1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

XỬ LÝ TÍN HIỆU SỐ Dsp chapter5 student 19072015

35 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề z-transform
Tác giả Nguyen Thanh Tuan
Người hướng dẫn Click M.Eng.
Trường học Ho Chi Minh City University of Technology
Chuyên ngành Digital Signal Processing
Thể loại bài tập
Năm xuất bản 2015
Thành phố Ho Chi Minh City
Định dạng
Số trang 35
Dung lượng 749,4 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Slide 1 Click to edit Master subtitle style Nguyen Thanh Tuan, M Eng Department of Telecommunications (113B3) Ho Chi Minh City University of Technology Email nttbk97@yahoo com z Transform Chapter 5 Di[.]

Trang 1

Click to edit Master subtitle style

Nguyen Thanh Tuan, M.Eng

Department of Telecommunications (113B3)

Ho Chi Minh City University of Technology

z-Transform

Chapter 5

Trang 2

 The z-transform is a tool for analysis, design and implementation of discrete-time signals and LTI systems

 Convolution in time-domain  multiplication in the z-domain

Trang 3

Content

1 z-transform

2 Properties of the z-transform

3 Causality and Stability

4 Inverse z-transform

Trang 4

1 ( )

0 ( )

1 ( )

2 ( )

( )

X

n

n

 The region of convergence (ROC) of X(z) is the set of all values of

z for which X(z) attains a finite value

} )

( )

(

| C

X z

ROC

 The z-transform of impulse response h(n) is called the transform

function of the filter:

Trang 6

Example 2

 Determine the z-transform of the signal

a) x(n)=(0.5)nu(n)

b) x(n)=-(0.5)nu(-n-1)

Trang 7

z-transform and ROC

 It is possible for two different signal x(n) to have the same

z-transform Such signals can be distinguished in the z-domain by their region of convergence

 z-transforms:

and their ROCs:

ROC of a causal signal is the exterior of a circle

ROC of an anticausal signal

is the interior of a circle

Trang 8

Example 3

 Determine the z-transform of the signal

) 1 (

) ( )

(na u nb un

 The ROC of two-sided signal is a ring (annular region)

Trang 9

2 Properties of the z-transform

 Linearity:

1 1

1 (n) X (z) with ROC

2 2

2 1

Trang 10

2 Properties of the z-transform

 Time shifting:

) ( )

(n X z

) ( )

Example: Determine the z-transform of the signal x(n)=2nu(n-1)

 Scaling in the z-domain:

2

1 | | :

ROC )

( )

(n X z r z r

if

2 1

( )

(n X a z a r z a r x

then

for any constant a, real or complex

Example: Determine the z-transform of the signal x(n)=ancos(w0n)u(n)

Trang 11

2 Properties of the z-transform

 Time reversal:

if

then

Example: Determine the z-transform of the signal x(n)=u(-n)

 Convolution of two sequence:

2

1 | | :

ROC )

( )

(n X z r z r

if and

) ( )

( )

( )

( )

( )

(n x1 n x2 n X z X1 z X2 z

then

the ROC is, at least, the intersection of that for X1(z) and X2(z)

Example: Compute the convolution of x=[1 1 3 0 2 1] and h=[1, -2, 1] ?

1 2

|

| r

1 : ROC )

( )

(

r

z z

X n

) ( )

Trang 12

2 Properties of the z-transform

 Differentiation in the z-domain

if

then

Example: Determine the z-transform of the signal x(n)=nanu(n)

) ( )

nx( )  z  ( )

the ROCs of both are the same

Trang 13

3 Causality and stability

will have z-transform

 A causal signal of the form

 ( ) ( ) )

(n A1p1u n A2 p2u n

|

| max

|

|

ROC 1

p

A z

p

A z

the ROC of causal signals are outside of the circle

 A anticausal signal of the form

(n A1p1u n A2p2u n

|

| min

|

|

ROC 1

p

A z

p

A z

Trang 14

3 Causality and stability

 Mixed signals have ROCs that are the annular region between two

circles

 It can be shown that a necessary and sufficient condition for the

stability of a signal x(n) is that its ROC contains the unit circle

Trang 15

4 Inverse z-transform

ROC

), ( )

(n z transform X z

) ( ROC

), (z inversez-transform x n

( )

(anticausa |

a

|

| z

| ROC if

) 1 (

signals) (causal

| a

|

| z

| ROC if

)

( )

(

n u a

n u

a n

n

1 -

az - 1

1 )

(z

X

Trang 16

Partial fraction expression method

 In general, the z-transform is of the form

 The poles are defined as the solutions of D(z)=0 There will be M poles, say at p1, p2,…,pM Then, we can write

) 1

( ) 1

)(

1 ( ) (z   p1z1  p2z1  p z1

 If N < M and all M poles are single poles

where

M M

N N z a z

a

z b z

b b

z D

z

N z

1 1 0

1 )

(

)

( )

(

Trang 17

Example 4 d

 Compute all possible inverse z-transform of

Solution:

- Find the poles: 1-0.25z-2 =0  p1=0.5, p2=-0.5

- We have N=1 and M=2, i.e., N < M Thus, we can write

where

Trang 18

Example 5 od

Trang 19

Partial fraction expression method

 If N=M

Where and for i=1,…,M

 If N> M

Trang 20

Example 6

 Compute all possible inverse z-transform of

Solution:

- Find the poles: 1-0.25z-2 =0  p1=0.5, p2=-0.5

- We have N=2 and M=2, i.e., N = M Thus, we can write

where

Trang 21

Example 6 (cont.)

Trang 22

Example 7 (cont.)

 Determine the causal inverse z-transform of

Solution:

- We have N=5 and M=2, i.e., N > M Thus, we have to divide the

denominator into the numerator, giving

Trang 23

Partial fraction expression method

 Complex-valued poles: since D(z) have real-valued coefficients, the complex-valued poles of X(z) must come in complex-conjugate pairs

Considering the causal case, we have

Writing A1 and p1 in their polar form, say, with B1 and R1 > 0, and thus, we have

As a result, the signal in time-domain is

Trang 24

Example 8

 Determine the causal inverse z-transform of

Solution:

Trang 25

Example 8 (cont.)

Trang 26

Some common z-transform pairs

Trang 27

Review

 Định nghĩa biến đổi z

 Ý nghĩa miền hội tụ của biến đổi z

 Mối liên hệ giữa miền hội tụ với đặc tính nhân quả và ổn định của tín hiệu/hệ thống-LTI rời rạc

 Biến đổi z của một số tín hiệu cơ bản: (n), anu(n), anu(-n-1)

 Một số tính chất cơ bản (tuyến tính, trễ, tích chập) của biến đổi z

 Phân chia đa thức và biến đổi z ngược

Trang 28

Homework 1

Trang 29

Homework 2

Trang 30

Homework 3

Trang 31

Homework 4

Trang 32

Homework 5

Ngày đăng: 15/04/2023, 20:54