LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho A(1;−2; 1), B(−2; 2; 1), C(1;−2; 2) Đườn[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác
trong góc A của tam giác ABC cắt mặt phẳng (P) : x+ y + z − 6 = 0 tại điểm nào trong các điểm sau đây:
A (−2; 2; 6) B (4; −6; 8) C (−2; 3; 5) D (1; −2; 7).
Câu 2 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường
y= 1
x, x= 1, x = 2 và trục hoành
A V = π
2 .
Câu 3 Cho hình chóp tứ giác S ABCD có đáy là hình vuông cạnh bằng a√2, tam giác S AB vuông cân tại S và mặt phẳng (S AB) vuông góc với mặt phẳng đáy Khoảng cách từ A đến mặt phẳng (S CD) là
A. a
√
10
a
√ 2
a
√ 6
√ 2
Câu 4 Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3+ (m − 2)x2− 3mx+ m có điểm cực đại có hoành độ nhỏ hơn 1
Câu 5 Cho hình chóp đều S ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
Biết góc giữa MN và mặt phẳng (ABCD) bằng 60o Tính sin của góc giữa MN và mặt phẳng (S BD)
A.
√
3
2
√ 5
√ 10
5 .
Câu 6 Cho hàm số f (x)= e
1
3x
3 −2x 2 +3x+1
Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3;+∞)
B Hàm số đồng biến trên khoảng (−∞; 1) và (3;+∞)
C Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3;+∞)
D Hàm số nghịch biến trên khoảng (−∞; 1) và (3;+∞)
Câu 7 Lăng trụ ABC.A′
B′C′có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′lên (ABC) là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′ đến mp (ABB′A′) là
A. 3a
√
13
3a√10
3a√13
a√3
2 .
Câu 8 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A logaxn = log
a
1 n
x, (x > 0, n , 0) B loga1= a và logaa= 0
C loga(xy)= logax.logay D logaxcó nghĩa với ∀x ∈ R
Câu 9 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính
xác suất sao cho có ít nhất một quả màu trắng
A. 8
1
1
209
210.
Câu 10 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
15
√ 3
√ 3
1
2.
Trang 2Câu 11 Cho số phức z= (1 + i)2
(1+ 2i) Số phức z có phần ảo là
Câu 12 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 13 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m < −3 B −4 ≤ m < −3 C −4 < m ≤ −3 D m > −4.
Câu 14 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ
Câu 15 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 16 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(1; −2; 3); R = 3 B I(−1; 2; −3); R = 3 C I(1; 2; −3); R = 3 D I(1; 2; 3); R= 3
Câu 17 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?
Câu 18 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 19 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?
Câu 20 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 21 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3x2+ y2+ x + log2
x2+ y2
≤ log3x+ log2
x2+ y2+ 24x
?
Câu 22 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
Câu 23 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
3
Câu 24 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
√ 2
√ 2
√ 2
4 a3
Câu 25 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
Câu 26 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trang 3Câu 27 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 28 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A P(1; 2; 3) B Q(1; 2; −3) C M(2; −1; −2) D N(2; 1; 2).
Câu 29 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 30 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (−1; 2; 3) C (1; −2; 3) D (−1; −2; −3).
Câu 31 Cho hàm số y = f (x) có đạo hàm f′
(x)= (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 32 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
C.R f(x)= −sinx + x2
2 + C
Câu 34 Hình đa diện dưới đây có bao nhiêu cạnh?
Câu 35 Cho hàm số y= 2x − 3
−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?
A Hàm số đồng biến trên khoảng (−2;+∞) B Hàm số đồng biến trên khoảng (2;+∞)
C Hàm số đồng biến trên khoảng (−2; 2) D Hàm số đồng biến trên tập xác định của nó Câu 36 Cho hàm số y = f (x) liên tục trên R và có đạo hàm f′
(x) = x(x + 1) Hàm số y = f (x) đồng biến trên khoảng nào trong các khoảng dưới đây?
Câu 37 Trong các mệnh đề sau, mệnh đề nào đúng?
A Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
B Hai khối chóp có thể tích bằng nhau thì bằng nhau.
C Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
D Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
Câu 38 Đồ thị hàm số y= −x3+ 3x2− 3x+ 2 có bao nhiêu điểm cực trị?
Câu 39 Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc nhau và OA= OB = OC = 1 Tính thể tích V của khối tứ diện OABC
A V = 1
3.
Trang 4Câu 40 Trong các hình dưới đây, có bao nhiêu hình đa diện?
Câu 41 Cho hàm số y= −x4− x2+ 1 Trong các khẳng định sau, khẳng định nào sai?
A Đồ thị hàm số có một điểm cực đại B Đồ thị hàm số không có tiệm cận.
C Đồ thị hàm số cắt trục tung tại điểm (0; 1) D Điểm cực tiểu của hàm số là (0; 1).
Câu 42 Cho hàm số y= f (x) có bảng biến thiên như sau:
x
y′
y
−2
−∞
+∞
−2
Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Câu 43 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 29
27
23
25
4 .
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v
A 2→−u + 3−→v = (1; 13; 16) B 2→−u + 3−→v = (1; 14; 15)
C 2→−u + 3−→v = (3; 14; 16) D 2→−u + 3−→v = (2; 14; 14)
Câu 45 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a
√ 6
3a√30
a
√ 15
Câu 46 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A. 1
√ 15
√ 5
√ 15
10 .
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 2
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1
Trang 5Câu 49 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
A. 31π
33π
32π
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R e2xdx=e2x
HẾT