LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Lăng trụ ABC A′B′C′ có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′ lên[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Lăng trụ ABC.A′B′C′có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′lên (ABC) là
trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′ đến mp (ABB′A′)
là
A. 3a
√
13
3a√10
3a√13
a√3
2 .
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác
trong góc A của tam giác ABC cắt mặt phẳng (P) : x+ y + z − 6 = 0 tại điểm nào trong các điểm sau
đây:
A (1; −2; 7) B (4; −6; 8) C (−2; 2; 6) D (−2; 3; 5).
Câu 3 Nguyên hàm F(x) của hàm số f (x)= 2x2+ x3− 4 thỏa mãn điều kiện F(0)= 0 là
A 2x3− 4x4 B x3− x4+ 2x C. 2
3x
3+ x4
2
3x
3+ x4
4 − 4x+ 4
Câu 4 Tập xác định của hàm số y= logπ(3x− 3) là:
Câu 5 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).
Độ dài đường cao AH của tứ diện ABCD là:
Câu 6 Biết logab= 2, logac= 3 với a, b, c > 0; a , 1 Khi đó giá trị của loga(a
2√3
b
c ) bằng
1
3.
Câu 7 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A logaxcó nghĩa với ∀x ∈ R B logaxn= log
a
1 n
x, (x > 0, n , 0)
C loga(xy)= logax.logay D loga1= a và logaa= 0
Câu 8 Cho hình chóp đều S ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
Biết góc giữa MN và mặt phẳng (ABCD) bằng 60o Tính sin của góc giữa MN và mặt phẳng (S BD)
A.
√
5
√ 10
2
√ 3
4 .
Câu 9 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình
tham số của đường thẳng∆ là
Câu 10 Cho hàm số f (x) Biết f (0)= 4 và f′
(x)= 2 sin2
x+ 1, ∀x ∈ R, khi đó
π 4 R
0
f(x) bằng
A. π2+ 16π − 4
Câu 11 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là
Câu 12 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.
Trang 2Câu 13 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 14 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
2(2x)
1
2 B 3x(x2+ 1)
1
4x
−1
2(x
2+ 1)
1
2
Câu 15 Cho cấp số nhân (un) với u1= −1
2; u7= −32 Tìm q?
Câu 16 Biết
3 R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2 [ f (x)+ g(x)]dx bằng
Câu 17 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
Câu 18 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 19 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (1; −2; 3) C (1; 2; −3) D (−1; 2; 3).
Câu 20 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?
Câu 21 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
Câu 22 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 23 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 24 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 25 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 26 NếuR4
−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng
Câu 27 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 1
4
1
5
2.
Câu 28 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Trang 3Câu 29 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
3.
Câu 30 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= 1πxπ−1 B y′ = xπ−1 C y′ = πxπ−1 D y′ = πxπ
Câu 31 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
A.
x= 5 + t
y= 5 + 2t
z= 1 + 3t
x= 1 + 2t
y= −1 + 3t
z= −1 + t
x= 1 + 2t
y= −1 + t
z= −1 + 3t
x= 5 + 2t
y= 5 + 3t
z= −1 + t
Câu 32 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x −3
x −1. C y= x4− 3x2+ 2 D y= x3− 3x − 5
Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (−1; 2; 3) C (1; −2; 3) D (1; 2; −3).
Câu 34 Cho hình lăng trụ đứng ABC.A′B′C′ có AA′ = 3a, tam giác ABC vuông cân tại A và BC = 2a Tính thể tích V của khối lăng trụ ABC.A′B′C′
Câu 35 Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt ”?
C Khối mười hai mặt đều D Khối bát diện đều.
Câu 36 Cho hàm số y= 2x − 3
−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?
A Hàm số đồng biến trên tập xác định của nó B Hàm số đồng biến trên khoảng (−2; 2).
C Hàm số đồng biến trên khoảng (−2;+∞) D Hàm số đồng biến trên khoảng (2;+∞)
Câu 37 Trong các mệnh đề sau, mệnh đề nào đúng?
A Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
B Hai khối chóp có thể tích bằng nhau thì bằng nhau.
C Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
D Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
Câu 38 Trong các hình dưới đây, có bao nhiêu hình đa diện?
Câu 39 Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x
y′ y
2
+∞
−∞
2
Trang 4A y= 2x − 1
2x+ 3
x −1 .
Câu 40 Tìm giá trị nhỏ nhất của hàm số f (x)= 2x3− 3x2− 12x+ 10 trên đoạn [−3; 3]
Câu 41 Đồ thị hàm số y= −x3+ 3x2− 3x+ 2 có bao nhiêu điểm cực trị?
Câu 42 Cho hàm số y= f (x) liên tục trên R và lim
x→ +∞y= 3 Trong các khẳng định sau, khẳng định nào luôn đúng?
A Đường thẳng x= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)
B Đường thẳng y= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)
C Đường thẳng y= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)
D Đường thẳng x= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A. 1
√ 15
√ 15
√ 5
3 .
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 + 3t
x= 1 + 2t
y= −2 − 3t
x= −1 + 2t
y= 2 + 3t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t .
Câu 45 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
6.
Câu 46 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′
Tính giá trị cos α
A.
√
3
√ 5
√ 3
1
2.
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y − 2)2+ (z − 4)2= 1
Câu 48 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 49 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 23
29
25
27
4 .
Câu 50 Cho hình lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′
B′C′
Trang 5HẾT