH EDFNILOOIXOO GUDLQHG OVR YHU XQLIRUP FOHDQ VDQG EDFNILOOHVSHFLDOO LI LW ODFNV DQJXODULW KDV DOVR EHHQ SUREOHPDWLFZLWK UHJDUG WR ZDOO VHLVPLF SHUIRUPDQFH 7KH LVVXH LV KRZZHOO LW FDQ EH FRPSDFWHG DQG UHPDLQ LQ D FRPSDFWHG VWDWHEDFNILOO VRLO FRHIILFLHQW RI XQLIRUPLW RI JUHDWHU WKDQ
LV UHFRPPHQGHG DQG LQ JHQHUDO WKH EDFNILOO SDUWLFOHVVKRXOG EH FODVVLILHG DV VXEDQJXODU RU DQJXODU UDWKHU WKDQURXQGHG RU VXEURXQGHG 7KH OHVV DQJXODU WKH EDFNILOOSDUWLFOHV WKH PRUH ZHOO JUDGHG WKH EDFNILOO PDWHULDO QHHGV
WR EH)RU DGGLWLRQDO LQIRUPDWLRQ RQ JRRG ZDOO GHWDLOV VHH
%HUJ HW DO :KLOH WKLV UHIHUHQFH LV IRFXVHG RQ06( ZDOO GHWDLOV VLPLODU GHWDLOV FRXOG EH DGDSWHG IRUJUDYLW DQG VHPLJUDYLW ZDOOV
'UDLQDJH
%DFNILOOV EHKLQG DEXWPHQWV DQG UHWDLQLQJ ZDOOV VKDOO
EH GUDLQHG RU LI GUDLQDJH FDQQRW EH SURYLGHG WKH
DEXWPHQW RU ZDOO VKDOO EH GHVLJQHG IRU ORDGV GXH WR HDUWK
SUHVVXUH SOXV IXOO K GURVWDWLF SUHVVXUH GXH WR ZDWHU LQ WKH
/RDG (IIHFWV LQ 3LHUV
3LHUV VKDOO EH GHVLJQHG WR WUDQVPLW WKH ORDGV RQ WKH
VXSHUVWUXFWXUH DQG WKH ORDGV DFWLQJ RQ WKH SLHU LWVHOI RQWR
WKH IRXQGDWLRQ 7KH ORDGV DQG ORDG FRPELQDWLRQV VKDOO EH
KLJKZD RU ULYHU WUDIILF DQ DSSURSULDWH ULVN DQDO VLV
VKRXOG EH PDGH WR GHWHUPLQH WKH GHJUHH RI LPSDFW
UHVLVWDQFH WR EH SURYLGHG DQG RU WKH DSSURSULDWH
SURWHFWLRQ V VWHP &ROOLVLRQ ORDGV VKDOO EH GHWHUPLQHG DV
VSHFLILHG LQ UWLFOHV DQG
ROOLVLRQ :DOOV
&ROOLVLRQ ZDOOV PD EH UHTXLUHG E UDLOURDG RZQHUV
LI WKH SLHU LV LQ FORVH SUR[LPLW WR WKH UDLOURDG RZQHU LI WKH FROXPQ LV ZLWKLQ&ROOLVLRQ ZDOOV DUH XVXDOO UHTXLUHG E WKH UDLOURDGIW RI WKH UDLO 6RPH
UDLOURDG RZQHUV UHTXLUH D FROOLVLRQ ZDOO IW DERYHWKH WRS RI WKH UDLO EHWZHHQ FROXPQV IRU UDLOURDGRYHUSDVVHV