1. Trang chủ
  2. » Thể loại khác

Đề luyện thi thpt môn toán (621)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 123,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp chữ nhật ABCD A′B′C′D′ có AB = a, AD = a √ 3 Tính khoảng cá[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

√ 3

a√3

a√2

2 .

Câu 2 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 3 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

√ 15

a√5

a√5

3 .

Câu 4 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A.

2.a3

π.a3

π√2.a3

2π.a3

3 .

Câu 5 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a

3

6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(1; 2; 0) B A(0; 2; 3) C A(1; 0; 3) D A(0; 0; 3).

Câu 7 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20

Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A 0 < m < 1

3. B Không tồn tại m. C m < 0. D m <

1

3.

Câu 9 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 10 NếuR2

0 f(x)= 4 thì R02[1

2f(x) − 2] bằng

Câu 11 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 12 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= − 1

′ = 1

′ = ln3

′ = 1

x.

Câu 13 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= 2

′(x)= −1

x2 D F′(x)= lnx

Trang 2

Câu 14 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

A. 11

1

3.

Câu 15 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16

16

16π

15 .

Câu 16 Phần ảo của số phức z= 2 − 3i là

Câu 17 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 18 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 19 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 11

29

11

29

13.

Câu 20 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 21 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 22 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= 6√3 B |w|= √48 C |w|= 4√5 D |w|= √85

Câu 23 Những số nào sau đây vừa là số thực và vừa là số ảo?

A Không có số nào B 0 và 1 C C.Truehỉ có số 0 D Chỉ có số 1.

Câu 24 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là3 và phần ảo là 2 B Phần thực là −3 và phần ảo là−2.

C Phần thực là 3 và phần ảo là 2i D Phần thực là−3 và phần ảo là −2i.

Câu 25 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √13 B |z1+ z2|= √5 C |z1+ z2|= 1 D |z1+ z2|= 5

Câu 26 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng

(ABC) có phương trình là

A x+ y − z − 3 = 0 B x − y+ z + 6 = 0 C x+ y − z + 1 = 0 D 6x+ y − z − 6 = 0

Câu 27 F(x) là một nguyên hàm của hàm số y= xex 2

Hàm số nào sau đây không phải là F(x)?

A F(x) = −1

2(2 − e

x2) B F(x) = −1

2e

x2 + C C F(x) = 1

2e

x2 + 2 D F(x)= 1

2(e

x2 + 5)

Câu 28 Hàm số f (x) thoả mãn f′(x)= xx

là:

A x2+ x+1

x+ 1 + C. B (x+ 1)x+ C. C x2 x+ C. D (x − 1)x+ C.

Trang 3

Câu 29 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2

−1 f′(x) bằng:

Câu 30 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z + 4 = 0 B 3x − 2y+ z − 12 = 0

C 3x − 2y+ z − 4 = 0 D 3x+ 2y + z − 4 = 0

Câu 31 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng

Câu 32 ChoR01 f(x)= 2Rv `a R1

0 g(x)= 5 R1

0 [ f (x) − 2g(x)] bằng

Câu 33 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A.Rab f(2x+ 3) = F(2x + 3)

b

a

B. Rb

a k · f(x)= k[F(b) − F(a)]

C.Rba f(x)= F(b) − F(a)

D Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

Câu 34 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 5

2 < |z| < 7

3

2 < |z| < 2 C. 1

2 < |z| < 3

2. D 2 < |z| <

5

2.

Câu 35 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√5 B P= −2016 C P = 2016 D P = 1

Câu 36 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 1

Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

A. 1

3

Câu 38 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1

2. B |w|min= 1 C |w|min = 3

2. D |w|min = 2

Câu 39 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 40 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

Câu 41 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 4 B |z|= 1

Câu 42 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

2

√ 3

2 .

Trang 4

Câu 43 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 44 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

C.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R

2 (x2− 2x)dx

D.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

Câu 46 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 47 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a < 1 thì ax > ay ⇔ x< y B Nếu a > 0 thì ax > ay ⇔ x< y

C Nếu a > 1 thì ax > ay

⇔ x> y D Nếu a > 0 thì ax = ay

⇔ x= y

Câu 49 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√2

5a√2

5a√3

Câu 50 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

6

a√15

3a√30

3a√6

Trang 5

HẾT

Ngày đăng: 11/04/2023, 07:18