Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a3 6 Tìm gó[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 2 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
2
1
6.
Câu 3 Biết
5
R
1
dx 2x − 1 = ln T Giá trị của T là:
Câu 4 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√
ba3
A. m
m2− 12
m2− 3
4m2− 3
Câu 5 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 8
3 .
Câu 6 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A (7
4;+∞)
B [7
4; 2]S[22;+∞)
Câu 7 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
√ 2
a√3
a√3
2 .
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(0; 2; 3) B A(0; 0; 3) C A(1; 2; 0) D A(1; 0; 3).
Câu 9 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Câu 10 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nP và
−→
nQ Biết cosin góc giữa hai vectơ−→nP và−n→Qbằng −
√ 3
2 Góc giữa hai mặt phẳng (P) và (Q) bằng.
Câu 11 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Trang 2Câu 12 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là
A 5x5− sin x+ C B x5+ sin x + C C x5− sin x+ C D 5x5+ sin x + C
Câu 13 Tập nghiệm của bất phương trình 52x+3 > −1 là
Câu 14 Cho hàm số y= f (x) có đồ thị của y = f′
(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x − 1)2+ (y − 4)2+ (z + 2)2 = 10 B (x+ 1)2+ (y + 4)2+ (z − 2)2= 40
C (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40 D (x − 1)2+ (y − 4)2+ (z + 2)2= 40
Câu 16 Tính đạo hàm của hàm số y= 5x
′ = x.5x−1
Câu 17 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng
T = |z1|+ |z2|+ |z3|+ |z4|
Câu 18 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng
A −1
3
3
1
2.
Câu 19 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 5 − 2i và −5+ 2i B 4+ i và −4 + i C 4 − i và −4+ i D 4 − i và 2+ 3i
Câu 20 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= 3√5 B |w|= 5 C |w|= √73 D |w|= √5
Câu 21 Biết phương trình z2+ mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo Khi đó tham số thực
mgần giá trị nào nhất trong các giá trị sau?
Câu 22 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2+ (5 − 2i)z − 9 + 7i = 0 B z2− (5 − 2i)z+ 9 − 7i = 0
C z2− (1+ 4i)z + 9 − 7i = 0 D z2+ (1 + 4i)z − 9 + 7i = 0
Câu 23 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?
A |w|= √5 B |w|= √3 C |w|= √2 D |w|= 2√2
Câu 24 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?
A Phương trình đã cho có tích hai nghiệm bằng c
a.
B Phương trình đã cho luôn có nghiệm.
C Phương trình đã cho có tổng hai nghiệm bằng −b
a .
D Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm
Câu 25 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?
Trang 3Câu 26 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
A. 3
3
2.
Câu 27 Có bao nhiêu số nguyên x thỏa mãn log3x
343 < log7x2− 16
Câu 28 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
A. 1
7
1
Câu 29 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Câu 30 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n4= (1; 1; −1) B.→−n1 = (−1; 1; 1) C.→−n3 = (1; 1; 1) D.→−n2 = (1; −1; 1)
Câu 31 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A. 2
√
3
√ 3
√
√ 2
2 a.
Câu 32 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= 1πxπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = xπ−1
Câu 33 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 3
2. B |w|min= 1 C |w|min = 2 D |w|min = 1
2.
Câu 35 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
3
Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 39 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
√
2.
Trang 4Câu 40 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
C z là một số thực không dương D z là số thuần ảo.
Câu 41 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 43 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= −x4+ 2x2+ 2 B y= −x3+ 3x2+ 2 C y= x4− 2x2+ 2 D y= x3− 3x2+ 2
Câu 44 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 45 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= −6
5 −
27
5 + 6
5+ 27
5 −
6
5i.
Câu 46 Với a là số thực dương tùy ý, log5(5a) bằng
Câu 47 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
C x= −2 + 4ty = −6tz = 1 + 2t D x= 2 + 2ty = −3tz = −1 + t
Câu 48 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32
5 .
Câu 49 Tính đạo hàm của hàm số y= 2023x
A y′ = x.2023x−1 B y′ = 2023x
ln x C y′ = 2023x
ln 2023
Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; −3; 4) B.→−n = (2; 3; −4) C.→−n = (−2; 3; 4) D.→−n = (−2; 3; 1)
HẾT