1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (545)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 123,95 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)

Câu 2 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 3 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.

Tính thể tích của khối trụ

Câu 4 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A 0 < m < 1

1

3. D Không tồn tại m.

Câu 5 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

4.

Câu 6 Cho hình hộp chữ nhật ABCD.A

B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

2

√ 3

a√3

2 .

Câu 7 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; −3) B Hàm số đồng biến trên khoảng (−3; 1).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (−3; 1).

Câu 8 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A m= 2 B 0 < m < 2 C −2 ≤ m ≤ 2 D −2 < m < 2.

Câu 9 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 10 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 11 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Câu 12 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 13 Phần ảo của số phức z= 2 − 3i là

Trang 2

Câu 14 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = π1xπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = πxπ−1

Câu 15 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

7

1

2.

Câu 16 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

Câu 17 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 18 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= √85 B |w|= √48 C |w|= 6√3 D |w|= 4√5

Câu 19 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|=

√ 34

√ 34

3 . D |z|= 34

Câu 20 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 21 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực không âm.

C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số phức.

Câu 22 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 23 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 24 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √5 B |z1+ z2|= 1 C |z1+ z2|= √13 D |z1+ z2|= 5

Câu 25 Với mọi số phức z, ta có |z+ 1|2bằng

A z · z+ z + z + 1 B |z|2+ 2|z| + 1 C z2+ 2z + 1 D z+ z + 1

Câu 26 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (−1; −1; −3) B (1; 1; 3) C (3; 1; 1) D (3; 3; −1).

Câu 27 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =

1, tính tích phân I = R5

0 1+ f (x).

A I = 5

Câu 28 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

C.R f(x)dx = 1

2

2x+ 1 + C.

Câu 29 Mệnh đề nào sau đây sai?

A.R( f (x) − g(x))= R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R

B. R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R

Trang 3

C. ( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R.

D.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R

Câu 30 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng

(−2; 3) Tính I = R2

−1[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4

Câu 31 Tích phânR01e−x dx bằng

A. e −1

1

1

e.

Câu 32 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A −2x + y − z + 1 = 0 B −2x + y − z − 4 = 0 C −2x + y − z + 4 = 0 D 2x + y − z − 4 = 0.

Câu 33 ChoR3

a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?

A (1

1

2).

Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 .

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2

Câu 35 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B 3 < |z| < 5 C. 5

2 < |z| < 4 D. 1

2 < |z| < 2

Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 37 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 7

√ 2

√ 5

√ 2

√ 6

2 .

Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 3

1

2 < |z| < 3

2. C |z| <

1

2. D |z| > 2.

Câu 39 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 40 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 41 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Trang 4

Câu 42 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

A. 3

2

1

√ 2

Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (3; 14; 16) B 2→−u + 3−→v = (1; 14; 15)

C 2→−u + 3−→v = (1; 13; 16) D 2→−u + 3−→v = (2; 14; 14)

Câu 44 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = x

(x2− 1)log4e. B y

x2− 1 ln 4. C y

2(x2− 1) ln 4. D y

(x2− 1) ln 4.

Câu 45 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 33π

31π

32π

5 .

Câu 46 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

128.

Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600

Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Câu 49 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

4.

Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Trang 5

HẾT

Ngày đăng: 11/04/2023, 10:46

🧩 Sản phẩm bạn có thể quan tâm