1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (606)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 120,41 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x − 1 1 = y + 2 −1 = z 2 V[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x + y + 2z = 0 B (P) : x − 2y − 2 = 0 C (P) : x − y + 2z = 0 D (P) : x − y − 2z = 0.

Câu 2 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)

Câu 3 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Không có tiệm cận ngang và có một tiệm cận đứng.

B Không có tiệm cận.

C Có một tiệm cận ngang và một tiệm cận đứng .

D Có một tiệm cận ngang và không có tiệm cận đứng.

Câu 4 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 32

3.

Câu 5 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A −2 ≤ m ≤ 2 B m= 2 C −2 < m < 2 D 0 < m < 2.

Câu 6 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

B Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

D Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(−3; 1; 1) B C(3; 7; 4) C C(1; 5; 3) D C(5; 9; 5).

Câu 8 Cho hình hộp chữ nhật ABCD.A

B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

3

√ 3

a

√ 2

2 .

Câu 9 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 10 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.

c

→ a

= √2 D.→−b ⊥→−a

Trang 2

Câu 11 Cho hàm số f (x) Biết f (0)= 4 và f′

(x)= 2 sin2

x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2+ 15π

Câu 12 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (−2; 3; 1) B.→−n = (2; −3; 4) C.→−n = (2; 3; −4) D.→−n = (−2; 3; 4)

Câu 13 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

A. −1

1

Câu 14 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.

Câu 15 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 8

1

209

1

21.

Câu 16 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(−3

4;

3

3

4;

1

3

4;

1

3

4;

1

2; −1).

Câu 17 Xét các số phức z thỏa mãn z2− 3 − 4i = 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng

Câu 18 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

Câu 19 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?

A.R f(x)dx= − sin x + x2+ C B. R f(x)dx= sin x + x2+ C

C.R f(x)dx= sin x + x2

2 + C

Câu 20 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn

log3x2+ y2+ x + log2

x2+ y2

≤ log3x+ log2

x2+ y2+ 24x

?

Câu 21 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 22 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

2

√ 3

√ 3

3 a

Câu 23 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 24 Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

Trang 3

Câu 25 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 26 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 27 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 28 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= 1

′ = − 1

′ = ln3

′ = 1

x.

Câu 29 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 30 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 31 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 32 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16

16π

16π

16

15.

Câu 33 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= 1

3.

Câu 34 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= 1 B max |z|= 3 C max |z|= 2 D max |z|= √2

Câu 35 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 36 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một đường tròn B Một Parabol C Một Elip D Một đường thẳng Câu 37 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A |z| > 2 B |z| < 1

1

2 < |z| < 3

3

2 ≤ |z| ≤ 2.

Câu 38 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Một đường thẳng B Đường tròn C Parabol D Hai đường thẳng.

Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x − 5)2+ (y − 4)2 = 125 B (x − 1)2+ (y − 4)2= 125

Câu 40 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

Trang 4

Câu 41 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 42 Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 43 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

4.

Câu 44 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 45 Cho P= 2a

4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 2abc B P = 2a +b+c. C P= 2a +2b+3c. D P= 26abc

Câu 46 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 23

29

27

25

4 .

Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

6

3a√30

3a√6

a√15

Câu 48 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 49 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 − sin 3x)5x +cos3xln 5 B y′ = 5x +cos3xln 5

C y′ = (1 − 3 sin 3x)5x +cos3xln 5. D y′ = (1 + 3 sin 3x)5x +cos3xln 5

Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc

tơ 2→−u + 3−→v

A 2→−u + 3−→v = (3; 14; 16) B 2→−u + 3−→v = (1; 13; 16)

C 2→−u + 3−→v = (1; 14; 15) D 2→−u + 3−→v = (2; 14; 14)

Trang 5

HẾT

Ngày đăng: 10/04/2023, 10:26

🧩 Sản phẩm bạn có thể quan tâm