1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (950)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 122,85 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình hộp chữ nhật ABCD A′B′C′D′ có AB = a, AD = a √ 3 Tính khoảng cá[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

2

a√3

√ 3

4 .

Câu 2 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 6

(3x − 1) ln 2. B y

3x − 1

ln 2

(3x − 1) ln 2. D y

3x − 1

ln 2

Câu 3 Biết

5

R

1

dx 2x − 1 = ln T Giá trị của T là:

Câu 4 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 5 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= 3 B f (−1)= −5 C f (−1)= −1 D f (−1)= −3

Câu 6 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4;+∞)

B [7

4; 2]S[22;+∞)

Câu 7 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

B Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

D Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

Câu 8 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z

Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 9 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a

√ 2

2 Tính góc giữa mặt bên (S DC) và mặt đáy

Câu 10 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích

toàn phần St p của hình nón đó

A St p = 5

4πa2 B St p = 3

4πa2 C St p = 1

4πa2 D St p = πa2

Trang 2

Câu 11 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; −1) B.→−n = (1; 2; 3) C.→−n = (1; 3; −2) D.→−n = (1; −2; 3)

Câu 12 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A −1

3(2x+ 1)−

4

3(2x+ 1)−

4

3

C (2x+ 1)−

1

1

3 ln(2x+ 1)

Câu 13 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Câu 14 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 15 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2

−1 = x −1

A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là

A (2 ; −3 ; 1) B (2

3; −

4

3;

5

8

3; −

2

3;

7

10

2 ; −

4

3;

5

3).

Câu 16 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A x5− sin x+ C B x5+ sin x + C C 5x5− sin x+ C D 5x5+ sin x + C

Câu 17 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?

A Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm

B Phương trình đã cho luôn có nghiệm.

C Phương trình đã cho có tích hai nghiệm bằng c

a.

D Phương trình đã cho có tổng hai nghiệm bằng −b

a .

Câu 18 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2

bằng bao nhiêu?

√ 13

Câu 19 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0

Khi đó tổng phần thực và phần ảo của z0là

Câu 20 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với

a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?

Câu 21 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng

T = |z1|+ |z2|+ |z3|+ |z4|

Câu 22 Căn bậc hai của -4 trong tập số phức là.

Câu 23 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?

A |w|= √2 B |w|= √3 C |w|= √5 D |w|= 2√2

Trang 3

Câu 24 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?

Câu 25 Biết z = 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?

A. 3

7

3

7

4.

Câu 26 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 27 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 28 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Câu 29 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′

(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

A. 1

4

5

1

4.

Câu 30 NếuR02 f(x)= 4 thì R2

0[1

2f(x) − 2] bằng

Câu 31 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= −2

3.

Câu 32 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 33 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2√13 B T = 4√13 C T = 2

√ 97

√ 85

Câu 35 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

2

√ 3

2 .

Câu 36 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 37 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Trang 4

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 41 Cho z1, z2, z3thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax = 4

√ 5

√ 6

√ 2

√ 2

Câu 42 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min = 1 B |w|min = 3

2. C |w|min = 1

2. D |w|min= 2

Câu 43 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

4x

−1

1

2(2x)

1

2(x

2+ 1)

1

2

Câu 44 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : y + z − 1 = 0 B (P) : y − z + 2 = 0 C (P) : x − 2y + 1 = 0 D (P) : x − 2z + 5 = 0.

Câu 45 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 8

209

1

1

210.

Câu 46 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?

A V = 32

Câu 47 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x − 4)2+ (y + 8)2 = 2√5 B (x+ 4)2+ (y − 8)2 = 2√5

C (x − 4)2+ (y + 8)2 = 20 D (x+ 4)2+ (y − 8)2 = 20

Câu 48. R 6x5dxbằng

6x

6+ C

Câu 49 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Ngày đăng: 11/04/2023, 11:23