Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= ax+ b
cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?
A bc > 0 B ad > 0 C ab < 0 D ac < 0.
Câu 2 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A. √5
a< √5
√
2 > b√2 C ea > eb D a−√3 < b−√3
Câu 3 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường hypebol B Đường tròn C Đường parabol D Đường elip.
Câu 4 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′
(−2; −3; −1) B M′
(2; 3; 1)
Câu 5 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A loga(x − 2)2 = 2loga(x − 2) B alogax = x
C loga2x= 1
2= 2logax
Câu 6 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
A. 4
Câu 7 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 8 Cho lăng trụ đều ABC.A′
B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A. √a
2a
√
√ 5a
√ 3a
2 .
Câu 9 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 10 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
3
2a3
3
Câu 11 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án dưới đây Hỏi hàm số đó là hàm số nào?
Câu 12 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?
A (3, 5; 3, 7)· B (3, 7; 3, 9)· C (3, 3; 3, 5)· D (3, 1; 3, 3)·.
Câu 13 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a
a
√ 2
2 .
Trang 2Câu 14 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 15 Cho khối lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′
B′C′
A. a
3
a3√ 2
a3
a3√ 2
Câu 16 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 17 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 18 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √48 B |w|= √85 C |w|= 6√3 D |w|= 4√5
Câu 19 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 20 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A −11
29
11
29
13.
Câu 21 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 22 Với mọi số phức z, ta có |z+ 1|2bằng
A z+ z + 1 B |z|2+ 2|z| + 1 C z · z+ z + z + 1 D z2+ 2z + 1
Câu 23 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 24 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 25 Những số nào sau đây vừa là số thực và vừa là số ảo?
A C.Truehỉ có số 0 B Không có số nào C 0 và 1 D Chỉ có số 1.
Câu 26 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F′
(x)+ C = f (x) B F(x) = f′
(x)+ C C F(x)= f′
(x)= f (x)
Câu 27 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 28 Họ nguyên hàm của hàm số f (x)= cosx + sinx là
A F(x) = sinx − cosx + C B F(x)= sinx + cosx + C
C F(x) = −sinx − cosx + C D F(x)= −sinx + cosx + C
Câu 29 ChoR3
a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
1
2; 1).
Trang 3Câu 30 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
A.R f(x)dx= √ 1
R
f(x)= √2x+ 1 + C
C.R f(x)dx= 1
2
√
Câu 31 Biết
1
R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
A ab= 5
Câu 32 Giá trị củaR0
−1ex+1dxbằng
Câu 33 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
C x − 2y+ 2z + 15 = 0 D x − 2y+ 2z − 15 = 0
Câu 34 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
Câu 35 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 3
1
2.
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 5
2 < |z| < 7
3
2 < |z| < 2 C. 1
2 < |z| < 3
2. D 2 < |z| <
5
2.
Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4
!
4;
5 4
!
4;+∞
!
Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 4)2
B P= (|z| − 2)2
|z|2− 42 D P =
|z|2− 22
Câu 41 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 42 Cho số phức z thỏa mãn1 −
√ 5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 1
2 < |z| < 2 B. 5
2 < |z| < 4 C. 3
2 < |z| < 3 D 3 < |z| < 5.
Trang 4Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 44 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.
A y= 4x+ 1
Câu 46 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 47 Cho hình lăng trụ đứng ABCD.A′
B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A.
√
3
1
√ 5
√ 3
4 .
Câu 48 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
17
πa2√ 17
πa2√ 17
πa2√ 15
Câu 49 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 2mn+ 2n + 3
C log22250= 2mn+ n + 3
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A 2x+ y − 4z + 7 = 0 B −2x − y+ 4z − 8 = 0
C 2x+ y − 4z + 1 = 0 D 2x+ y − 4z + 5 = 0
Trang 5HẾT